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Abstract

Many tasks (e.qg., clustering) in machine learning only negthhel,, distances in-
stead of the original data. For dimension reductions intheorm 0 < a < 2),
the method oftable random projectionsan efficiently compute the, distances
in massive datasets (e.g., the Web or massive data streaors) pass of the data.
The estimation task fostable random projectionsas been an interesting topic.
We propose a simple estimator based orfthetional powerof the samples (pro-
jected data), which is surprisingly near-optimal in ternishe asymptotic vari-
ance. In fact, it achieves the Cramér-Rao bound when 2 anda = 0+. This
new result will be useful when applyingable random projection® distance-
based clustering, classifications, kernels, massive tfatanss etc.

1 Introduction

Dimension reductions in thg, norm 0 < « < 2) have numerous applications in data mining,
information retrieval, and machine learning. In modernl@ggtions, the data can be way too large
for the physical memory or even the disk; and sometimes oméypass of the data can be afforded
for building statistical learning models [1, 2, 5]. We abstrthe data as data matrixA € R"*P,

In many applications, it is often the case that we only need,ttproperties (norms or distances) of
A. The method o$table random projection®, 18, 22] is a useful tool for efficiently computing the
lo (0 < o < 2) properties in massive data using a small (memory) space.

Denote the leading two rows in the data matXoy u1, us € R”. Thel, distancel, is

D
d(a) = z |u172~ — U27Z’|a. (1)

=1
The choice ofy is beyond the scope of this study; but basically, we can tr@atatuningparameter.
In practice, the most popular choice, i.e., the- 2 norm, often does not work directly on the original
(unweighted) data, as it is well-known that truly largeleadatasets (especially Internet data) are
ubiquitously “heavy-tailed.” In machine learning, it istefi crucial to carefullyterm-weightthe
data (e.g., taking logarithm or tf-idf) before applying sefuent learning algorithms using the
norm. As commented in [12, 21], therm-weightingprocedure is often far more important than
fine-tuning the learning parameters. Instead of weightirggdriginal data, an alternative scheme
is to choose an appropriate norm. For example,itheorm has become popular recently, e.g.,
LASSO, LARS, 1-norm SVM [23], Laplacian radial basis kerf#| etc. But other norms are also
possible. For example, [4] proposed a family of non-Gaussadial basis kernels for SVM in the
form K (z,y) = exp (—p ), |z — ¥:|*), wherex andy are data points in high-dimensions; and [4]
showed thaty < 1 (evena = 0) in some cases produced better results in histogram-bassegki
classifications. Thé, norm witha < 1, which may initially appear strange, is now well-understoo
to be a natural measure of sparsity [6]. In the extreme cdsenw — 0+, thel, norm approaches
the Hamming norm (i.e., the number of non-zeros in the véctor

Therefore, there is the natural demand in science and esrijigefor dimension reductions in the
l,, norm other thari;. While the method ohormal random projectionor the l; norm [22] has
become very popular recently, we have to resort to more génethodologies fof < a < 2.
The idea oftable random projectioris to multiply A with a random projection matriR, € R?>*

(k < D). The matrixB = A x R € R™* will be much smaller tham\. The entries oR. are
(typically) i.i.d. samples from a symmetric-stable distribution [24], denoted 8/« 1), wherea

is the index and 1 is the scale. We can then discard the ofigi@ta matrixA because the projected
matrix B now contains enough information to recover the origipgbroperties approximately.



A symmetrica-stable random variable is denoted Bya, d), whered is the scale parameter. |If
x ~ S(a,d), then its characteristic function (Fourier transform af tfensity function) would be

E (exp (V—1at)) = exp (—d|t|*), (2)
whose inverse does not have a closed-form except fer2 (i.e., normal) ot = 1 (i.e., Cauchy).

Applying stable random projections an € R”, u, € RP yields, respectivelyy; = RTu; € RF
andv, = RTuy € R*. By the properties of Fourier transforms, the projectefidincesy; ; — vz ;,
Jj=1,2,...,k, areii.d. samples of the stable distributix, d(,)), i.e.,

rj=v1; —v25 ~ S dw), J=1,2,...k )

Thus, the task is to estimate the scale parameter fraind. samplese; ~ S(a, d(,)). Because no
closed-form density functions are available exceptdfor 1,2, the estimation task is challenging
when we seek estimators that are both accurate and conumatiyiefficient.

For general < « < 2, awidely used estimator is based on the sarm&r-quantileq7,20], which
can be simplified to be theample mediaestimator by choosing th&75 - 0.25 sample quantiles
and using the symmetry &f(a, d()). Thatis

5 _ mediar{|z;|*,j =1,2,...,k}
d(a)me = media(S(a, 1)} ' @

It has been well-known that theample mediarestimator is not accurate, especially when the
sample size: is not too large. Recently, [13] proposed various estinsalb@sed on the geometric
mean and the harmonic mean of the samples. lidremonic mearestimator only works for small
«. Thegeometric meaestimator has nice properties including closed-form vergs, closed-form
tail bounds in exponential forms, and very importantly, aalag of the Johnson-Lindenstrauss (JL)
Lemma [10] for dimension reduction ifa,. Thegeometric mean estimatonowever, can still be
improved for certainy, especially for large samples (e.g.,/as» oo).

1.1 Our Contribution: the Fractional Power Estimator

The fractional powerestimator, with a simple unified format for dll < o < 2, is (surprisingly)
near-optimal in the Cramér-Rao sense (i.e., when oo, its variance is close to the Cramér-Rao
lower bound). In particularly, it achieves the Cramér-Raand whery = 2 anda — 0+.

The basic idea is straightforward. We first obtain an unliasgimator oﬂz\a), denoted by%mm.

We then estimaté, ) by (R(an)m, which can be improved by removing tiié( ) bias (this
consequently also reduces the variance) using Taylor expas We choosg = A*(«) to minimize

the theoretical asymptotic variance. We prove tigty) is the solution to a simple convex program,
i.e., \*(«) can be pre-computed and treated as a constant for everyhe main computation

. N2 . . . . -
involves only(zfz1 |5 “) ; and hence this estimator is also computationally efficient

1.2 Applications

The method o$table random projections useful for efficiently computing thig, properties (norms
or distances) in massive data, using a small (memory) space.

e Data stream computations Massive data streams are fundamental in many modern
data processing application [1, 2,5, 9]. It is common pcactd store only a very small
sketchof the streams to efficiently compute thenorms of the individual streams or the
distances between a pair of streams. For example, in sores,a@s only need to visually
monitor the time history of thé, distances; and approximate answers often suffice.

One interesting special case is to estimate the Hamming si¢omdistances) using the
fact that, when — 0+, d(o) = Zil |u1,; — usg,:|® approaches the total number of
non-zeros in{uy ; — u2 4|} 2, i.e., the Hamming distance [5]. One may ask why not just
(binary) quantize the data and then appbymal random projectiont® the binary data. [5]
considered that the data adgnamic(i.e., frequent addition/subtraction) and hence pre-
quantizing the data would not work. Wittable random projectionsve only need to
update the corresponding sketches whenever the data aaitedpd



e Computing all pairwise distances In many applications including distanced-based
clustering, classifications and kernels (e.g.) for SVM, wlymeed the pairwise distances.
Computing all pairwise distances af € R"*? would costO(n? D), which can be signif-
icantly reduced ta@(nDk + n?k) by stable random projectionsThe cost reduction will
be more considerable when the original datasets are toe farghe physical memory.

e Estimatingl,, distances online While it is often infeasible to store the original matrix
A in the memory, it is also often infeasible to materializepalirwise distances iA. Thus,
in applications such as online learning, databases, seagihes, online recommendation
systems, and online market-basket analysis, it is oftererafficient if we stord3 € R***
in the memory and estimate any pairwise distanc& ion the flyonly when it is necessary.

When we treaty as a tuning parameter, i.e., re-computing thelistances for many different,
stable random projectionwill be even more desirable as a cost-saving device.

2 Previous Estimators
We assumé i.i.d. samplese; ~ S(a,d(q)), j = 1,2, ..., k. We list several previous estimators.

e Thegeometric meapstimator is recommended in [13] far< 2.

A | ) T
d(ay,gm y g ©
[2T(2)T (1 1) sin (£2)
[2r (22)T (1 - 2)sin (x)]"
Vi da gm :do‘ 2 - i
o (derom) (){[%F(%)F(l—%)sin(%%)]% 1 ;
:d?a){%?(a2+2)}+o<% . (7)

e Theharmonic mearmstimator is recommended in [13] for< o < 0.344.

dA(a),h'm _ —%F(—a) sin (%a) (k’ B (—wI‘(—Qa) sin (7o) B 1)) 7 ®)

Zlle ||~ [F(—a) sin (ga)} 2
Var (dﬁ(a)’hm) d(“)kz < [;ga)QsiS(ig;;%) _ 1) +0 (%) ) 9)

e Fora = 2, thearithmetic mearestimator,; 25:1 |z;]?, is commonly used, which has

variance =2 dé) It can be improved by taking advantage of the marginalorms [17].

3 The Fractional Power Estimator
Thefractional powerestimator takes advantage of the following statisticalités Lemma 1.

Lemma 1 Suppose ~ S (a, d(a)). Thenfor—1 < A\ < «,

E (j2*) _dW (1 - 2) T()) sin(g)\) . (10)
fa=2ie,x~ S(Z,d(g)) = N(O, 2d(2)), then for\ > —1,
E (o) = diy} 2r (1 - %) T'()\) sin (g/\) =dyy 2FF((§)). (11)

Proof: For0 < o <2and—1 < A < a, (10) can be inferred directly from [24, Theorem 2.6.3].
For o = 2, the moment E|:c|A) exists for anyA > —1. (11) can be shown by directly integrating
the Gaussian density (using the integral formula [8, 3.891. The Euler’s reflection formula
I'(1 - 2)I'(2) = =% and the duplication formul&(z)I" (z + %) = 2'72#/7I'(2z) are handy.

sln(ﬂz)



Thefractional powerestimator is defined in Lemma 2. See the proofin Appendix A.

Lemma 2 Denoted byl f,, the fractional power estimator is defined as

d o l Z?:l |='Ej|va A «
@77 7\ & 20(1 — AT (A" ) sin (ZA*a)
11 /1 21(1 — 23")T(2X* ) sin (TA* @) 3
<1 k22X (A* 1) <[%I‘(1 — AP\ @) sin (EA*a)] 1)) ’ (12)
where 2 .
. . ) . 201 =20 (2)) sin (TAa) 3
= mgmin g, g0 = (USRI, ) o

Asymptotically (i.e., a8 — 00), the bias and variance @i‘(a),fp are

s 1
E (dm),fp) —d@y =0 <§> , (14)
. 11 27(1 — 20T (2M\* ) sin (TA* @) ( 1 )
Var (dq =d},-— | = —-1]+0(=). (15)
( ( )’fp) (@ a2 ([%F(l — AT (A*a) sin (%/\*a)}z k2

*

5 N1/
Note that in calculating,,), s,,, the real computation only involve(szg?:1 || a) , because

all other terms are basically constants and can be pre-c@upu

Figure 1(a) plotg (A; ) as a function of\ for many different values of. Figure 1(b) plots the
optimal \* as a function ofv. We can see that(); o) is a convex function of and—1 < A\* < 3
(except fora = 2), which will be proved in Lemma 3.
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Figure 1: Left panel plots the variance factof); o) as functions of\ for different, illustrating
g (A; «) is a convex function ok and the optimal solution (lowest points on the curves) ate/den
-1 and 0.5 & < 2). Note that there is a discontinuity betweer- 2— anda. = 2. Right panel plots
the optimal\* as a function ofv. Sincea = 2 is not included, we only se¥* < 0.5 in the figure.

3.1 Special cases

The discontinuity\*(2—) = 0.5 andA*(2) = 1, reflects the fact that, far ~ S(a,d), E (|z|*)
exists for—1 < A < a whena < 2 and exists for anyx > —1 whena = 2.

Whena = 2, sinceA*(2) = 1, thefractional powerestimator becomes Z’;Zl |z;|?, i.e., the
arithmetic mearestimator. We will from now on only consider< a < 2.

whena — 0+, sinceA*(0+) = —1, thefractional powerestimator approaches tharmonic mean
estimator, which is asymptotically optimal when= 0+ [13].

Whena — 1, sinceX*(1) = 0 in the limit, thefractional powerestimator has the same asymptotic
variance as thgeometric mean estimator



3.2 The Asymptotic (Cramér-Rao) Efficiency

Foran estimatoai(a), its variance, under certain regularity condition, is lowseunded by the Infor-
mation inequality (also known as the Cramér-Rao bound)tapter 2], i.e., Va(ci(a)) > m
The Fisher Information(ky) can be approximated by computationally intensive procesi[ir9].

Whena = 2, it is well-known that thearithmetic mearestimator attains the Cramér-Rao bound.
Whena = 0+, [13] has shown that thearmonic mearestimator is also asymptotically optimal.

Therefore, ouffractional powerestimator achieves the Cramér-Rao bound, exactly when 2,
and asymptotically whea = 0+.

The asymptotic (Cramér-Rao) efficiency is defined as the o&tﬁ to the asymptotic variance of

d(a) (d() = 1 for simplicity). Figure 2 plots the efficiencies for all estaitors we have mentioned,
illustrating that thdractional powerestimator is near-optimal in a wide rangecof
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Figure 2: The asymptotic Cramér-Rao efficiencies of vagiestimators fof < o < 2, which are
the ratios ofﬁ to the asymptotic variances of the estimators. Heethe sample size an¢d) is
the Fisher Information (we use the numeric values in [19h)e Asymptotic variance of tleample
medianestimatord(a)_,me is computed from known statistical theory for sample queastiWe can
see that thédractional powerestimatord(awp is close to be optimal in a wide range of and it
always outperforms both tlgeometric meaand theharmonic mearstimators. Note that since we
only consider: < 2, the efficiency ofi(a”p does not achievé00% whena — 2—.

3.3 Theoretical Properties

We can show that, when computing tfi@actional powerestimatorci(a),fp, to find the opti-
mal \* only involves searching for the minimum on a convex curvehia harrow range\* €

(max {—1,—5=1},0.5). These properties theoretically ensure that the new esstirizavell-defined
and is numerically easy to compute. The proof of Lemma 3 sflyrgketched in Appendix B.

Lemma 3 Part 1: g (ha) = 1 2T(1 = 20)I(2\e) sin (7Aa) 3
’ A\ [2T(1 = MT(ha) sin (Zra)]? ’

(16)

is a convex function of.

Part 2: For0 < a < 2, the optimal\* = argming ()\; «), satisfies—1 < A* < 0.5.
72{1 )‘<%
3.4 Comparing Variances at Finite Samples

It is also important to understand the small sample perfoceaf the estimators. Figure 3 plots
the empirical mean square errors (MSE) from simulationgHerfractional powerestimator, the

harmonic mearestimator, and theample mediarestimator. The MSE for thgeometric mean
estimators can be computed exactly without simulations.

Figure 3 indicates that thigactional powerestimatord(awp also has good small sample perfor-

mance unless is close to 2. Afterk > 50, the advantage af ) , becomes noticeable even
whenq is very close to 2. It is also clear that tekample mediaestimator has poor small sample
performance; but even at very larggits performance is not that good except wheis about 1.
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Figure 3: We simulate the mean square errors (MSB§ 6imulations at every and k) for the
harmonic mearestimator ( < a < 0.344 only) and thefractional powerestimator. We compute
the MSE exactly for thgeometric meapstimator (foi0.344« < 2). Thefractional powethas good
accuracy (small MSE) at reasonable sample sizes (e.g.,50). But even at small samples (e.g.,
k = 10), it is quite accurate except whenapproaches 2.

4 Discussion e
Thefractional powerestimatord ., 7, o (Z’;Zl |a:j|”a) can be treated aslmear estimator

in because the power/\* is just a constant. HoweveE’;:1 lz;|*"* is not a metric because
Mo < 1, as shown in Lemma 3. Thus our result does not conflict thécatiedimpossibility result
[3], which proved that there is no hope to recover the origipaistances usintinear projections
andlinear estimatorswithout incurring large errors.

Although thefractional powerestimator achieves near-optimal asymptotic varianceyaing its
tail bounds does not appear straightforward. In fact, whespproaches 2, this estimator does
not have finite moments much higher than the second ordegestigg poor tail behavior. Our
additional simulations (not included in this paper) indﬁnmatcz(a)yfp still has comparable tail
probability behavior as thgeometric meaestimator, whem < 1.

Finally, we should mention that the methodstéible random projectiondoes not take advantage of
the data sparsity while high-dimensional data (e.g., tatd)dare often highly sparse. A new method
call Conditional Random Sampling (CR&%1-16] may be more preferable in highly sparse data.

5 Conclusion

In massive datasets such as the Web and massive data stdéaerssion reductions are often crit-
ical for many applications including clustering, classifions, recommendation systems, and Web
search, because the data size may be too large for the physioeory or even for the hard disk and
sometimes only one pass of the data can be afforded for bgiktatistical learning models.

While there are already many papers on dimension redudtiathe /> norm, this paper focuses on
thel,, norm for0 < o < 2 usingstable random projectionss it has become increasingly popular in
machine learning to consider thenorm other thar,. It is also possible to treat as an additional
tuningparameter and re-run the learning algorithms many timebkdter performance.

Our main contribution is théactional powerestimator forstable random projectionsThis esti-
mator, with a unified format for all < « < 2, is computationally efficient and (surprisingly) is
also near-optimal in terms of the asymptotic variance. Vde grove some important theoretical
properties (variance, convexity, etc.) to show that thisrestor is well-behaved. We expect that this
work will help advance the state-of-the-art of dimensioduetions in the,, norms.



A Proof of Lemma 2
By Lemma 1, we first seek an unbiased estimator (mffg{ denoted bﬁ(a),k,

k a
1 Zj:l |
k2T(1 — AT(Aa) sin (FAa)’

Rigyn = ~1ja<Ai<1 (17)

whose variance is
21(1 — 20T (2Xa) sin (TA@)

. 1 1
Var (R, SR s —-1], <A< = 18
ar( ( )’A) k <[%r(1—A)r(Aa)sin(gAa)]2 1) 20 =" T3 (18)

. 1/
A biased estimator of,, would be simpIy(R(a)yA) , which hasO (+) bias. This bias can

be removed to an extent by Taylor expansions [11, Theoremi]6. While it is well-known that
bias-corrections are not always beneficial because of Hse\@riance trade-off phenomenon, in our
case, it is a good idea to conduct the bias-correction bedhaegunctionf (z) = x!/* is convex for

z > 0. Note thatf’(z) = +z'/*~tandf’(z) = + (+ — 1) /22 > 0, assuming- .t < A < 1.
Becausef (x) is convex, removing th® (+) bias will also lead to a smaller variance.

We call this new estimator the “fractional power” estimator

. ) /A Var(R((x))\) 1/1 L\ /A2
d<a>,fp,A:(R<a>,A) -5 iyt (%))

2 A\
(1 b e 1/x 11 <l - 1) 21'(1 - 20T (2Aa) sin (Tha) .
k2T (1 — AT (M) sin (ZAa) k2X \ X [2T(1 — )T (Aa) sin (£Aa)] ’
where we plug in the estimate&?a). The asymptotic variance would be
. . 1 1/2a-1\ 2 1
Var (d(a%fp,)\) = Var (R(Q)A) (X (d?a)) ) + 0 (F)

_ o 1 (2P -20I(2Xa)sin (mha) 1
~ hear <[%F(1 — M (Aa)sin (ZAa)]? 1) o (kQ) ' 9

The optimal), denoted by*, is then

- argmm{ 1 < 20(1 - 2)0(2\a) sin (Tha) 1)} 0)
—La<d A2 [2I'(1 — N[ (Ae) sin (g/\ozﬂ2 .

B Proof of Lemma 3
We sketch the basic steps; and we direct readers to the@uhlisupporting material for more detail.
We use the infinite-product representations of the Gammaiaedunctions [8, 8.322,1.431.1],

I(z) = 76)(13(;%2) ﬁ (1 + g)ilexp (z) ; sin(z) = z H < - SQWQ) ,

s=1
to re-writeg (\; ) as

g(\) = Ai (M (\; ) <H fe(As) — 1) (21)

fs(A;a>:(1_§)2<1+”—“) (1-2) <1+A—0‘) (1—*5;2)2@—%)1. (22)

With respect to\, the first two derivatives of(\; «) are

%:%<“ **Zabgﬂ ) (23)

2
&g M (6 0% 1log fs =, dlog fs 4 & dlog fs 6
W—ﬁ<ﬁ+ e T\ Ta ) Ty T (24)

s=

s=1



alog fs = 9 2 1 1
—9) _
Z 35)\ +2)2 ta 452 — \2q? + 52 4 3sha + 2X202 52— \2a2 )’

).

s=1

008210gf5_°° -2 4 2 2 1 3 4 2

2o ; G2 oo Y\ @ G2 Era)?  Gr2nar | (2st a2

= P log fo 4 16 3 2 1 3 8 2

2" T ; G T Gop N\ @morap  GoraP a1 2a)P (@t aap
O'log fo  ~= —12 96 4 2 1 3 16 2

2 Ton ; ot T ooy T N @) T ol Graar st 2aai T (st oaa)

To showgi2 > 0, it suffices to shown* 2¢ %% > 0, which can shown based on its own second deriva-

tive (and hence we neéd - M) Here we considek # 0 to avoid triviality. To complete
the proof, we use some propertles of the Riemann’s Zetaifunand the infinite countability.

Next, we show thah* < —1 does not satisf)L’g“)

T 0, which is equivalent té&.(\*) = 1,

o alog Is _
h(A)M(A)<1—7 5 )1,
s=1 A*
We show that whem < —1, % > 0, i.e, h(A) < h(-1). We then show% < 0 for
0 < a < 0.5; and hencéy(—1; o) < h(—1; 0+) 1. Therefore, we must have > —1.
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