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Abstract

The standard2-norm SVM is known for its good performance in two-
class classification. In this paper, we consider the1-norm SVM. We
argue that the1-norm SVM may have some advantage over the standard2-norm SVM, especially when there are redundant noise features. We
also propose an efficient algorithm that computes the whole solution path
of the 1-norm SVM, hence facilitates adaptive selection of the tuning
parameter for the1-norm SVM.

1 Introduction

In standard two-class classification problems, we are givena set of training data(x1; y1),: : : (xn; yn), where the inputxi 2 Rp, and the outputyi 2 f1;�1g is binary. We wish to
find a classfication rule from the training data, so that when given a new inputx, we can
assign a classy from f1;�1g to it.

To handle this problem, we consider the1-norm support vector machine (SVM):min�0;� nXi=1 241� yi0��0 + qXj=1 �jhj(xi)1A35+ (1)

s.t. k�k1 = j�1j+ � � �+ j�qj � s; (2)

whereD = fh1(x); : : : hq(x)g is a dictionary of basis functions, ands is a tuning parame-
ter. The solution is denoted aŝ�0(s) and�̂(s); the fitted model isf̂(x) = �̂0 + qXj=1 �̂jhj(x): (3)

The classification rule is given bysign[f̂(x)℄. The1-norm SVM has been successfully
used in [1] and [9]. We argue in this paper that the1-norm SVM may have some advantage
over the standard2-norm SVM, especially when there are redundant noise features.

To get a good fitted model̂f(x) that performs well on future data, we also need to select
an appropriate tuning parameters. In practice, people usually pre-specify a finite set of
values fors that covers a wide range, then either use a separate validation data set or use



cross-validation to select a value fors that gives the best performance among the given set.
In this paper, we illustrate that the solution path�̂(s) is piece-wise linear as a function ofs (in theRq space); we also propose an efficient algorithm to compute theexact whole
solution pathf�̂(s); 0 � s � 1g, hence help us understand how the solution changes
with s and facilitate the adaptive selection of the tuning parameter s. Under some mild
assumptions, we show that the computational cost to computethe whole solution patĥ�(s)
isO(nqmin(n; q)2) in the worst case andO(nq) in the best case.

Before delving into the technical details, we illustrate the concept of piece-wise linearity
of the solution patĥ�(s) with a simple example. We generate10 training data in each of
two classes. The first class has two standard normal independent inputsx1; x2. The second
class also has two standard normal independent inputs, but conditioned on4:5 � x21+x22 �8. The dictionary of basis functions isD = fp2x1;p2x2;p2x1x2; x21; x22g. The solution
path �̂(s) as a function ofs is shown in Figure 1. Any segment between two adjacent
vertical lines is linear. Hence the right derivative of�̂(s) with respect tos is piece-wise
constant (inRq). The two solid paths are forx21 andx22, which are the two relevant features.
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Figure 1:The solution patĥ�(s) as a function ofs.

In section 2, we motivate why we are interested in the1-norm SVM. In section 3, we
describe the algorithm that computes the whole solution path �̂(s). In section 4, we show
some numerical results on both simulation data and real world data.

2 Regularized support vector machines

The standard2-norm SVM is equivalent to fit a model thatmin�0;�j nXi=1 241� yi0��0 + qXj=1 �jhj(xi)1A35+ + �k�k22; (4)

where� is a tuning parameter. In practice, people usually choosehj(x)’s to be the basis
functions of a reproducing kernel Hilbert space. Then a kernel trick allows the dimension
of the transformed feature space to be very large, even infinite in some cases (i.e.q =1),
without causing extra computational burden ([2] and [12]).In this paper, however, we will
concentrate on the basis representation (3) rather than a kernel representation.

Notice that (4) has the formloss + penalty, and� is the tuning parameter that controls
the tradeoff between loss and penalty. The loss(1 � yf)+ is called thehinge loss, and



the penalty is called theridge penalty. The idea of penalizing by the sum-of-squares of the
parameters is also used in neural networks, where it is knownasweight decay. The ridge
penalty shrinks the fitted coefficientŝ� towards zero. It is well known that this shrinkage
has the effect of controlling the variances of�̂, hence possibly improves the fitted model’s
prediction accuracy, especially when there are many highlycorrelated features [6]. So from
a statistical function estimation point of view, the ridge penalty could possibly explain the
success of the SVM ([6] and [12]). On the other hand, computational learning theory has
associated the good performance of the SVM to its margin maximizing property [11], a
property of the hinge loss. [8] makes some effort to build a connection between these two
different views.

In this paper, we replace the ridge penalty in (4) with theL1-norm of �, i.e. thelasso
penalty [10], and consider the1-norm SVM problem:min�0;� nXi=1 241� yi0��0 + qXj=1 �jhj(xi)1A35+ + �k�k1; (5)

which is an equivalent Lagrange version of the optimizationproblem (1)-(2).

The lasso penalty was first proposed in [10] for regression problems, where the responsey
is continuous rather than categorical. It has also been usedin [1] and [9] for classification
problems under the framework of SVMs. Similar to the ridge penalty, the lasso penalty also
shrinks the fitted coefficientŝ�’s towards zero, hence (5) also benefits from the reduction
in fitted coefficients’ variances. Another property of the lasso penalty is that because of theL1 nature of the penalty, making� sufficiently large, or equivalentlys sufficiently small,
will cause some of the coefficientŝ�j ’s to beexactly zero. For example, whens = 1 in
Figure 1, only three fitted coefficients are non-zero. Thus the lasso penalty does a kind of
continuous feature selection, while this is not the case forthe ridge penalty. In (4), none of
the�̂j ’s will be equal to zero.

It is interesting to note that the ridge penalty correspondsto a Gaussian prior for the�j ’s,
while the lasso penalty corresponds to a double-exponential prior. The double-exponential
density has heavier tails than the Gaussian density. This reflects the greater tendency of
the lasso to produce some large fitted coefficients and leave others at0, especially in high
dimensional problems. Recently, [3] consider a situation where we have a small number of
training data, e.g.n = 100, and a large number of basis functions, e.g.q = 10; 000. [3]
argue that in thesparsescenario, i.e. only a small number of true coefficients�j ’s are non-
zero, the lasso penalty works better than the ridge penalty;while in the non-sparse scenario,
e.g. the true coefficients�j ’s have a Gaussian distribution, neither the lasso penalty nor
the ridge penalty will fit the coefficients well, since there is too little data from which to
estimate these non-zero coefficients. This is thecurse of dimensionalitytaking its toll.
Based on these observations, [3] further propose thebet on sparsityprinciple for high-
dimensional problems, which encourages using lasso penalty.

3 Algorithm

Section 2 gives the motivation why we are interested in the1-norm SVM. To solve the1-norm SVM for afixedvalue ofs, we can transform (1)-(2) into a linear programming
problem and use standard software packages; but to get a goodfitted modelf̂(x) that
performs well on future data, we need to select an appropriate value for the tuning paramters. In this section, we propose an efficient algorithm that computes the whole solution path�̂(s), hence facilitates adaptive selection ofs.



3.1 Piece-wise linearity

If we follow the solution patĥ�(s) of (1)-(2) ass increases, we will notice that since bothPi(1 � yif̂i)+ andk�k1 are piece-wise linear, the Karush-Kuhn-Tucker conditionswill
not change whens increases unless aresidual(1 � yif̂i) changes from non-zero to zero,
or a fitted coefficient̂�j(s) changes from non-zero to zero, which correspond to the non-
smooth points of

Pi(1 � yif̂i)+ andk�k1. This implies that the derivative of̂�(s) with
respect tos is piece-wise constant, because when the Karush-Kuhn-Tucker conditions do
not change, the derivative of̂�(s) will not change either. Hence it indicates that the whole
solution path�̂(s) is piece-wise linear. See [13] for details.

Thus to compute the whole solution path�̂(s), all we need to do is to find thejoints, i.e.
the asterisk points in Figure 1, on this piece-wise linear path, then use straight lines to
interpolate them, or equivalently, to start at�̂(0) = 0, find the right derivative of̂�(s), lets increase and only change the derivative when�̂(s) gets to a joint.

3.2 Initial solution (i.e. s = 0)

The following notation is used. LetV = fj : �̂j(s) 6= 0g, E = fi : 1 � yif̂i = 0g,L = fi : 1 � yif̂i > 0g andu for the right derivative of�̂V(s): kuk1 = 1 and �̂V(s)
denotes the components of�̂(s) with indices inV . Without loss of generality, we assume#fyi = 1g � #fyi = �1g; then�̂0(0) = 1; �̂j(0) = 0. To compute the path that̂�(s)
follows, we need to compute the derivative of�̂(s) at0. We consider a modified problem:min�0;�j Xyi=1(1� yifi)+ + Xyi=�1(1� yifi) (6)

s.t. k�k1 � �s; fi = �0 + qXj=1 �jhj(xi): (7)

Notice that if yi = 1, the loss is still(1 � yifi)+; but if yi = �1, the loss becomes(1� yifi). In this setup, the derivative of̂�(�s) with respect to�s is the same no matter
what value�s is, and one can show that it coincides with the right derivative of �̂(s)
whens is sufficiently small. Hence this setup helps us find the initial derivativeu of �̂(s).
Solving (6)-(7), which can be transformed into a simple linear programming problem, we
get initialV , E andL. jVj should be equal tojEj. We also have:� �̂0(�s)�̂V(�s) � = � 10 �+�s � � u0u � : (8)�s starts at0 and increases.

3.3 Main algorithm

The main algorithm that computes the whole solution path�̂(s) proceeds as following:

1. Increase�s until one of the following two events happens:� A training point hitsE , i.e. 1� yifi 6= 0 becomes1� yifi = 0 for somei.� A basis function inV leavesV , i.e. �̂j 6= 0 becomeŝ�j = 0 for somej.
Let the current̂�0, �̂ ands be denoted bŷ�old0 , �̂old andsold.



2. For eachj� =2 V , we solve:� u0 +PV ujhj(xi) + uj�hj�(xi) = 0 for i 2 EPV sign(�̂oldj )uj + juj� j = 1 (9)

whereu0, uj anduj� are the unknowns. We then compute:�lossj��s =XL yi u0 +XV ujhj(xi) + uj�hj�(xi)! : (10)

3. For eachi0 2 E , we solve:� u0 +PV ujhj(xi) = 0 for i 2 Enfi0gPV sign(�̂oldj )uj = 1 (11)

whereu0 anduj are the unknowns. We then compute:�lossi0�s =XL yi u0 +XV ujhj(xi)! : (12)

4. Compare the computed values of�loss�s from step 2 and step 3. There areq�jVj+jEj = q + 1 such values. Choose the smallest negative�loss�s . Hence,� If the smallest�loss�s is non-negative, the algorithm terminates; else� If the smallest negative�loss�s corresponds to aj� in step 2, we updateV  V [ fj�g; u � uuj� � : (13)� If the smallest negative�loss�s corresponds to ai0 in step 3, we updateu andE  Enfi0g; L  L [ fi0g if necessary. (14)

In either of the last two cases,�̂(s) changes as:� �̂0(sold +�s)�̂V(sold +�s) � = � �̂old0̂�oldV �+�s �� u0u � ; (15)

and we go back to step 1.

In the end, we get a patĥ�(s), which is piece-wise linear.

3.4 Remarks

Due to the page limit, we omit the proof that this algorithm does indeed give the exact
whole solution patĥ�(s) of (1)-(2) (see [13] for detailed proof). Instead, we explain a little
what each step of the algorithm tries to do.

Step 1 of the algorithm indicates that�̂(s) gets to a joint on the solution path and the right
derivative of�̂(s) needs to be changed if either a residual(1�yif̂i) changes from non-zero
to zero, or the coefficient of a basis function�̂j(s) changes from non-zero to zero, whens
increases. Then there are two possible types of actions thatthe algorithm can take:(1) add
a basis function intoV , or (2) remove a point fromE .

Step 2 computes the possible right derivative of�̂(s) if adding each basis functionhj�(x)
into V . Step 3 computes the possible right derivative of�̂(s) if removing each pointi0
from E . The possible right derivative of̂�(s) (determined by either (9) or (11)) is such that
the training points inE are kept inE whens increases, until the next joint (step 1) occurs.�loss=�s indicates how fast theloss will decrease if�̂(s) changes according tou. Step 4
takes the action corresponding to the smallest negative�loss=�s. When theloss can not
be decreased, the algorithm terminates.



Table 1: Simulation results of1-norm and2-norm SVM

Test Error (SE)
Simulation 1-norm 2-norm No Penalty jDj # Joints

1 No noise input 0.073 (0.010) 0.08 (0.02) 0.08 (0.01) 5 94 (13)
2 2 noise inputs 0.074 (0.014) 0.10 (0.02) 0.12 (0.03) 14 149 (20)
3 4 noise inputs 0.074 (0.009) 0.13 (0.03) 0.20 (0.05) 27 225 (30)
4 6 noise inputs 0.082 (0.009) 0.15 (0.03) 0.22 (0.06) 44 374 (52)
5 8 noise inputs 0.084 (0.011) 0.18 (0.03) 0.22 (0.06) 65 499 (67)

3.5 Computational cost

We have proposed an algorithm that computes the whole solution path�̂(s). A natural
question is then what is the computational cost of this algorithm? SupposejEj = m at a
joint on the piece-wise linear solution path, then it takesO(qm2) to compute step2 and
step3 of the algorithm through Sherman-Morrison updating formula. If we assume the
training data are separable by the dictionaryD, then all the training data are eventually
going to have loss(1� yif̂i)+ equal to zero. Hence it is reasonable to assume the number
of joints on the piece-wise linear solution path isO(n). Since the maximum value ofm
is min(n; q) and the minimum value ofm is 1, we get the worst computational cost isO(nqmin(n; q)2) and the best computational cost isO(nq). Notice that this is a rough
calculation of the computational cost under some mild assumptions. Simulation results
(section 4) actually indicate that the number of joints tends to beO(min(n; q)).
4 Numerical results

In this section, we use both simulation and real data resultsto illustrate the1-norm SVM.

4.1 Simulation results

The data generation mechanism is the same as the one described in section 1, except that
we generate50 training data in each of two classes, and to make harder problems, we
sequentially augment the inputs with additional two, four,six and eight standard normal
noise inputs. Hence the second class almost completely surrounds the first, like the skin
surrounding the oragne, in a two-dimensional subspace. TheBayes error rate for this prob-
lem is0:0435, irrespective of dimension. In the original input space, a hyperplane cannot
separate the classes; we use an enlarged feature space corresponding to the2nd degree poly-
nomial kernel, hence the dictionary of basis functions isD = fp2xj ;p2xjxj0 ; x2j ; j; j0 =1; : : : pg. We generate1000 test data to compare the1-norm SVM and the standard2-norm
SVM. The average test errors over50 simulations, with different numbers of noise inputs,
are shown in Table 1. For both the1-norm SVM and the2-norm SVM, we choose the
tuning parameters to minimize the test error, to be as fair aspossible to each method. For
comparison, we also include the results for the non-penalized SVM.

From Table 1 we can see that the non-penalized SVM performs significantly worse than the
penalized ones; the1-norm SVM and the2-norm SVM perform similarly when there is no
noise input (line 1), but the2-norm SVM is adversely affected by noise inputs (line 2 - line
5). Since the1-norm SVM has the ability to select relevant features and ignore redundant
features, it does not suffer from the noise inputs as much as the2-norm SVM. Table 1 also
shows the number of basis functionsq and the number of joints on the piece-wise linear
solution path. Notice thatq < n and there is a striking linear relationship betweenjDj and#Joints (Figure 2). Figure 2 also shows the1-norm SVM result for one simulation.
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Figure 2:Left and middle panels:1-norm SVM when there are4 noise inputs. The left panel is the
piece-wise linear solution patĥ�(s). The two upper paths correspond tox21 andx22, which are the
relevant features. The middle panel is the test error along the solution path. The dash lines correspond
to the minimum of the test error. The right panel illustratesthe linear relationship between the number
of basis functions and the number of joints on the solution path whenq < n.

4.2 Real data results

In this section, we apply the1-norm SVM to classification of gene microarrays. Classi-
fication of patient samples is an important aspect of cancer diagnosis and treatment. The2-norm SVM has been successfully applied to microarray cancer diagnosis problems ([5]
and [7]). However, one weakness of the2-norm SVM is that it only predicts a cancer class
label but does not automatically select relevant genes for the classification. Often a primary
goal in microarray cancer diagnosis is to identify the genesresponsible for the classifica-
tion, rather than class prediction. [4] and [5] have proposed gene selection methods, which
we call univariate ranking (UR) and recursive feature elimination (RFE) (see [14]), that can
be combined with the2-norm SVM. However, these procedures are two-step procedures
that depend on external gene selection methods. On the otherhand, the1-norm SVM has
an inherent gene (feature) selection property due to the lasso penalty. Hence the1-norm
SVM achieves the goals of classification of patients and selection of genes simultaneously.

We apply the1-norm SVM to leukemia data [4]. This data set consists of 38 training data
and 34 test data of two types of acute leukemia,acute myeloid leukemia(AML) and acute
lymphoblastic leukemia(ALL). Each datum is a vector ofp = 7; 129 genes. We use the
original inputxj , i.e. thejth gene’s expression level, as the basis function, i.e.q = p.
The tuning parameter is chosen according to10-fold cross-validation, then the final model
is fitted on all the training data and evaluated on the test data. The number of joints on
the solution path is104, which appears to beO(n) � O(q). The results are summarized
in Table 2. We can see that the1-norm SVM performs similarly to the other methods
in classification and it has the advantage of automatically selecting relevant genes. We
should notice that the maximum number of genes that the1-norm SVM can select is upper
bounded byn, which is usually much less thanq in microarray problems.

5 Conclusion

We have considered the1-norm SVM in this paper. We illustrate that the1-norm SVM may
have some advantage over the2-norm SVM, especially when there are redundant features.
The solution patĥ�(s) of the 1-norm SVM is a piece-wise linear function in the tuning



Table 2: Results on Microarray Classification

Method CV Error Test Error # of Genes2-norm SVM UR 2/38 3/34 222-norm SVM RFE 2/38 1/34 311-norm SVM 2/38 2/34 17

parameters. We have proposed an efficient algorithm to compute the wholesolution path�̂(s) of the1-norm SVM, and facilitate adaptive selection of the tuning parameters.
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