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a b s t r a c t

Two statistical modelling techniques, generalized additive models (GAM) and multivariate

adaptive regression splines (MARS), were used to analyse relationships between the distri-

butions of 15 freshwater fish species and their environment. GAM and MARS models were

fitted individually for each species, and a MARS multiresponse model was fitted in which the

distributions of all species were analysed simultaneously. Model performance was evaluated

using changes in deviance in the fitted models and the area under the receiver operating

characteristic curve (ROC), calculated using a bootstrap assessment procedure that simu-

lates predictive performance for independent data. Results indicate little difference between

the performance of GAM and MARS models, even when MARS models included interaction

terms between predictor variables. Results from MARS models are much more easily incor-

porated into other analyses than those from GAM models. The strong performance of a

MARS multiresponse model, particularly for species of low prevalence, suggests that it may

have distinct advantages for the analysis of large datasets. Its identification of a parsimo-
nious set of environmental correlates of community composition, coupled with its ability to

robustly model species distributions in relation to those variables, can be seen as converging

ses of traditional ordination techniques.

to fit the complex, non-linear relationships often occurring
strongly with the purpo

1. Introduction

Over the last decade ongoing development of statistical mod-
elling tools (e.g., Hastie et al., 2001) has led to a growing
sophistication in the methods used to analyse relationships
between the distributions of species and their environment
(e.g., Guisan and Zimmermann, 2000). Such analyses are now
widely used in terrestrial (e.g., Pereira and Itami, 1991; Ferrier

et al., 2002), freshwater (e.g., Lek et al., 1996; Olden and
Jackson, 2001) and marine settings (e.g., Ysebaert et al., 2002),
motivated by purposes ranging from the testing of ecologi-
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cal hypotheses (e.g., Austin, 2002) or processes (Leathwick and
Austin, 2001) to the prediction of species distributions across
geographically extensive areas for conservation (e.g., Gregr
and Trites, 2001; Elith and Burgman, 2002) and/or resource
management (e.g., Borchers et al., 1997). While earlier tech-
niques such as generalized linear models (GLM—McCullagh
and Nelder, 1989) were found to be limited in their ability
between species and environmental predictors (e.g., Austin et
al., 1990), a range of techniques are now available that allow
their more realistic description. Of these, generalized additive

mailto:j.leathwick@niwa.co.nz
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Table 1 – Fish species included in the analysis, and their
prevalence, i.e., the proportion of sample sites at which
they were recorded

Species code Species name Prevalence

Angaus Anguilla australis 0.233
Angdie A. dieffenbachii 0.577
Galarg Galaxias argenteus 0.034
Galbre G. brevipinnis 0.099
Galfas G. fasciatus 0.137
Galmac G. maculatus 0.118
Galpos G. postvectis 0.025
Gobcot Gobiomorphus cotidianus 0.183
Gobgob G. gobioides 0.012
Gobhub G. hubbsi 0.065
Gobhut G. huttoni 0.211
Geoaus Geotria australis 0.031
Chefos Cheimarrichthys fosteri 0.121
e c o l o g i c a l m o d e l l i n

odels (GAM—Hastie and Tibshirani, 1990) are perhaps the
ost widely used, particularly in terrestrial (e.g., Leathwick,

998) and marine studies (e.g., Gregr and Trites, 2001). How-
ver, although their use of non-parametric smoothing func-
ions allows flexible description of complex species responses
o environment (Yee and Mitchell, 1991), their computational
omplexity makes cumbersome the generation of predictions
or independent datasets such as in a geographic information
ystem (GIS).

Two other commonly used techniques capable of fitting
on-linear relationships between species and environment
re neural nets (Ripley, 1996) and classification and regression
rees (Breiman et al., 1984). Of these, neural nets are prone
o become computationally intractable with larger datasets
e.g., Moisen and Frescino, 2002; Friedman and Meulman,
003), while misclassification can be problematic with clas-
ification and regression trees unless they are used in con-
unction with boosting algorithms (Friedman and Meulman,
003). A third alternative, multivariate adaptive regression
plines (MARS—Friedman, 1991), has shown promise in recent
omparative studies (Moisen and Frescino, 2002; Muñoz and
ellicı́simo, 2004). This technique combines the strengths of
egression trees and spline fitting by replacing the step func-
ions normally associated with regression trees with piecewise
inear basis functions (see Hastie and Tibshirani, 1990, Chap-
er 9). This allows the modelling of complex relationships
etween a response variable and its predictors. In practical
erms, MARS has exceptional analytical speed, and its simple
ule-based basis functions facilitate the prediction of species
istributions using independent data (Muñoz and Fellicı́simo,
004), stored, for example, in a GIS.

In this study we compare the performance of GAM and
ARS analyses of an extensive set of data describing the

istributions of 15 fish species in New Zealand rivers and
treams. While our past experience has mostly involved use
f GAMs (e.g., Elith and Burgman, 2002; Leathwick and Austin,
001), our increasing use of extensive databases has some-
imes resulted in very slow model fitting, and at times we
ave been unable to fit GAM models to full datasets because of
emory limitations imposed by the numerical complexities of

his technique. This prompted our exploration of alternative
ethods capable of realistically analysing ecological data. A

omprehensive description of the ecological insights derived
rom the MARS component of this analysis is contained in
eathwick et al. (2005).

. Materials and methods

.1. Distributional data

oth the species distribution data and the associated envi-
onmental data used in this study are described compre-
ensively by Leathwick et al. (2005) and only a brief sum-
ary is provided here. Fish distribution data comprised

apture records from 9866 sites, extracted from the New

ealand Freshwater Fish Database (McDowall and Richardson,
983; http://www.niwa.co.nz/services/nzffd/). As records of
sh abundances were available for only a subset of sites, all
ata were converted to a common basis (presence–absence)
Rhoret Rhombosolea retiaria 0.007
Retret Retropinna retropinna 0.042

for this analysis. Data describe the distributions of 15 diadro-
mous species (Table 1), species that move between freshwater
and marine habitats in completing their life cycles (McDowall,
1999). All species occurred in the dataset with a capture fre-
quency of 0.5% or above, i.e., had a minimum of nearly 50 pos-
itive occurrences. Sixteen environmental predictors (Table 2)
were selected for their functional relevance to the physiolog-
ical and behavioural attributes of diadromous species. These
include factors describing the character of the river segment
within which the sampling site was located, downstream fac-
tors affecting the ability of diadromous fish to migrate from
the sea to that river segment, and upstream/catchment-scale
factors affecting environmental conditions at the sampling
site. As regression methods are potentially sensitive to cor-
related variables, the final set of candidate variables was
restricted to those with pairwise correlations of less than 0.7,
with one variable normalised to reduce its correlation with
other variables.

2.2. Model fitting

2.2.1. Generalized additive models
Initially, we attempted to fit generalized additive models in
S-Plus (v. 6.1, Insightful Corporation, Seattle) using a start-
ing model that included all predictor variables as smooth
terms, and which was then simplified as required using a back-
wards/forwards stepwise procedure to remove terms making
a non-significant contribution. However, this procedure was
not only very slow, but we were also unable to compare the
statistical significance of fitting predictors as linear versus
smooth terms because of the excessive memory demands
with a dataset of this size. Similar problems were also encoun-
tered when this analysis was attempted using the ‘gam’ pack-
age in R (R Development Core Team, 2004).

As an alternative strategy, we used BRUTO (available in
the ‘mda’ library for both S-Plus and R and documented by

Hastie and Tibshirani, 1996), which fits a generalized addi-
tive model using an adaptive back-fitting procedure (Hastie
and Tibshirani, 1990). In addition to identifying which vari-
ables to include in the final GAM model, BRUTO identifies the

http://www.niwa.co.nz/services/nzffd/


190 e c o l o g i c a l m o d e l l i n g 1 9 9 ( 2 0 0 6 ) 188–196

Table 2 – Environmental predictors used to analyse fish capture

Variable Mean and range

Segment scale predictors
SegJanT—summer air temperature (◦C) 16.6, 9.5–19.8

SegTSeas—winter air temperature (◦C), normalised with respect to SegJanT, i.e., 0.75, −2.6 to 4.1

SegTSeas =
((

W−W
�w

)
−

(
S−S
�s

))
× �w

where W is the winter temperature for a segment, W the average winter temperature for all
segments, �w the standard deviation of winter temperature, S is the summer temperature
and so on

SegFlow—segment flow (m3/s), fourth root transformed 0.82, 0.1–5.0
SegShade—riparian shade (proportion) 0.44, 0–0.8
SegSlope—segment slope (◦), square-root transformed 2.2, 0–5.6

Downstream predictors
DSDist—distance to coast (km) 51.5, 0.03–329.5
DSAveSlope—downstream average slope (◦) 0.27, 0–14.5
DSMaxSlope—maximum downstream slope (◦) 17.6, 0–56.5

Upstream/catchment scale predictors
USAvgTNorm—average air temperature (◦C) Discarded
USRainDays—days/month with rain greater than 25 mm 1.29, 0.21–3.30
USSlope—average slope in the catchment (◦) 13.9, 0–41.0
USIndigForest—area with indigenous forest (proportion) 0.334, 0–1
USPhos—average phosphorous concentration of underlying rocks, 1: very low to 5: very high 2.35, 1–5
USCalc—average calcium concentration of underlying rocks, 1: very low to 4: very high 1.46, 1–4
USHard—average hardness of underlying rocks, 1: very low to 5: very high 3.05, 1–5

USPeat—area of peat (proportion)
USLake—area of lake (proportion)

optimal degree of smoothing for each variable. BRUTO also
allows specification of a penalty parameter that is applied to
the addition of extra variables in the model, and we used 10-
fold cross-validation to verify that the default value of 2 for
the penalty parameter was appropriate for our data (Hastie
et al., 2001). However, because BRUTO can only be used to fit
models assuming Gaussian errors, model parameters describ-
ing the selected variables and their degree of smoothing were
extracted and used to specify a model of identical form but
allowing for binomial errors. This was then fitted using the
standard GAM function (‘gam’). Comparison of full backwards
stepwise GAM models and BRUTO/GAM models for all species
using k-fold cross-validation (e.g., Hastie et al., 2001) indi-
cated that, while the full GAM models were better fitted to
the training data, the BRUTO/GAM models delivered superior
performance for independent sites. In addition, because the
BRUTO/GAM models could be fitted in only 1–2% of the time
taken for the full backwards GAM models, we were able to
assess their performance more rigorously using the computa-
tionally intensive re-sampling techniques described below.

2.2.2. Multivariate adaptive regression splines
All MARS models were fitted in R using code available in the
same ‘mda’ library used for fitting the BRUTO/GAM models.
We also evaluated the closely similar ‘polymars’, available in
the ‘polspline’ library for R, but found this to be much slower. It
also differs in some key respects from the original formulation
of MARS.
MARS is a procedure for fitting adaptive non-linear regres-
sion that uses piecewise basis functions to define relation-
ships between a response variable and some set of predictors
(Friedman, 1991). Basis functions are defined in pairs, using
0.007, 0–1
0.002, 0–1

a knot or value of a variable that defines an inflection point
along the range of a predictor, e.g.,

bfn = max(0, 1.0 − SegFlow) and

bfn+1 = max(0, SegFlow − 1.0).

In this example the knot takes a value of 1, and the values of
bfn can therefore be seen to have a value of 1 when SegFlow is 0,
declining to 0 as SegFlow approaches 1. Values remain fixed at
0 at values of SegFlow greater than 1. By contrast, bfn+1 (the pair
to bfn) takes a value of SegFlow − 1 when SegFlow is greater
than 1, but otherwise takes a value of 0. Within the model,
coefficients applied to each of the basis functions define the
slopes of the non-zero sections. Use of a single basis func-
tion allows the fitting of a non-zero slope within part of the
range of a predictor variable (Fig. 1a), while the fitting of two
basis functions for a predictor variable in a linear regression
allows specification of different slopes within different parts
of its range (Fig. 1b). More than one knot (i.e., more than one
pair of basis functions) can be specified for a predictor vari-
able, allowing complex non-linear relationships to be fitted.
Alternatively, the basis functions can be envisaged as a new
predictor matrix, in which one or more columns that are basis
functions replace each predictor variable in the original data.

When fitting a MARS model, knots are chosen automat-
ically in a forward stepwise manner (Hastie and Tibshirani,
1996). Candidate knots can be placed at any position within

the range of each predictor variable to define a pair of basis
functions. At each step, the model selects the knot and its
corresponding pair of basis functions that give the great-
est decrease in the residual sum of squares. Knot selection
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Fig. 1 – Responses of varying complexity fitted to different predictors by a MARS model. (a) A single knot was specified at a
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alue of 2.9, but only the right-hand basis function was reta
f 15.5, and both basis functions were retained.

roceeds until some maximum model size is reached, after
hich a backwards-pruning procedure is applied in which

hose basis functions that contribute least to model fit are pro-
ressively removed. At this stage, a predictor variable can be
ropped from the model completely if none of its basis func-
ions contribute meaningfully to predictive performance. The
equence of models generated from this process is then eval-
ated using generalized cross-validation, and the model with
he best predictive fit is selected.

Two novel features are possible when using MARS. First,
nteractions between variables can be fitted, but rather than
tting a global interaction between a pair of variables, these
re specified using basis functions. As each basis function only
escribes variation for part of the range of its variable, interac-
ions are specified locally, i.e., the interaction effect is confined
o the sub-ranges of the two variables described by the non-
ero parts of the basis functions, rather than across the full
ange of both variables. The R implementation of MARS also
llows for the fitting of multiple response variables, which
llows a model to be fitted that simultaneously relates vari-
tion in the occurrence of all species to the environmental
redictors in one analysis. In this case knots are selected based
n their ability to reduce the residual sum of squares, averaged
cross all species. The final MARS model then uses a common
et of basis functions for all response variables, but individual
egressions are used to relate variation in each species to the
nal set of basis functions (i.e., to calculate unique coefficients
or each basis function per species).

The current implementation of MARS in R uses least
quares fitting appropriate for data with normally distributed
rrors. With binomial data this frequently results in the range
f fitted values being erroneously expanded beyond their nor-
al 0–1 range, e.g., from −0.2 to 1.2 or more. Rather than sim-

ly truncating these values, we used the procedure described
y Friedman (1991) in which he proposes use of a GLM to con-
train them within the correct range for presence–absence
ata. This was achieved by fitting a MARS model using the

tandard R code, extracting the basis functions from the MARS
odel, and computing a GLM that related these to the pres-

nce/absence of each species. Four sets of MARS models were
tted for this comparative analysis, i.e., two sets of 15 indi-
in the final model; (b) a single knot was specified at a value

vidual species models, one fitted without interactions and the
second fitted with first order interactions. Two multiresponse
models were then fitted, one without interactions and one
with first order interactions.

2.3. Model evaluation

Comparison of the performance of the five sets of statistical
models, i.e., individual GAM models, and individual and mul-
tiresponse MARS models fitted with and without interactions,
was carried out using both the change in residual deviance
as in conventional logistic regression, and the area under
the receiver operating characteristic curve (ROC—e.g., Fielding
and Bell, 1997). The latter indicates the ability of a model to
discriminate between sites where a species is present versus
those where it is absent. A score of 0.5 indicates that a model
has no discriminatory ability, while a score of 1 indicates
that presences and absences are perfectly discriminated. ROC
areas were calculated for each of the models by evaluating the
performance of a model against the species occurrence data
used to define it (referred to as ROCtrain). However, as these
estimates are likely to be overly optimistic about model per-
formance, we also used the 632+ bootstrap method (ROCboot)
to estimate model performance when predictions are made to
independent data (Efron and Tibshirani, 1997). Bootstrapping
gives similar results to a cross-validation, but is less prone to
bias (Steyerberg et al., 2001).

3. Results

3.1. Comparative performance of GAM and MARS
models

Comparison of the five sets of models relating fish pres-
ence/absence to environment indicates that the BRUTO/GAM
models explained, on average, approximately 7% more units

of deviance than both sets of non-interaction MARS models
(Table 3). For MARS, the individual models fitted using inter-
actions explained the greatest amounts of deviance, while
the multiresponse model fitted with interactions explained
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Table 3 – Summary of GAM and MARS models

Model Deviance explained Variables retained ROCtrain ROCboot

GAM individual 1505 13.2 0.863 0.847 (0.013)
MARS individual—non-interaction 1409 9.4 0.853 0.839 (0.016)
MARS multiresponse—non-interaction 1410 12 0.854 0.842 (0.016)
MARS individual with interactions 1541 9.7 0.861 0.838 (0.024)
MARS multiresponse with interactions 1473 10 0.859 0.845 (0.023)

Table values indicate: the average amount of deviance explained; the average number of predictor variables retained in the final models; area
under the receiver operator characteristic curve statistics (ROC) averaged across 15 species and calculated using the training data (ROCtrain);

asses
and ROC scores calculated using bootstrap re-sampling (ROCboot) to
errors shown in brackets.

intermediate amounts of deviance. GAM models included the
highest number of predictor variables (Table 3), and both the
non-interaction and interaction MARS multiresponse models
used more predictors than the average number used by the
corresponding MARS individual models.

Average marginal changes in deviance when dropping indi-
vidual predictors from the various final models (Table 4) sug-
gest that a relatively small set of predictors plays a dominant
role in explaining variation in the probability of capture for
most diadromous fish species. These include correlates or
drivers of key functional aspects of stream character, includ-
ing accessibility from the sea (DSDist), summer temperature
(SegJanT), stream size (SegFlow) and catchment-scale drivers
of variation in stream hydrology, particularly those affecting
variability in water flow (USSlope and USRainDays).
ROC areas calculated for the various models using their
training data (ROCtrain in Table 3; Appendix A) suggest that the
GAM models marginally outperform both the individual MARS
models and the MARS multiresponse model unless the MARS

Table 4 – Summary of contributions of predictors to GAM indivi
and the non-interaction MARS multiresponse model

GAM MARS individual

Count �-dev. Count �-dev.

DSDist 15 139.8 14 177.9
SegJanT 15 106.2 14 140.8
SegFlow 14 66.2 13 108.2
USSlope 15 67.9 13 84.7
USRainDays 15 47.9 12 63.9
DSAveSlope 10 29.3 10 36.6
DSMaxSlope 15 31.2 11 30.2
SegTSeas 13 29.7 13 33.4
SegShade 14 28.0 9 29.8
USIndigForest 13 15.2 9 13.4
USPhos 9 14.1 4 8.1
USLake 8 10.6 2 4.6
USCalc 9 14.2 3 3.5
USHard 12 14.9 4 2.5
SegSlope 10 7.6 5 7.1
USPeat 11 7.2 5 3.0

Table entries indicate both the number of models for which each variable w
in residual deviance when dropping that variable from final models (�-dev.
across all three modelling techniques, and their ranking, based on this av
MARS models fitted using interactions was not attempted.
s performance when predicting to independent sites, with standard

models are fitted with interactions. However, when the same
statistic is calculated using bootstrap simulation to assess
performance when predicting to independent data, standard
errors on the adjusted ROC scores (ROCboot in Table 3) indi-
cate that the practical significance of any differences between
the five sets of models is minimal. Comparison of ROC boot-
strap scores from the non-interaction MARS individual and
MARS multiresponse models indicates that the latter on aver-
age gives marginally better discrimination, particularly for
species of lower prevalence (Fig. 2), such as Galpos and Rhoret
(Appendix A).

Inspection of the response functions fitted by the MARS
individual and multiresponse models indicates that the piece-
wise MARS functions generally approximated closely the more
continuous curves fitted by the GAM models (Fig. 3). Most

differences occurred in parts of the range of variables rep-
resented by few data points, and/or where there were wide
standard errors about the GAM curves. Complex, non-linear
responses were fitted for most species for a number of vari-

dual models, non-interaction MARS individual models,

MARS multiresponse Average

Count �-dev. �-dev. Rank

15 136.7 151.4 1
15 126.4 124.5 2
15 69.5 81.3 3
15 77.0 76.5 4
15 43.3 51.7 5
15 31.3 32.4 6
15 30.5 30.6 7
15 27.2 30.1 8
15 25.1 27.6 9
15 16.1 14.9 10
15 14.6 12.3 11
15 11.3 8.9 12
0 0.0 5.9 13
0 0.0 5.8 14
0 0.0 4.9 15
0 0.0 3.4 16

as retained as a significant predictor (Count), and the mean change
). The two right-hand columns indicate changes in deviance averaged
erage. Assessment of the contribution of environmental variables to
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Fig. 2 – Relationship between species prevalence and the
improvement in ROC score calculated using bootstrap
re-sampling when fitting a multiresponse as opposed to an
individual MARS model. The trend line indicates the best fit
using an equation of the form
ı-ROC = −0.004 ln(prevalence) − (−0.0049), and has an R2 of
0
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bles, and particularly for SegJanT, along which there was par-
icularly strong sorting of species. One variable (USAvgTNorm)
as omitted from the analysis after it was fitted with overly
omplex curves with very high standard errors in a large pro-
ortion of the GAM models. Computation speed was similar
or the BRUTO/GAM and MARS individual models, both fitting
n around 1% of the time taken to fit a full backwards step-

ig. 3 – Examples of functions relating the presence/absence of A
d–f) models.
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wise GAM. The MARS multiresponse models required approx-
imately 60% of the time taken to fit all 15 MARS individual
models.

4. Discussion

4.1. Comparative performance of GAM and MARS
models

These results provide important insights into both the relative
strengths of two readily available modelling methods, and the
need for robust methods for assessing model performance.
The value of using models capable of fitting non-linear rela-
tionships between species occurrence or abundance and envi-
ronment identified in other studies (e.g., Moisen and Frescino,
2002; Olden and Jackson, 2002; Muñoz and Fellicı́simo, 2004;
Moisen et al., this issue) is emphasized again here by the fre-
quency with which complex non-linear responses were fitted
in our analyses. Many of these fitted responses were asym-
metrical or skewed, and would therefore be difficult to fit with
conventional parametric models. While we focus on the tech-
nical aspects of the modelling here, we have investigated the
ecological relationships in detail elsewhere and are satisfied
that they are sensible and provide insight into the ecology of
these fish (Leathwick et al., 2005).

Comparison of GAM and MARS models confirms that the

piecewise fitting of linear segments by the latter captures
much of the information described by the more sophisti-
cated scatter-plot smooth functions used in GAMs. Although
the relative lack of performance difference between the two

ngdie to three predictors as fitted by MARS (a–c) and GAM
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types of MARS models and the more numerically complex
GAM models was somewhat surprising, it is consistent with
results from several other recent comparative studies (e.g.,
Elith, 2002; Moisen and Frescino, 2002; Muñoz and Fellicı́simo,
2004). Together, these suggest that a number of non-linear
techniques offer similar levels of performance for modelling
species distributions, leaving questions of choice of technique
to be influenced more by other considerations such as com-
putational speed, ability to ignore predictors of marginal rele-
vance, transparency of fitted relationships and the ease with
which model results can be incorporated into other analyses.

While the superior speed of MARS had already been noted
in other ecological studies (e.g., Moisen and Frescino, 2002),
the computational efficiency of BRUTO when used as a tool to
specify a GAM model was a more novel result. Although this
algorithm has been available for approximately 15 years, we
are not aware of its use in any ecological studies. Its speed
results largely from its use of an adaptive back-fitting proce-
dure similar to that used in MARS to guide both the selection
of variables and to identify their optimal degree of smooth-
ing. In addition, varying the penalty parameter used to specify
model complexity using cross-validation to assess model per-
formance on independent data allows a ready means to iden-
tify the most parsimonious model. In terms of speed, both
these approaches clearly offer considerable advantages (≈2
orders of magnitude) over more conventional stepwise fitting
of GAMs, and are also likely to be considerably faster than
other computationally intensive techniques that can become
intractable with larger datasets (Moisen and Frescino, 2002).
Both techniques readily allow inspection of the responses fit-
ted between a species and its predictors to enable their con-
sistency with ecological knowledge to be assessed (Austin,
2002; Austin et al., this issue). In addition, our experience con-
firms that the computationally more simple basis functions
fitted by MARS offer advantages over GAM models when model
results are used for subsequent prediction as in a GIS (Muñoz
and Fellicı́simo, 2004). Finally, the problems caused by our
GAM models fitting overly complex curves, and which resulted
in the omission of one variable from the analysis, were not
encountered when that variable was included in models fit-
ted with MARS.

The biggest disadvantage we identify in the immediate use
of BRUTO and MARS for ecological modelling is that their
current implementations are fitted assuming normally dis-
tributed errors, so they need to be coupled with a GAM or GLM
model, respectively, to properly analyse presence/absence or
count data, a procedure described for MARS by Friedman
(1991). In both cases, this was achieved readily through the
development of relatively simple scripts in R. Some caution
may be required when the automated model selection proce-
dure is used to specify degrees of freedom (BRUTO) or select
knots (MARS) for correlated pairs of variables. Where two such
variables are fitted with markedly different degrees of free-
dom, both the complexity of the responses that are fitted, and
their relative contributions to the model outcome may vary
depending on the order in which they are fitted. In practice,

this means that care must be taken with choice of predic-
tor variables, and preference given to variables that are not
strongly correlated to others in the set. Predictions will still
be reasonable if made to regions where the predictor vari-
1 9 9 ( 2 0 0 6 ) 188–196

ables have a similar correlation structure, but may be more
problematic if predictions are made for new sites where these
correlations change (Austin, 2002).

4.2. Robust model evaluation

The importance of robust model evaluation is clearly evident
when the ROC area statistics we computed using the training
data are compared with those from the more rigorous boot-
strapping that assesses model performance when predictions
are made for new data. For example, ROC area statistics com-
puted using training data indicated that the GAM models pro-
vided better discrimination than either the individual MARS
models or the MARS multiresponse model. However, results
from the more robust bootstrap assessments indicate minimal
difference in model discrimination, and instead suggest that
there is a strong tendency for both the GAM and interaction
MARS models to over-fit the data. That is, they have adapted to
idiosyncrasies that, while occurring in the training data, had
little relevance to an independent set of evaluation data. This
issue is discussed further in Edwards et al. (this issue). k-Fold
cross validation provides an alternative approach to model
evaluation, and might be more feasible with some computa-
tionally demanding modelling approaches such as stepwise
GAMs. However, its estimates of error rates with independent
data are likely to be less precise than those derived from boot-
strapping, which can be thought of as a smoothed version of
cross-validation (Efron and Tibshirani, 1997). Other examples
of the use of the bootstrap in evaluating modelled predic-
tions can be found in Wintle et al. (2005) and Thomson et al.
(2005).

4.3. Simultaneous modelling of species

Finally, we were surprised by the strong performance of the
multiresponse MARS model, and this result has potentially
major implications for the practicalities of analysing large
datasets describing the distributions of numerous species. Our
initial concern was that the distributions of species of low
prevalence might be poorly analysed by such a model, because
their specific relationships with environment would be sub-
merged by information from more widespread species. How-
ever, ROC area scores for predictions of low prevalence species
from the MARS multiresponse model were consistently higher
than for equivalent scores from the MARS individual mod-
els. We interpret this as most likely reflecting the manner in
which a MARS multiresponse model uses information across
the full suite of species in selecting which predictors to use in
forming basis functions, i.e., relevant predictors are included
because of their strong community signal, whereas that signal
might be insufficient to trigger inclusion of these predictors
when fitting a single species model (Guisan et al., 1999). In
addition, more prevalent species are likely to influence the
selection of a larger set of relevant predictors than would be
selected if rare species were analysed on their own. While
this might introduce some risk that models for rare species

are over-fitted, it has the advantage that the distributions
of rare species are modelled within the same environmental
framework as their more widespread counterparts. As a con-
sequence, predicted distributions for rarer species are more
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ikely to coincide with the distributions of those common
pecies with which they co-occur. While we performed our
nalyses with equal weights applied to all species, some ben-
fit might be derived from altering weights to increase the
nfluence of widespread species where these are of particu-
ar interest.

In conceptual terms, such a model can be seen as strongly
onvergent with the purposes of canonical correspondence
nalysis (CCA—ter Braak, 1987), an ordination technique that
s widely used to relate community patterns to environment.
owever, this latter technique makes a number of important
ssumptions including that both species niche breadths and
aximum abundances are equal, and that both the distribu-

ions of species responses to environment across plots and
f species abundances within plots are Gaussian in shape. In
ddition, analysis is constrained so that the canonical axes
re composed of linear combinations of environmental vari-
bles. While CCA is considered robust to departures from these
ssumptions, uncertainty remains about the degree to which
he effects of such departures affect analysis results (see
ustin, 2002). Given that the majority of ecological datasets
re unlikely to meet these assumptions, we suggest that MARS
ffers an important alternative for the analysis of relation-
hips between environment and community composition. As
ur results show, it is capable of both identifying the most
arsimonious set of environmental predictors that explain
ariation in multiresponse composition, and robustly describ-
ng the distributions of species within the multi-dimensional
pace defined by these predictors. Most importantly, MARS
chieves this using statistical techniques that accommodate
obustly the widely varying and generally non-linear relation-
hips that exist between species and their environment. This
ould also have important applications for the modelling of
are species, which although difficult to model well, are often
he focus of conservation effort.
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