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Summary. In ecological modeling of the habitat of a species, it can be prohibitively expensive to determine species absence.
Presence-only data consist of a sample of locations with observed presences and a separate group of locations sampled from
the full landscape, with unknown presences. We propose an expectation–maximization algorithm to estimate the underlying
presence–absence logistic model for presence-only data. This algorithm can be used with any off-the-shelf logistic model.
For models with stepwise fitting procedures, such as boosted trees, the fitting process can be accelerated by interleaving
expectation steps within the procedure. Preliminary analyses based on sampling from presence–absence records of fish in New
Zealand rivers illustrate that this new procedure can reduce both deviance and the shrinkage of marginal effect estimates
that occur in the naive model often used in practice. Finally, it is shown that the population prevalence of a species is
only identifiable when there is some unrealistic constraint on the structure of the logistic model. In practice, it is strongly
recommended that an estimate of population prevalence be provided.
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1. Introduction
Modeling wildlife habitat selection is important for effective
ecological management of a species. Logistic models are typ-
ically used to estimate species distribution, ideally based on
records of presences or absences collected at randomly sam-
pled locations. However, obtaining such presence–absence data
may be difficult or expensive, and often records of species
presence are easier to obtain than definitive absences. For
example, herbaria and museums have extensive historical oc-
currence records (Elith et al., 2006) and radiotelemetry pro-
vides a rich source of range locations for mobile species (Frair
et al., 2004). Environmental information can be collected for
these recorded presence locations using geographical informa-
tion system (GIS) technology.

Some methods use only these presences to estimate a
species range; for example, habitat (Walker and Cocks, 1991)
estimates the range of a species via a convex hull defined in
environmental space. However, many methods also require a
background sample or pseudo-absences—a random sample of
locations taken from the region or landscape of interest. Al-
though the presence or absence of a species at the background
locations is unknown, they provide a summary of the land-
scape, against which we can compare the observed presences.
Indeed, using these data can considerably increase prediction
accuracy (Elith et al., 2006). This combination of a sample of
locations with observed presences, and a background sample
of locations from the landscape is what we will refer to as
presence-only data.

The model construction in this article is based on strict as-
sumptions about the sampling mechanisms. In particular, we
assume that the observed presences in the presence-only sam-
ple are taken at random from all locations where the species
is present. For mobile species, where presence or absence may
change over time, we assume that this random sampling is
at a rate proportional to the proportion of time the species
is present at that location. Additionally, we assume that the
background sample is sampled at random from the full land-
scape of locations. In practice, this second assumption is of-
ten approximately true; GIS provides an easy way to gener-
ate environmental covariates for locations chosen at random.
However, the presence-only sample is often biased. Records at
herbaria or museums are typically ad hoc records of species
occurrence collected by individuals, and may be biased, for ex-
ample, toward more accessible locations (Reese et al., 2005).

Such bias in observed presences may be counteracted by
sampling the background data with the same bias. For ex-
ample, ecologists have used for background data the presence
records for different species in the same region (e.g., Dud́ık,
Schapire, and Phillips, 2006). Taking this a step further,
Zaniewski, Lehmann, and Overton (2002) use the recorded
presences of other species to build a statistical model of
sampling rate, given environmental covariates. Predicted
probabilities for this sampling bias model are then used as
weights in sampling the background data. These same tech-
niques can be used with the expectation–maximization (EM)
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procedure described in this article. However, a more thorough
treatment of this bias is beyond the scope of this article.

The modeling of presence-only data in ecology is reviewed
in Keating and Cherry (2004), where it is referred to as use-
availability data, and Pearce and Boyce (2006). Typically a
logistic model is fit to the recorded presences and background
data; we refer to this as the naive model. If a species is rare,
the background data will resemble the true absences and the
naive model will be close to the true model. However, for
more common species, the naive model can be highly biased
(Keating and Cherry, 2004); we explore the form of that bias
later in this article. An alternate procedure, the exponential
model of Manly et al. (2002), uses a log-linear model of the
presence–absence probability, which is easy to estimate via
existing modeling procedures. However, this approach does
not attempt to estimate the true presence–absence logistic
model, and has other recorded failings (Keating and Cherry,
2004). An ad hoc method of Engler, Guisan, and Rechsteiner
(2004) uses an initial model to discover background locations
where there is a low predicted probability of species pres-
ence. These locations are then used as absences in a second
presence–absence logistic model. In essence this is the aim of
our procedure—to label background data as true presences
or absences—however, we approach this in a more rigorous
manner.

Lancaster and Imbens (1996) provide an exact method
for estimating a logistic regression model with presence-only
data. It uses direct maximization of a likelihood based on
the presence-only data to estimate the linear predictor for
the presence–absence logistic regression model. However, this
technique is rarely used in practice as there is no easily avail-
able implementation, and convergence problems have been re-
ported. Our method indirectly maximizes this same presence-
only likelihood in a way that is more robust, can easily
incorporate more flexible models, and is straightforward to
implement using existing statistical software.

Typical presence–absence methods attempt to model the
probability of presence conditional on environmental co-
variates. In contrast, Maxent (maximum entropy modeling;
Phillips, Anderson, and Schapire, 2006) estimates the density
of environmental covariates conditional on species presence.
This has been shown to be equivalent to a Gibbs density with
certain constraints, which implies a log-probability model as
used by Manly. Although Maxent has been shown to perform
well in practice (Elith et al., 2006), in this article we concen-
trate instead on improving the logistic regression model.

Within ecology the presence-only problem arises in
paradigms with subtle distinctions. In “use-availability” mod-
eling, we are interested in the relative frequency of use of
an area by wide-ranging animals; for less mobile species,
“presence–absence” is modeled. However, for both these cases
it is possible to arrive at a unique definition. We define the
probability of presence of a species as measured across a
certain time window. For nonmobile species, this time win-
dow is irrelevant, up to the lifetime of the species. Typically,
for mobile species, the window is implicitly defined by the
sampling mechanism, for example, by the length of time a
site was observed, or by the discretization of radiotelemetry
data. Any reference to a probability of presence in this article
thus implicitly refers to such a time window.

2. The Presence-Only Problem
and the EM Algorithm

A common aim of ecological studies is to model the probabil-
ity that a species of interest is present, y = 1 (versus absent,
y = 0), conditional on some ecological covariates x, P(y =
1 |x). This probability is usually modeled via its logit

logit P(y = 1 |x) = η(x) ⇒ P(y = 1 |x) =
eη (x)

1 + eη (x) , (1)

where η(x) can be linear in x (as in logistic regression) or
a nonlinear function of x, e.g., generalized additive mod-
els (GAMs; Hastie and Tibshirani, 1990) or boosted trees
(Friedman, 2001). In studies where the true presences and
absences of a species are known for a random sample of loca-
tions, these models are fit using established methods. We will
refer to these as presence–absence data and methods.

However, in the presence-only problem, we know only
where the species was present, not where it was absent. Along
with these observed presences we can generate background data,
which are locations where the true presence or absence is un-
known. Ideally this background data set should be larger than
the number of observed presences and large enough to pro-
vide a good representation of the landscape. We denote these
observed presences and background data by z = 1 and z =
0, respectively. Note that when z = 1, we know y = 1. How-
ever, when z = 0 we do not know whether y is 0 or 1. For
both our observed presences and background data, we have
measurements of environmental variables or covariates x.

Using this notation, we can clearly state the presence-only
problem. We wish to estimate P(y = 1 |x), the probability of
a true presence y, given covariates x. However, the observed
presences and background data are generated by P(x | z = 1)
and P(x) = P(x | z = 0), respectively. Using a case–control ap-
proach (McCullagh and Nelder, 1989, p. 111), we can turn
these probabilities around to obtain P(z = 1 |x, s = 1), the
conditional probability of an observed presence z = 1. The
notation s = 1 is a construct of case–control modeling and
indicates that this observation is in our presence-only data
sample.

What we refer to as the naive model attempts to fit the
logistic model (1) directly to the observed z:

logit P(z = 1 | s = 1,x) = ηnaive(x). (2)

The primary difference between the presence–absence (1) and
naive presence-only (2) models is that the background data
z = 0 include some true presences y = 1 as well as true ab-
sences y = 0. This creates bias in the naive presence-only
model, which we illustrate through a simple example in Sec-
tion 2.2 and further investigate in Section 3.2.

The aim of this article is to estimate the presence–absence
model (1) using presence-only data. We start by giving an
overview of our new modeling procedure (Section 2.1), then
fill in the details later (Section 3). We also provide a sim-
ple example that illustrates the naive and new models, and
the differences between them (Section 2.2). Throughout these
sections we assume that we know the overall population preva-
lence of the species π = P(y = 1). Later we look at an example
of sensitivity analysis of the uncertainty in π (Section 4), and
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Figure 1. The EM algorithm for presence-only data.

illustrate under what conditions we can also estimate π di-
rectly from these data (Section 5).

2.1 The EM Procedure
In fitting a model to the presence-only data, we consider two
possibilities: where the background data z = 0 are assumed
to have either known or unknown y:

(1) If we knew the true y for the background data z = 0,
then we could estimate the presence-only logistic model
(1) by fitting a model directly to the y given x. As the
true y = 0, 1 in these data occur in different proportions
to the overall landscape, we also make a simple “case–
control” adjustment to the intercept of the fitted model.

(2) As we do not know the true y for the background data
z = 0, we can think of these y as missing data. We use
an iterative procedure that tries to estimate or impute
the unknown y at each iteration and then fits a model
using these imputed y. At each iteration we apply the
following two steps, until subsequent iterations result in
the same model:

(a) We replace the unknown y’s with our best estimate
ŷ = P̂(y = 1 |x) estimated from the model fit in
the previous iteration.

(b) We assume that we “know” these y’s and thus ap-
ply the procedure described in (1).

The procedure in (2) is an implementation of the EM algo-
rithm of Dempster, Laird, and Rubin (1977).

Figure 2. A simple example where species presence depends only on elevation. A logistic regression model estimated using y
(a) and a naive logistic regression model estimated using z (b) are illustrated by the lines. The vertical location of data points
(crosses and circles) indicates the value of the outcome as used in the fitting procedure.

We provide a more mathematical description of the al-
gorithm in Figure 1. The initial estimate of y for z = 0 is
π = P(y = 1) because this is our best guess prior to fitting
any model. We provide the exact form for the intercept ad-
justment of the fitted models, where np is the number of ob-
served presences (z = 1) and nu is the number of background
data (z = 0). For logistic procedures used in the maximization
step that cannot handle noninteger responses, a workaround
is illustrated in Web Appendix B. Details and derivation of
this algorithm are given in Section 3.

2.2 A Simple Example
To illustrate the bias in the naive model and the mechanism
of the EM procedure, we present a simple example where the
probability of true presence y depends only on elevation:

logit (P(y = 1 |x)) = β0 + β1 × elevation.

We take β 1 to be positive, so the species prefers higher el-
evations, and set π = 0.4. There are 10 data points with
z = 1 and 20 data points with z = 0. If we knew the true y
(Figure 2a) we could obtain a good estimate of the underlying
logistic regression model. However, if we fit the same model to
the observed z (Figure 2b) then the slope β̂1 of the estimated
model is too shallow.

The EM algorithm for this example uses a logistic regres-
sion fit at each iteration; the outcomes for these fits are 1 for
z = 1 but for z = 0 they depend on the fitted model from
the previous iteration. In the first iteration, the outcome is
set to π for each z = 0 (Figure 3a). In the second iteration
(Figure 3b), outcomes for z = 0 are set to the predicted
values from the first iteration. This is repeated for subse-
quent iterations and the EM algorithm terminates when the
models estimated in the previous and current iterations are
the same (Figure 3d). In this example, the resulting fit-
ted model is very close to that obtained using the true y
(Figure 2a).

3. Details and Development of the Algorithm
To estimate η for the presence–absence model (1) we wish
to maximize the likelihood for the presence-only data, with
respect to η. We first derive the form of this observed likelihood,
which is based on P(z | s = 1,x). We can then derive the steps
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Figure 3. Iterations of the EM algorithm using a logistic regression model as applied to the simple elevation example. The
vertical location of data points (crosses and circles) indicate the value of the outcome as used in the fitting procedure and
lines indicate models estimated from these data.

of the EM algorithm applied to this likelihood. To do this
we first calculate a slightly different full likelihood based on
P(y, z | s = 1,x). We provide the derivation of the observed
likelihood in this section, as we believe it can help the reader
understand the structure of this presence-only problem. All
other propositions are proved in Web Appendix A.

Proposition 1: Given the usual logistic model (1), we can
use a case–control style adjustment to show

logit (P(y = 1 |x, s = 1)) = η(x) + log
(

np + πnu

πnu

)
, (3)

where np and nu are the number of observed presences z = 1
and background data z = 0, respectively.

Proposition 2: The observed likelihood for the presence-
only data is given by

L(η | z, X) =
∏

i

P(zi | si = 1,xi )

=
∏

i

⎛
⎜⎝

np

πnu

eη (xi )

1 +
(

1 +
np

πnu

)
eη (xi )

⎞
⎟⎠

z i

×

⎛
⎜⎝ 1 + eη (xi )

1 +
(
1 +

np

πnu

)
eη (xi )

⎞
⎟⎠

1−z i

. (4)

Proof. We will prove the form of the probability P(z =
1 | s = 1,x); the construction of the observed likelihood from

these probabilities follows immediately. We start with a total-
probability argument across y = 0, 1:

P(z = 1 | s = 1,x) = P(z = 1 | y = 1, s = 1,x)P(y = 1 | s = 1,x)

+ P(z = 1 | y = 0, s = 1,x)P(y = 0 | s = 1,x).

(5)

Note that P(z = 1 | y = 1, s = 1,x) is a sampling probability
of whether true presences (y = 1) in our presence-only data
were observed (z = 1) or not (z = 0). The random sampling
assumptions outlined in the introduction imply that the sam-
pling of the observed presences is independent of x, given the
true presence or absence. Thus we use an application of Bayes’
rule to show

P(z = 1 | y = 1, s = 1,x) = P(z = 1 | y = 1, s = 1)

=
P(z = 1, y = 1 | s = 1)

P(y = 1 | s = 1)
. (6)

The expected number of true presences (y = 1) in our data
is np + πnu —all data with z = 1 plus a proportion π of
z = 0—and so P(y = 1 | s = 1) = (np + πnu )/(np + nu ). Also,
by definition of z and y, P(z = 1, y = 1 | s = 1) = P(z = 1 | s =
1) = np /(np + nu ). Plugging these into (6) we get

P(z = 1 | y = 1, s = 1,x) =
np

np + πnu

. (7)

Further, P(z = 1 | y = 0, s = 1) = 0 because all y = 0 in the
data must occur for z = 0.

From Proposition 1, we know P(y = 1 | s = 1,x) = eη � (x)/
(1 + eη � (x)) where η� (x) = η(x) + log ((np + πnu )/(πnu )).
Substituting all the probabilities in (5) we have
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P(z = 1 | s = 1,x) =
np

np + πnu

eη ∗(x)

1 + eη ∗(x) + 0 (8)

=

np

πnu

eη (x)

1 +
(
1 +

np

πnu

)
eη (x)

, (9)

after some manipulation.
Direct maximization of this likelihood is difficult, though

Lancaster and Imbens (1996) have implemented this for η
linear in x. We continue by providing the full likelihood, which
also depends on the unknown y.

Proposition 3: The full likelihood for the presence-only
data, in terms of both z and y is:

L(η |y, z, X) ∝
∏

i

P(yi | si = 1,xi )

=
∏

i

(
eη � (xi )

1 + eη � (xi )

)y i ( 1
1 + eη � (xi )

)1−y i

, (10)

where η� (xi ) = η(xi ) + log ((np + πnu )/(πnu )).

Note that in equations (4) and (10) we assume that π is
known. Note also that with y known, the full likelihood (10)
for η does not depend on z. In the next proposition we use
this full likelihood in applying the EM (Dempster et al., 1977)
to the observed likelihood.

Proposition 4: The observed likelihood (4) can be max-
imized using the EM algorithm. The algorithm uses alternate
maximization and expectation steps as outlined in Figure 1. In
the E-step, the unknown y’s are estimated using the model from
the previous fit. The M-step involves maximization of the full
likelihood (10) with the estimated y’s imputed.

Thus we have shown that the EM algorithm for presence-
only data (Figure 1) maximizes the observed likelihood (4). In
other words, this new approach is estimating the underlying
logistic model η(x) of the probability of interest P(y = 1 |x).

3.1 Stepwise Procedures and the EM Method
Recent work in ecological modeling has seen a move toward
more flexible models, such as GAMs and boosted trees (e.g.,
Leathwick et al., 2005, 2006). Both GAM and boosted trees
can be the logistic model of choice in the maximization step of
this EM algorithm (Figure 1). However the stepwise nature
of the boosted trees model suggests an improvement; inter-
leaving expectation steps with every few boosting steps will
decrease the time to convergence of the EM algorithm. In
practice this decrease can be an order of magnitude. In Web
Appendix C, we show how to implement this interleaving us-
ing the boosted trees package GBM in R (Ridgeway, 2004).
Although we use boosted trees as an example, this could be
implemented for any stepwise procedure.

3.2 The Naive Logistic Model
In recent literature (e.g., Ferrier et al., 2002) one approach
to the presence-only problem has been to fit a logistic model
directly to the observed presences and background data. We
refer to this as a naive logistic model and use ηnaive to refer to
the linear predictor of this model, as defined in equation (9).

Figure 4. The case–control adjusted ηnaive from the naive
logistic regression is an increasing but nonlinear function of
the linear predictor from the true model of interest, η, and the
population prevalence π. Thick lines indicate typical values of
η for each π.

The naive logistic model is doubly problematic. Assum-
ing that the background data are all absences ignores the
“contamination” with true but unknown presences. Further,
the true (but in part unknown) presences and absences are not
sampled proportionally to their prevalence in the landscape.
We can improve the naive model by using a case–control ad-
justment for ηnaive to account for the differing sampling rates
(e.g., Mace et al., 1996). We then show how this adjusted ηnaive

is related to the true η. All proofs for these propositions are
provided in Web Appendix A.

Proposition 5: The case–control adjusted naive model
ηadj

naive(x) is

ηadj
naive(x) = ηnaive(x) − log

(
(1 − π)np

πnu

)
.

Proposition 6: The case–control adjusted naive model
ηadj

naive(x) can be written in terms of the presence–absence model
η(x) as follows:

ηadj
naive(x) = − log (1 − π) − log(e−η (x) + 1). (11)

Note that when π is small, most η are large and negative,
thus −log (e−η (x) + 1) ≈ η(x) and the naive model is similar
to the true model. More generally, the adjusted naive model
ηadj

naive is increasing in the true η, but nonlinearly (Figure 4).
Although the true and naive predictors are similar up to a
constant for η � 0, when η > 0 the naive model considerably
underestimates the rate at which η is increasing. In particular,
the naive linear predictor is bounded above: ηnaive � −log (1 −
π). Hence the estimated probabilities for the naive model will
be underestimated for locations with higher probabilities of
presence.

In practice, this bias has considerable effect on logistic re-
gression estimates: if the true η is linear in x, i.e., η(x) =
xT β, then any naive logistic regression model must be bi-
ased. In particular, the estimates for the naive model βnaive

will tend to underestimate the slopes β. This is illustrated in
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Figure 5. Parameter estimates for the naive logistic regression model are biased toward the origin, with increased bias for
larger π. These estimates are from 100 simulations of presence-only data, generated from the model η(x) = α + x1β 1 + x2β 2,
where β 1 = 1 and β 2 = −2. The x are independent and identically distributed standard normals and np = 300 and nu =
1000. Note that the variance of the EM estimates increase with π.

Figure 6. The marginal effect of each variable on η for the EM and naive models and for the full model based on the true
presences (mean and ±1 pointwise standard errors). The boxplot in (a) indicates the distribution of the summer temperature
across all locations in the sample; 15% of these locations had a dam downstream.

simulations of presence-only data (Figure 5). Although the es-
timates for the EM procedure are approximately unbiased, the
naive model estimates are shrunk to zero, with more shrink-
age for larger π. However, note that even for π = 0.1, the
naive estimates are noticeably different from the truth. We
will see that this underestimation of effect size also occurs for
more complex models (Figure 6). This shrinkage of effect size
occurs because of the contamination of true presences y = 1
in the background data z = 0. Because of this contamination,
the z = 1 and z = 0 are more similar to each other than the
y = 1 and y = 0. It is easy to see how this shrinkage may
impact variable selection, e.g., important variables may not
appear statistically significant.

For flexible modeling procedures it may seem tempting to
use the relationship between the true and naive models (11)
to make a post hoc transformation of the naive model. How-
ever, from model (11) we see there is an implicit constraint of
ηadj

naive <−log (1 − π); exceeding this value results in undefined
η. In practice this constraint is not observed, nor is there an
easy way to enforce this, though a post hoc replacement of

any undefined η with η = ∞ may be a good approximation
for data with few such locations.

4. Example: The Longfin Eel
Assessing models based on presence-only data is difficult, be-
cause there is typically no validation data with true presences
and absences. Although simulated data are a useful tool, they
typically do not reflect the noise and complex structure inher-
ent in ecological data. To overcome these issues, we have gen-
erated presence-only data sets from presence–absence data
of diadromous fish in the rivers of New Zealand (more de-
tails are given in Leathwick et al., 2005, and in the acknowl-
edgements). In particular we looked at the Longfin Eel An-
guilla dieffenbachii, which has a high prevalence, occurring
at 51.3% of all locations sampled. To reduce spurious ef-
fects, we repeated the presence-only data generation 10 times,
with different random seeds; the results provided are amalga-
mated across these repetitions. There are 21 environmental
covariates describing conditions at the sampled site as well
as up- and downstream. This includes some variables omitted
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from Leathwick et al. (2005), in particular, the presence of a
dam downstream, as this provides a clear illustration of the
difference in the naive model and EM procedure. In the full
data set, eels were present in 20% of locations with a dam
downstream.

The presence-only samples were generated according to the
sampling assumptions set out in this article. Ideally the back-
ground data should be a random sample from all river loca-
tions in New Zealand; here we assume that the fish data set
consists of such a sample, so we can compare performances of
different models. Hence the sample of background data was
generated by sampling randomly from all available data. Then
the naive presences sample was generated by sampling from
the remaining presence locations. A random sample of one
quarter of the data were set aside as a validation set and the
rest were used to train the models. These training sets con-
tained around 4400 and 1300 background data and observed
presences, respectively. The validation set contained one third
of these numbers, of which around 1200 were true presences
and 700 were true absences.

We fitted a boosted trees model to these data, using the
EM procedure (Figure 1), which we will call the EM model,
with π = 0.513. This is compared to the naive model, fitting
boosted trees directly to the presence-only data with a case–
control adjustment to enable a fair comparison with the EM
model. Additionally, as a measure of an optimal result, we
calculated the full model, a boosted trees model calculated
on the same data, but using the full knowledge of the true
presences and absences. A total of 10,000 trees were fitted
for each model, each with a depth of 4, allowing four-way
interaction terms. In practice, the optimal number of trees
for a model would be chosen by minimizing a prediction set
deviance using the observed likelihood (4). However, here the
deviance was calculated using the full likelihood (equation 10)
of the true presences, so that the EM and naive models could
be compared with the full model. As the validation set was
not a random sample from all locations, a further case–control
adjustment was made in calculating deviances. In general, the

Figure 7. The EM model has a lower validation set deviance (a) and less shrinkage in η (b) than the naive model, when
predicting the presence of the Longfin Eel. The average validation set deviance is calculated from the likelihood of the true
presences (mean and ±1 pointwise standard errors). The predicted η in (b) are the best fitting EM and naive models, versus
the best fitting model based on the true presences.

full and observed likelihoods generate similar shaped curves
that are minimized at a similar number of trees. The naive
model required the fewest trees (Figure 7), whereas the EM
models were optimized at around 3000 trees, similar to the
optimal number of trees for the full model.

The two most important predictors in modeling the true
presences were the summer temperature and the presence of
a dam downstream. Figure 6 illustrates that the naive model
tends to underestimate the range of the effect that each of
these predictors has on η. This is particularly noticeable in
the binary downstream dam variable, and echoes the pattern
in Figure 5 that the naive logistic regression model shrinks
the parameter estimates toward zero. This leads to the effect
seen in Figure 7, that the predicted η for the naive model
tends to be shrunk to zero in comparison to the model based
on the true presences.

The performance of the EM model lies somewhere between
that of the naive and true models. There is some shrinkage
of the marginal effects and estimated η’s, though it is not as
pronounced as for the naive model. This occurs because the
presence probabilities imputed at the E-steps are estimates
of the true model, thus introducing an averaging effect on
the estimated presences/absences for the background data.
Figure 7 illustrates that the EM model also has lower de-
viance than the naive model (calculated on a validation set
where the true presences and absences are known). In this
case, with π = 0.513, the EM model considerably reduces the
excess in deviance over the model based on the true pres-
ences, compared to the naive model. Although these results
are exploratory, these effects were seen across other species
of fish with π > 0.2, but with less of an effect for smaller π.
It should be noted, however, that these results were for data
that were sampled according to the assumptions set out in
this article; in practice, sampling of presences may be very
ad hoc.

Finally, we ran a sensitivity analysis of the model, for 1 of
the 10 sampling repetitions, to determine the effect of differing
prior beliefs of π. The EM model was fitted using a range
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Figure 8. A sensitivity analysis for π indicates that the minimum validation set deviance for the EM model is smallest for π ≈
0.6 (a). The effect on η of average summer temperature has a consistent shape across all π, but the estimated effect magnitude
increases with π (b). The validation set deviance is calculated using the presence-only likelihood, so is not comparable with
Figure 7.

of different π’s between 0.3 and 0.8, in increments of 0.05.
The validation set deviance was calculated for each model,
using the observed likelihood (4), and the minimum deviance
recorded. Figure 8a illustrates that these minimum deviances
are themselves minimized around π = 0.6, with low minimum
deviances for values of π between 0.5 and 0.7. Thus there
is only a small change in predictive ability when increasing
π slightly. However, if the prior belief was that the true π
was smaller than 0.513, then the choice of π would influence
the prediction deviance considerably. It should be noted here
that although Figure 8a suggests we could estimate π as that
which minimizes the deviance, this would be incorrect; in the
next section, we show that π is not estimable when fitting a
boosted trees model.

The marginal effects on η of all variables follow a pattern
similar to that in Figure 8b. Across different values of π, the
shape of the marginal effect is relatively constant, with the
magnitude of the effect increasing with π. Unsurprisingly, as
π gets smaller the effect size tends to resemble that of the
naive model (not shown), as we are assuming that there are
few presences in the background data. Thus, in our example,
the shapes of the marginal effects are not sensitive to changes
in π, but the magnitudes of the effects are.

5. Estimating π

Ideally we would like π to be identifiable; in other words, that
we can estimate π, as well as η, from presence-only data.
However, in the following proposition we show that this is
not feasible in practice. Proofs of the first two parts of this
proposition are given in Web Appendix A; the third part is
illustrated using a simple example.

Proposition 7: Identifiability of π can be summarized as
follows:

(a) π is not identifiable if we make no assumptions about
the structure of η.

(b) π is identifiable only if we make unrealistic assumptions
about the structure of η(x) such as in logistic regression
where η(x) linear in x: η(x) = xT β.

–4 –2 0 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α

π

95% CI

Figure 9. The likelihood surface, and a 95% confidence in-
terval (dashed line), for π and the intercept α at the true
β for a simulation of 200 observed presences and 1000 back-
ground data. The generative model is η(x) = α + βx, where
α = −1.0, β = 2, π = 0.34 and the x are independent and
identically distributed standard normals.

(c) Even when π is identifiable, the estimate is highly vari-
able.

We illustrate the high variability in estimated π using
an example where data are simulated from a simple logis-
tic model (Figure 9). (Details of this estimation procedure
are given in Web Appendix D.) Even in this simple example,
where the assumed structure of η is correct (and linear), the
95% confidence interval for π is large (0.15–0.75) and π is
highly correlated with the intercept α. Where the true model
deviates from the assumed structure, the estimates are highly
unstable; Lancaster and Imbens (1996) report failure of con-
vergence of the direct maximization of the observed likelihood
in several examples. These results strongly contraindicate es-
timating π from presence-only data in any situation.
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6. Conclusions
We have proposed an application of the EM algorithm that
provides a flexible method of estimating the underlying
presence–absence model from presence-only data. It can work
as a wrapper to (almost) any logistic regression modeling pro-
cedure. At each iteration the probabilities of presence are cal-
culated, given the current model, for the background data
(E-step) and the case–control logistic model is reestimated
using these new weighted or nonbinary outcomes (M-step).
For stagewise logistic modeling procedures, such as boosted
trees, E-steps may be interleaved within the procedure to save
computation time.

This EM model gives approximately unbiased estimates in
a simple linear logistic regression simulation study. In compar-
ison, there is considerable shrinkage toward zero in the esti-
mates from the naive logistic regression model, fitted directly
to the presence-only data. In our more complex example, a
boosted trees EM model outperforms the naive boosted trees
model; there is less shrinkage of the marginal effects and the
prediction deviance for the presence–absence validation set is
smaller for the EM model. Unsurprisingly, the EM model still
has higher prediction deviance than the boosted trees model
fitted using the true presence–absence data.

Previous work in estimating the presence–absence model
from presence-only data has attempted to simultaneously es-
timate the population prevalence π. However, we have shown
that π is not identifiable when no assumptions are made about
the structure of η, such as in boosted trees models. In addi-
tion, even when unrealistic assumptions are made about the
structure of η, e.g., linear, the resulting estimate of π is highly
variable and heavily dependent on that assumption. We rec-
ommend obtaining an estimate of π from some other source
and using sensitivity analysis to assess the dependence of the
results on this estimate. If no estimate of π is available, then
the naive model is the only logistic model available.

Alternatively, a Bayesian approach could be considered in
situations when π is not precisely known. As π is not realis-
tically identifiable in the presence-only framework, an infor-
mative prior should be used to summarize the strength of the
knowledge of π. Standard errors of the fitted model result-
ing from such an analysis would be larger than in the EM
approach described in this article; this increase would reflect
the uncertainty inherent in the prior for π.

This application of the EM algorithm provides a flexi-
ble way of estimating species distribution from the exten-
sive records of species presence in herbaria and museums,
and from radiotelemetry studies. Because of its simplicity, we
believe it can be easily adopted by anyone working in this
field.

7. Supplementary Materials
The Web Appendices referenced in Sections 2.1, 3.1, 3.2, and
5 are available under the Paper Information link at the Bio-
metrics website http://www.biometrics.tibs.org.
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