
Discussion of Boosting Papers

Jerome Friedman Trevor Hastie Saharon Rosset
Robert Tibshirani and Ji Zhu∗

July 24, 2003

1 Introduction

We congratulate the authors for their interesting papers on boosting and related topics. Jiang
deals with the asymptotic consistency of Adaboost. Lugosi and Vayatis study the convex
optimization of loss functions associated with boosting. Zhang studies the loss functions
themselves. Their results imply that boosting-like methods can reasonably be expected to
converge to Bayes classifiers under sufficient regularity conditions (such as the requirement
that trees with at least p + 1 terminal nodes are used, where p is the number of variables in
the model). An interesting feature of their results is that whenever data-based optimization
is performed, some form of regularization is needed in order to attain consistency. In the case
of AdaBoost this is achieved by stopping the boosting procedure early, whereas in the case of
convex loss optimization, it is achieved by constraining the L1 norm of the coefficient vector.
These results re-iterate, from this new perspective, the critical importance of regularization
for building useful prediction models in high-dimensional space. This is also the theme of
the remainder of our discussion.

Since the publication of the AdaBoost procedure by Freund and Schapire in 1996, there
has been a flurry of papers seeking to answer the question: why does boosting work? Since
AdaBoost has been generalized in different ways by different authors, the question might be
better posed as; what are the aspects of boosting that are the key to its good performance?

2 Our view: boosting performs a

high-dimensional lasso

We would like to present our current view of boosting here. In recent years, a new paradigm
has emerged in flexible function fitting. There are three ingredients:

• a large dictionary D of basis functions for representing the function, typically as a
linear expansion f(x) =

∑
hℓ∈D hℓ(x)βℓ.

∗All the authors are in the Statistics Department at Stanford University

1

• a loss function L(Y, f(X)) appropriate for the problem, e.g. for regression or classifi-
cation.

• a regularizer J(β) to control the size of the coefficients in the model.

One then fits the model by minimizing the sum over the data

N∑

i=1

L(yi, f(xi)) + λJ(β), (1)

where λ is a tuning parameter that controls the trade-off between average loss and penalty.
If constructed appropriately, the resulting problem is convex and hence can be solved by
convex optimization methods. Support vector machines fall into this paradigm: they use an
L2 penalty, a piecewise-linear (“hinge”) loss function, and a basis dictionary generated by a
positive definite kernel. Although such bases can have infinite dimension, the “kernel trick”
results in a finite representation and simplifies the optimization (Vapnik 1996).

Boosting methods use adaptively constructed basis functions, and a forward stagewise
procedure to build the model. In Friedman, Hastie & Tibshirani (2000) we showed that
AdaBoost fits an additive model in its basis functions, using a particular exponential loss
function. This framework led to alternative and potentially better forms of boosting, by
allowing the use of other loss functions and improvements in the forward stagewise procedure
(Friedman et al. 2000, Friedman 1999).

In this work we noticed that slowing down the procedure through shrinkage — a kind
of slow learning — always seemed to help. This led us to our current view of boosting.
We think of the forward stagewise procedure as a numerical device for approximating a
sequence of solutions to (1) when J(β) is an L1 penalty. The sequence is obtained by
continuously relaxing the parameter λ. Chapter 10 of Hastie, Tibshirani & Friedman (2001)
has a discussion of this point. More recently, Efron, Hastie, Johnstone & Tibshirani (2002)
proved a result in the simplified framework of least squares regression. Given a centered
outcome variable Y = {yi}

n
1

and standardized predictors Xj = {xij}
n
1
, j = 1, 2, . . . p, consider

the following forward-stagewise procedure for estimating the coefficients β = {βj}
p
1.

1. Start with βj = 0 for all j, and the residual r = Y .

2. Find the predictor Xj most correlated with r, and increment its coefficient βj by some
small amount ε in the direction of this correlation:

βj ← βj + ε · sign[corr(r, Xj)]

Adjust r accordingly:
r ← r −Xj · ε · sign[corr(r, Xj)]

3. Repeat step 2 many times

We call this “incremental forward stagewise regression”. If this procedure is run for
many steps, it eventually reaches the full least squares solution (modulo the granularity

2

in ǫ). But more interestingly, we show in Efron et al. (2002) that the resulting coefficient
profiles approximate the solution to an L1 constrained regression (“lasso”)

β(λ) = argmin
n∑

i=1

(yi −
p∑

j=1

xijβj)
2 + λ

p∑

j=1

|βj |

That is, the profiles of the coefficients resulting from incremental forward stagewise regression
looks much like the lasso solutions β(λ), as λ is varied from +∞ (maximum constraint) to
0 (no constraint). Figure 1 shows an example, taken from Hastie et al. (2001).

0.0 0.5 1.0 1.5 2.0 2.5

-0
.2

0.
0

0.
2

0.
4

0.
6

lcavol

lweight

age

lbph

svi

lcp

gleason

pgg45

0 50 100 150 200 250

-0
.2

0.
0

0.
2

0.
4

0.
6

lcavol

lweight

age

lbph

svi

lcp

gleason

pgg45

t =

∑
j
|βj|

C
o
e
ffi

c
ie

n
t
s

C
o
e
ffi

c
ie

n
t
s

Lasso Forward Stagewise

Iteration

Figure 1: Profiles of estimated coefficients from linear regression, for the prostate data
studied in Chapter 3 of Hastie et al. (2001). The left panel shows the results from the lasso,
for different values of the bound parameter t =

∑
j |βj|. The right panel shows the results of

the incremental forward stagewise linear regression algorithm, using M = 250 consecutive
steps of size ε = 0.01.

What does this have to do with boosting? Take as basis functions the set of all possible
regression trees that can be grown from the given features. Suppose we want to compute
the lasso path of solutions. This cannot be done directly since the number of trees is so
large. Instead, take the incremental forward stagewise regression and replace the predictors
Xj with basis functions that are the set of all possible regression trees that can be grown
from the given features. The least squares boosting procedure of Friedman (1999) looks like:

1. Start with F (x) = 0, and the residual r = Y .

3

2. Fit a tree f(x) to the outcome r, increment F (x) with a shrunken version of f(x)

F (x)← F (x) + εf(x),

and update r:
r ← r − εf(x)

3. Repeat step 2 many times

Now in step 2 when we fit a tree to r, we are approximately finding the tree (among all
possible trees) that is most correlated with r. Hence least squares boosting can be viewed
as a numerically savvy way of carrying out incremental forward stagewise regression on the
space of regression trees. The latter, in turn, is an approximate way of computing the lasso
path in this space.

For simplicity, our discussion has focussed on least-squares boosting. It also applies
to other forms of boosting that use different loss functions(Friedman 2001), for example
AdaBoost, which is based on exponential loss (Rosset, Zhu & Hastie 2002).

3 The “bet on sparsity” principle

Now for any of this to be of practical importance, there must be an inherent reason (other
than the ease of implementation) to prefer an L1 penalty to say an L2 penalty for these kinds
of problems. Suppose we have 10K data points and our model is a linear combination of a
million trees. Suppose also that the true population coefficients of these trees arose from a
Gaussian distribution. Then we know that in a Bayesian sense the best predictor would be
a ridge regression; that is, we should use an L2 rather than an L1 penalty when fitting the
coefficients. On the other hand, if there are only a small number (e.g. 1000) of non-zero true
coefficients, the lasso (L1 penalty) will work better. We think of this as a sparse scenario,
while the first case (Gaussian coefficients) as dense. Note however that in the dense scenario,
although the L2 penalty is best, neither method does very well since there is too little data
from which to estimate such a large number of non-zero coefficients. This is the curse of

dimensionality taking its toll. In a sparse setting, we can potentially do well with the L1

penalty, since the number of non-zero coefficients is small. The L2 penalty fails again.
In other words, use of the L1 penalty follows what we call the bet on sparsity principle

for high-dimensional problems:

Use a procedure that does well in sparse problems, since no procedure does well

in dense problems.

These comments need some moderation:

• For any given application, the degree of sparseness/denseness depends on the unknown
true target function, and the chosen dictionary D.

• The notion of sparse vs dense is relative to the size of the training data set and/or
the signal-to-noise ratio (SNR). Larger training sets allow us to estimate coefficients

4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.1 0.2 0.3 0.4 0.5

Lasso/Gaussian

Noise-to-Signal Ratio

P
er

ce
nt

ag
e

V
ar

ia
nc

e
E

xp
la

in
ed

0.1 0.2 0.3 0.4 0.5

Ridge/Gaussian

Noise-to-Signal Ratio

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.1 0.2 0.3 0.4 0.5

Lasso/Subset 10

Noise-to-Signal Ratio

P
er

ce
nt

ag
e

V
ar

ia
nc

e
E

xp
la

in
ed

0.1 0.2 0.3 0.4 0.5

Ridge/Subset 10

Noise-to-Signal Ratio

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.1 0.2 0.3 0.4 0.5

Lasso/Subset 30

Noise-to-Signal Ratio

P
er

ce
nt

ag
e

V
ar

ia
nc

e
E

xp
la

in
ed

0.1 0.2 0.3 0.4 0.5

Ridge/Subset 30

Noise-to-Signal Ratio

Figure 2: Simulations that show the superiority of the L1 (lasso) penalty over L2 (ridge) in
regression. Each run has 50 observations with 300 independent Gaussian predictors. In the top
row all 300 coefficients are nonzero, generated from a Gaussian distribution. In the middle row,
only 10 are nonzero generated from a Gaussian, and the last row has 30 non zero. In each case the
coefficients are scaled so that the signal variance var(XT β) is 1. The noise variance varies from 0.1
to 0.5 (noise to signal ratio). Lasso is used in the left column, ridge in the right. In both cases we
used a series of 100 values of λ, and picked the value that minimized the theoretical test error. In
the figures we report the percentage variance explained (in terms of mean squared error), displayed
as boxplots over 20 realizations for each combination.

5

with smaller standard errors. Likewise in situations with large SNR, we can identify
more nonzero coefficients with a given sample size than in situations where the SNR
is smaller.

• The size of the dictionary plays a role as well. Increasing the size of the dictionary
may lead to a sparser representation for our function, but the search problem becomes
more difficult.

Figure 2 illustrates these points in the context of linear regression. The details are given
in the caption. Note that we are not using the training data to select λ, but rather are
reporting the best possible behavior for each method in the different scenarios. The L2

penalty performs poorly everywhere. The Lasso performs reasonably well in the only two
situations where it can (sparse coefficients). As expected the performance gets worse as the
SNR decreases, and as the model becomes denser.

These empirical results are supported by a large body of theoretical results (Donoho,
Johnstone, Hoch & Stern 1992, Donoho & Johnstone 1994, Donoho, Johnstone, Kerky-
achairan & Picard 1995, Donoho & Elad 2002) that support the superiority of L1 estimation
in sparse settings.

References

Donoho, D. & Elad, M. (2002), Optimally sparse representation in general(non-orthogonal)
dictionaries vy l1 minimization, Technical report, Statistics Department, Stanford Uni-
versity.

Donoho, D. & Johnstone, I. (1994), ‘Ideal spatial adaptation by wavelet shrinkage’,
Biometrika 81, 425–55.

Donoho, D., Johnstone, I., Hoch, J. & Stern, A. (1992), ‘Maximum entropy and the nearly
black object’, J. Royal. Statist. Soc. B. 54, 41–81.

Donoho, D., Johnstone, I., Kerkyachairan, G. & Picard, D. (1995), ‘Wavelet shrinkage;
asymptopia? (with discussion)’, J. Royal. Statist. Soc. 57, 301–337.

Efron, B., Hastie, T., Johnstone, I. & Tibshirani, R. (2002), Least angle regression, Technical
report, Stanford University.

Freund, Y. & Schapire, R. E. (1996), Experiments with a new boosting algorithm, in ‘Ma-
chine Learning: Proceedings of the Thirteenth International Conference’, Morgan Kauff-
man, San Francisco, pp. 148–156.

Friedman, J. (1999), Greedy function approximation: the gradient boosting machine, Tech-
nical report, Stanford University.

Friedman, J. (2001), ‘Greedy function approximation: a gradient boosting machine’, Annals

of Statistics 29, 1180.

6

Friedman, J., Hastie, T. & Tibshirani, R. (2000), ‘Additive logistic regression: a statistical
view of boosting (with discussion)’, Annals of Statistics 28, 337–307.

Hastie, T., Tibshirani, R. & Friedman, J. (2001), The Elements of Statistical Learning; Data

mining, Inference and Prediction, Springer Verlag, New York.

Rosset, S., Zhu, J. & Hastie, T. (2002), Boosting as a regularized path to a maximum margin
classifier, Technical report, Statistics Department, Stanford University.

Vapnik, V. (1996), The Nature of Statistical Learning Theory, Springer-Verlag, New York.

7

