1-norm Support Vector Machines

Ji Zhu, Saharon Rosset, Trevor Hastie, Rob Tibshirani
Department of Statistics
Stanford University
Stanford, CA 94305
{i zhu, saharon, hasti e, ti bs}@tat. stanford. edu

Abstract

The standar@-norm SVM is known for its good performance in two-
class classification. In this paper, we consider theorm SVM. We
argue that thé-norm SVM may have some advantage over the standard
2-norm SVM, especially when there are redundant noise featuwe
also propose an efficient algorithm that computes the whabldisn path

of the 1-norm SVM, hence facilitates adaptive selection of the rigni
parameter for th@-norm SVM.

1 Introduction

In standard two-class classification problems, we are givset of training datéz;,y; ),
... (zn,yn), Where the input;; € R?, and the outpuy; € {1, —1} is binary. We wish to
find a classfication rule from the training data, so that whigarga new inputz, we can
assign a clasg from {1, -1} to it.

To handle this problem, we consider th@orm support vector machine (SVM):
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whereD = {hi(z),... hy(z)} is a dictionary of basis functions, ards a tuning parame-
ter. The solution is denoted &g (s) and(s); the fitted model is

q
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The classification rule is given byign[f(z)]. Thel-norm SVM has been successfully
used in [1] and [9]. We argue in this paper that theorm SVM may have some advantage
over the standar2-norm SVM, especially when there are redundant noise fesatur

To get a good fitted modg‘i(az) that performs well on future data, we also need to select
an appropriate tuning parameter In practice, people usually pre-specify a finite set of
values fors that covers a wide range, then either use a separate validddia set or use



cross-validation to select a value fothat gives the best performance among the given set.

In this paper, we illustrate that the solution pﬁm) is piece-wise linear as a function of
s (in the RY space); we also propose an efficient algorithm to computexiaet whole

solution path{B(s),O < s < oo}, hence help us understand how the solution changes
with s and facilitate the adaptive selection of the tuning paramet Under some mild

assumptions, we show that the computational cost to contipeitehole solution patﬁ(s)
is O(ngmin(n, q)?) in the worst case an@(nq) in the best case.

Before delving into the technical details, we illustrate toncept of piece-wise linearity
of the solution patrﬁ(s) with a simple example. We generat@ training data in each of
two classes. The first class has two standard normal indepémgbutse, , z». The second
class also has two standard normal independent inputsphditioned ont.5 < z? + 23 <

8. The dictionary of basis functions B = {v/2x1,v/2xs, V2122, 22, 22}. The solution
pathB(s) as a function ofs is shown in Figure 1. Any segment between two adjacent
vertical lines is linear. Hence the right derivativeﬁ(fs) with respect tos is piece-wise
constant (ifk?). The two solid paths are fa? andz2, which are the two relevant features.
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Figure 1:The solution pathB(s) as a function of.

In section 2, we motivate why we are interested in theorm SVM. In section 3, we

describe the algorithm that computes the whole solutioh ﬁé&). In section 4, we show
some numerical results on both simulation data and realdvetada.

2 Regularized support vector machines

The standar@-norm SVM is equivalent to fit a model that

n

q
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where\ is a tuning parameter. In practice, people usually chégée)’s to be the basis
functions of a reproducing kernel Hilbert space. Then a&knick allows the dimension
of the transformed feature space to be very large, eventimfinsome cases (i.g¢.= ),
without causing extra computational burden ([2] and [1R])this paper, however, we will

concentrate on the basis representation (3) rather thamalkepresentation.

Notice that (4) has the forrtvss + penalty, and\ is the tuning parameter that controls
the tradeoff between loss and penalty. The Ifgiss- yf). is called thehingeloss, and



the penalty is called thedge penalty. The idea of penalizing by the sum-of-squares of the
parameters is also used in neural networks, where it is krasmreight decay The ridge
penalty shrinks the fitted coefficientistowards zero. It is well known that this shrinkage
has the effect of controlling the varianceshfhence possibly improves the fitted model’s
prediction accuracy, especially when there are many higiniselated features [6]. So from

a statistical function estimation point of view, the ridgenplty could possibly explain the
success of the SVM ([6] and [12]). On the other hand, compartat learning theory has
associated the good performance of the SVM to its margin miaiig property [11], a
property of the hinge loss. [8] makes some effort to build an@xtion between these two
different views.

In this paper, we replace the ridge penalty in (4) with fhenorm of 3, i.e. thelasso
penalty [10], and consider tHenorm SVM problem:
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which is an equivalent Lagrange version of the optimizaiomblem (1)-(2).

The lasso penalty was first proposed in [10] for regressioblpms, where the responge
is continuous rather than categorical. It has also beeningddand [9] for classification
problems under the framework of SVMs. Similar to the ridgegity, the lasso penalty also

shrinks the fitted coefficients’s towards zero, hence (5) also benefits from the reduction
in fitted coefficients’ variances. Another property of thesla penalty is that because of the
L, nature of the penalty, making sufficiently large, or equivalently sufficiently small,

will cause some of the coefficients’s to beexactly zero For example, wher = 1 in
Figure 1, only three fitted coefficients are non-zero. Theddlsso penalty does a kind of
continuous feature selection, while this is not the caséferidge penalty. In (4), none of

the 3;'s will be equal to zero.

It is interesting to note that the ridge penalty correspdnds Gaussian prior for thg;’s,
while the lasso penalty corresponds to a double-expor@nite. The double-exponential
density has heavier tails than the Gaussian density. Tfiecte the greater tendency of
the lasso to produce some large fitted coefficients and lednezoatd, especially in high
dimensional problems. Recently, [3] consider a situatitierg we have a small number of
training data, e.gn = 100, and a large number of basis functions, ezg= 10, 000. [3]
argue that in theparsescenario, i.e. only a small number of true coefficigfits are non-
zero, the lasso penalty works better than the ridge penaltije in the non-sparse scenario,
e.g. the true coefficients;’s have a Gaussian distribution, neither the lasso penaity n
the ridge penalty will fit the coefficients well, since thesetdo little data from which to
estimate these non-zero coefficients. This isdbese of dimensionalityaking its toll.
Based on these observations, [3] further proposebtiteon sparsityprinciple for high-
dimensional problems, which encourages using lasso genalt

3 Algorithm

Section 2 gives the motivation why we are interested inltirorm SVM. To solve the
1-norm SVM for afixedvalue ofs, we can transform (1)-(2) into a linear programming

problem and use standard software packages; but to get af'gmxnﬁmodelf(x) that
performs well on future data, we need to select an apprapréate for the tuning paramter
s. In this section, we propose an efficient algorithm that cotap the whole solution path

~

B(s), hence facilitates adaptive selectionsof



3.1 Piece-wiselinearity

If we follow the solution patrﬁ(s) of (1)-(2) ass increases, we will notice that since both
> (1= yifi)+ and||B||, are piece-wise linear, the Karush-Kuhn-Tucker conditiwiis

not change wheas increases unlessrasidual (1 — yifi) changes from non-zero to zero,
or a fitted coefficienﬁj(s) changes from non-zero to zero, which correspond to the non-
smooth points o, (1 — y; f;)+ and||8||;. This implies that the derivative gf(s) with
respect tos is piece-wise constant, because when the Karush-KuhneFuanditions do

not change, the derivative gf(s) will not change either. Hence it indicates that the whole
solution path?(s) is piece-wise linear. See [13] for details.

Thus to compute the whole solution pa(ihs), all we need to do is to find theints, i.e.
the asterisk points in Figure 1, on this piece-wise lineah ptnen use straight lines to

interpolate them, or equivalently, to start#0) = 0, find the right derivative of(s), let
s increase and only change the derivative whi¢s) gets to a joint.

3.2 Initial solution (i.e. s = 0)

The following notation is used. L&f = {j : Bj(s) #04 & ={i:1—yfi =0},
£ = {i:1—yfi >0} andu for the right derivative of3,(s): |lull; = 1 and Sy (s)
denotes the components@(s) with indices inV. Without loss of generality, we assume
#{yi = 1} > #{y: = —1}; thenfy(0) = 1,5;(0) = 0. To compute the path thak(s)
follows, we need to compute the derivativeitfs) at0. We consider a modified problem:

min > (I-wifi)r+ >, (1—yifi) (6)
Fo-B; yi=1 yi=—1
q
st |IBlh<As, fi=PBo+ > Bihj(zi). ()
j=1
Notice that ify; = 1, the loss is still(1 — y;f;)+; but if y; = —1, the loss becomes

(1 — y:f:). In this setup, the derivative @f(As) with respect taAs is the same no matter
what valueAs is, and one can show that it coincides with the right deneatf 5(s)

whens is sufficiently small. Hence this setup helps us find theahdierivativeu of B(s).
Solving (6)-(7), which can be transformed into a simpledinprogramming problem, we
getinitial V, £ andL. |V| should be equal tif'|. We also have:

Bo(AS) 1 A Uo

2 = . . 8
( By (As) 0 )" 2 u ©)
As starts at) and increases.

3.3 Main algorithm

The main algorithm that computes the whole solution pﬁ(tnh proceeds as following:

1. Increase\s until one of the following two events happens:
e Atraining point hits€, i.e. 1 — y; f; # 0 becomed — y; f; = 0 for somei.
e Abasis function in/ leavesy, i.e. 3; # 0 becomes}; = 0 for some.

Let the currenty, 3 ands be denoted byg'?, 3o ands°!d.



2. For eacty* ¢ V, we solve:
uo + 2oy ujhj(@i) +uj-hje(z;) = 0 forieé
{ >y sign (B9 uj + |u-| =1
whereu, u; andu;- are the unknowns. We then compute:

Aloss j=
As = Zﬁ:yi (UO + ZV:Ujhj(xi) + uje hjs (.%‘l)) . (20)

3. Foreach’ € &£, we solve:
Ug + ZV u]hj(a:z) = 0 forie E\{Z’}
{ Sy sign(Bfhu; = 1
whereug andu; are the unknowns. We then compute:

Alossy
AS = Z Yi (Uo + Z Ujhj (CUZ)> . (12)
L v

4. Compare the computed valuesﬁﬁgsﬁ from step 2 and step 3. There gre |V|+
|€] = g + 1 such values. Choose the smallest negaﬁﬁ&?ﬁ. Hence,

9)

(11)

e Ifthe smallest% is non-negative, the algorithm terminates; else
e If the smallest negativé}’Ao—;s corresponds to @* in step 2, we update

Y VU{i*} u<—<u9 ) (13)
j*
e If the smallest negativé% corresponds to & in step 3, we update and
E+— E\{i'}, L+ LU{i'}if necessary. (14)
In either of the last two cases(s) changes as:

BO(Sold +AS) Agld uo
p = As - 15
< 6v(sold+As) ]o)ld +Aas U ’ (15)

and we go back to step 1.

In the end, we get a pat]?(s), which is piece-wise linear.

3.4 Remarks

Due to the page limit, we omit the proof that this algorithnedondeed give the exact

whole solution patlzf?(s) of (1)-(2) (see [13] for detailed proof). Instead, we explailittle
what each step of the algorithm tries to do.

Step 1 of the algorithm indicates th@(ts) gets to a joint on the solution path and the right
derivative of/3(s) needs to be changed if either a residuat y; f;) changes from non-zero

to zero, or the coefficient of a basis functif}y(s) changes from non-zero to zero, when
increases. Then there are two possible types of actionththalgorithm can takg1) add
a basis function intd, or (2) remove a point frong.

Step 2 computes the possible right derivativé(ﬁ) if adding each basis functidi;« ()
into V. Step 3 computes the possible right derivative3é$) if removing each poinf’
from £. The possible right derivative qﬁf(s) (determined by either (9) or (11)) is such that
the training points irf are kept in€ whens increases, until the next joint (step 1) occurs.
Aloss/As indicates how fast thivss will decrease ifB(s) changes according ta. Step 4

takes the action corresponding to the smallest negatives/As. When thdoss can not
be decreased, the algorithm terminates.



Table 1: Simulation results dEnorm and2-norm SVM

Test Error (SE)
Simulation 1-norm 2-norm  NoPenalty | |D| #Jaints
1 Nonoiseinput| 0.073(0.010) 0.08(0.02) 0.08(0.01) 5 94 (13)
2 2noiseinputs | 0.074 (0.014) 0.10(0.02) 0.12(0.03)14 149(20)
3 4noiseinputs | 0.074 (0.009) 0.13(0.03) 0.20(0.0%)27 225(30)
4 6 noiseinputs | 0.082 (0.009) 0.15(0.03) 0.22(0.06)44 374 (52)
5 8noiseinputs | 0.084 (0.011) 0.18(0.03) 0.22(0.06)65 499 (67)

3.5 Computational cost

We have proposed an algorithm that computes the whole eolmthﬁ(s). A natural
question is then what is the computational cost of this dlgm? SupposéS| = m at a
joint on the piece-wise linear solution path, then it takkgm?) to compute step and
step3 of the algorithm through Sherman-Morrison updating formulf we assume the
training data are separable by the diction@rythen all the training data are eventually
going to have los§l — yifi)+ equal to zero. Hence it is reasonable to assume the number
of joints on the piece-wise linear solution path($n). Since the maximum value of.

is min(n,¢) and the minimum value o is 1, we get the worst computational cost is
O(ngmin(n, q)?) and the best computational cost(gng). Notice that this is a rough
calculation of the computational cost under some mild aggioms. Simulation results
(section 4) actually indicate that the number of joints tetudbeO (min(n, q)).

4 Numerical results
In this section, we use both simulation and real data retultiistrate thel-norm SVM.

4.1 Simulation results

The data generation mechanism is the same as the one ddsardextion 1, except that
we generaté0 training data in each of two classes, and to make harder grah)l we
sequentially augment the inputs with additional two, faix, and eight standard normal
noise inputs. Hence the second class almost completelgwsuds the first, like the skin
surrounding the oragne, in a two-dimensional subspaceBakes error rate for this prob-
lem is0.0435, irrespective of dimension. In the original input spaceypdrplane cannot
separate the classes; we use an enlarged feature spagpooding to theénd degree poly-
nomial kernel, hence the dictionary of basis functior®is- {\/ﬁxj, \/ﬁmja:j/ , :n‘j-,j,j’ =
1,...p}. We generaté000 test data to compare tHhenorm SVM and the standaginorm
SVM. The average test errors oVl simulations, with different numbers of noise inputs,
are shown in Table 1. For both tHenorm SVM and the2-norm SVM, we choose the
tuning parameters to minimize the test error, to be as faoasible to each method. For
comparison, we also include the results for the non-pes&V/M.

From Table 1 we can see that the non-penalized SVM perfognsisiantly worse than the
penalized ones; thenorm SVM and th&-norm SVM perform similarly when there is no
noise input (line 1), but the-norm SVM is adversely affected by noise inputs (line 2 - line
5). Since thel-norm SVM has the ability to select relevant features andigmedundant
features, it does not suffer from the noise inputs as mucheshorm SVM. Table 1 also
shows the number of basis functiopgnd the number of joints on the piece-wise linear
solution path. Notice that < n and there is a striking linear relationship betwéBhand
#Joints (Figure 2). Figure 2 also shows thenorm SVM result for one simulation.
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Figure 2:Left and middle panelst-norm SVM when there ar¢ noise inputs. The left panel is the
piece-wise linear solution patﬁ’i(s). The two upper paths correspondatd andz3, which are the
relevant features. The middle panel is the test error aloagadlution path. The dash lines correspond
to the minimum of the test error. The right panel illustrdteslinear relationship between the number
of basis functions and the number of joints on the solutidh pdeng < n.

4.2 Real dataresults

In this section, we apply th&-norm SVM to classification of gene microarrays. Classi-
fication of patient samples is an important aspect of caniegndsis and treatment. The
2-norm SVM has been successfully applied to microarray aatiegnosis problems ([5]
and [7]). However, one weakness of ttvaorm SVM is that it only predicts a cancer class
label but does not automatically select relevant geneséoctassification. Often a primary
goal in microarray cancer diagnosis is to identify the genesponsible for the classifica-
tion, rather than class prediction. [4] and [5] have propagene selection methods, which
we call univariate ranking (UR) and recursive feature atiation (RFE) (see [14]), that can
be combined with th@-norm SVM. However, these procedures are two-step proesdur
that depend on external gene selection methods. On thetwher thel-norm SVM has
an inherent gene (feature) selection property due to tls® lpsnalty. Hence the-norm
SVM achieves the goals of classification of patients anctsele of genes simultaneously.

We apply thel-norm SVM to leukemia data [4]. This data set consists of 8Bing data
and 34 test data of two types of acute leukera@te myeloid leukemigAML) and acute
lymphoblastic leukemiéALL). Each datum is a vector gf = 7,129 genes. We use the
original inputz;, i.e. thejth gene’s expression level, as the basis function, g.e= p.
The tuning parameter is chosen according@eold cross-validation, then the final model
is fitted on all the training data and evaluated on the test.ddihe number of joints on
the solution path i204, which appears to b@(n) <« O(q). The results are summarized
in Table 2. We can see that tHenorm SVM performs similarly to the other methods
in classification and it has the advantage of automaticalgcsing relevant genes. We
should notice that the maximum number of genes that therm SVM can select is upper
bounded by, which is usually much less thann microarray problems.

5 Conclusion

We have considered tHenorm SVM in this paper. We illustrate that thenorm SVM may
have some advantage over thaorm SVM, especially when there are redundant features.

The solution patrﬁ(s) of the 1-norm SVM is a piece-wise linear function in the tuning



Table 2: Results on Microarray Classification

Method CV Error Test Error #of Genes
2-norm SVM UR 2/38 3/34 22
2-norm SVM RFE 2/38 1/34 31
1-norm SVM 2/38 2/34 17

parametes. We have proposed an efficient algorithm to compute the whaligtion path

B(s) of thel-norm SVM, and facilitate adaptive selection of the tunirggmetes.
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