
Ideal Denoising in an orthonormal basis

chosen from a library of bases

David L. Donoho & Iain M. Johnstone

Department of Statistics

Stanford University

Abstract

Suppose we have observations yi = si+zi, i = 1; :::; n, where (si) is signal and (zi)

is i.i.d. Gaussian white noise. Suppose we have available a library L of orthogonal

bases, such as the Wavelet Packet bases or the Cosine Packet bases of Coifman and

Meyer. We wish to select, adaptively based on the noisy data (yi), a basis in which

best to recover the signal (\de-noising"). Let Mn be the total number of distinct

vectors occcuring among all bases in the library and let tn =
p
2 log(Mn). (For

wavelet packets, Mn = n log2(n).)

Let y[B] denote the original data y transformed into the Basis B. Choose � > 8

and set �n = (� � (1 + tn))
2. De�ne the entropy functional

E�(y;B) =
X
i

min(y2i [B];�2
n):

Let B̂ be the best orthogonal basis according to this entropy:

B̂ = arg minB2LE�(y;B):
De�ne the hard-threshold nonlinearity �t(y) = y1fjyj>tg. In the empirical best basis,

apply hard-thresholding with threshold t =
p
�n:

ŝ
�
i [B̂] = �p�n

(yi[B̂]):
Theorem: With probability exceeding �n = 1� e=Mn,

kŝ� � sk22 � (1� 8=�)�1 ��n �min
B2L

EkŝB � sk22:

Here the minimum is over all ideal procedures working in all bases of the library, i.e.

in basis B, ŝB is just yi[B]1fjsi[B]j>1g.
In short, the basis-adaptive estimator achieves a loss within a logarithmic factor

of the ideal risk which would be achievable if one had available an oracle which would

supply perfect information about the ideal basis in which to de-noise, and also about

which coordinates were large or small.

The result extends in obvious ways to more general orthogonal basis libraries, ba-

sically to any libraries constructed from an at-most polynomially-growing number of

coe�cient functionals. Parallel results can be developed for closely related entropies.

Key Words. Wavelet Packets, Cosine Packets, weak-`p spaces. Adaptive Basis Selec-

tion. Oracles for adaptation. Thresholding of Wavelet Coe�cients.
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1 Introduction

Suppose we have noisy data

yi = si + zi; i = 1; : : : ; n; (1)

where s = (si) is the signal of interest and the (zi) are i.i.d. N(0; 1). (The case of more

general noise variance is handled by rescaling). We wish to recover s with small risk

R(ŝ; s) = Ekŝ � sk22. It is currently popular to use a �xed orthonormal bases such as

wavelet bases for noise removal, by the following thresholding scheme: transform into the

basis, apply thresholding, return to the original basis [5, 11, 10]. It has been shown that the

success of such a de-noising scheme is directly tied to the extent to which the orthonormal

basis compresses the signal to be recovered [6]. Since a given signal may be compressed

well in one basis and not in others, one naturally expects that working in a single, �xed

basis (Fourier, Wavelet, etc.) will impose limitations on the kind of signals which can be

adequately de-noised.

In a series of pathbreaking papers, Coifman, Meyer, Wickerhauser and collaborators

[2, 3] have developed the powerful ideas of libraries of rapidly constructible orthonormal

bases, libraries which are rapidly searchable for \best bases" for representing a signal. Here

\best" means most compressed according to some measure of \entropy". Owing to this, it

is natural to explore the possibility of using the above adaptive basis ideas for the purpose

of noise removal; Coifman and Wickerhauser have informally pursued such ideas; for formal

proposals see [7, 13].

In this paper we show that a certain method for empirically selecting a basis in which

to adaptively denoise attains near-ideal performance, in a precise sense.

2 Ideal De-noising in a �xed Basis

We summarize ideas discussed at greater length in [8]. Suppose we have noisy data as in

(1). With the su�x [B] on a vector denoting the transform of the indicated vector into

orthonormal basis B, we have, by Parseval, that z[B] is a white noise and that ks0[B] �
s[B]k2 = ks0 � sk2 where the absence of a su�x denotes the use of the natural basis.

Suppose we have an estimator ŝ(y), its mean-squared error or risk is R(ŝ; s) = Ekŝ(y)�
sk22. Consider now a speci�c type of estimator: an estimator which is a diagonal projector

in basis B. Then ŝ(y)[B] = wiyi[B], where the wi are either 1 or 0. The squared-error

in a coordinate where wi = 1 is the noise variance 1; the squared error in a coordinate

where wi = 0 is the coordinate energy (si[B])2 The minimum mean-squared error is thus

min(si[B]2; 1) and is achieved by the choice of constants w�
i = 1fjsi[B]j>1g.

As the optimal constants w�
i depend on the unknown signal, they are not generally

available to us, unless we have available an oracle. The risk we can achieve with such an

oracle in basis B is

R(s;B) =
nX
i=1

min(si[B]2; 1):

This is an ideal risk, attainable only by an ideal procedure (the side informationw�
i provided

by an oracle is necessary). (We could also consider allowing diagonal linear estimators; i.e.
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estimators which are diagonal linear in basis B employing arbitrary weights wi. However,

the gain in allowing general weights is not large, as the two ideal risks di�er by at most a

factor 2.)

Donoho and Johnstone [8] have shown that it is possible to come within a factor 2 log(n)

of these ideal risks. Let �n = 2 log(n) and de�ne the hard thresholding nonlinearity �t(y) =

y1fjyj>tg. Set

ŝi[B] = �p�n(yi[B]);
one obtains

R(ŝ; s) � (�n + 2:4) � (1 +R(s;B)); n = 4; 5; 6; : : : ; (2)

and that no essentially better inequality can hold universally, for all signals s 2 Rn.

3 Ideal De-Noising in an adaptively chosen basis

The preceding notions extend immediately to the case where one has a library L consisting

of �nitely many orthonormal bases L = fB1; : : : ;BLg.
The best ideal risk in any basis in the library is

R�(s;L) = min
B2L

R(s;B);

of course this risk is achievable only with the aid of a basis oracle, which selects for us the

basis achieving the optimum; a coordinate oracle informing which coordinates in that basis

are worth estimating is also necessary.

To explain the bene�t of denoising in an ideal basis, we mention a connection with

data compression. Let (js[B]j(i)) denote the decreasing rearrangement of the coe�cients

in s[B], so that js[B]j(1) = maxi jsi[B]j and js[B]j(n) = mini jsi[B]j. Let C(s[B];m) be the

compression number
P

k>m js[B]j2(i) measuring the error of reconstruction of s from its m-

largest terms in an expansion in basis B. Let NB(s; �) denote the number of coordinates of

si[B] in basis B exceeding � in absolute value. Put for short NB = NB(s; 1). Then we have

a relation between ideal risk and compression numbers:

R(s;B) = C(s[B]; NB) +NB:

If an object has a very compressed representation in basis B then both C(s[B]; NB) and NB
will be small, and so the ideal risk in that basis will be small. Moreover, if the object has

a small ideal risk in basis B, the compression numbers will likewise be small.

Consider now the case where the library L consist of two bases, the Fourier and the

Haar basis. Let the signal s(1) be a discretization of a Heaviside: s
(1)
i = 1fi>t0�ng with

t0 2 (0; 1). Then using the above notions we can calculate

R(s(1); F ourier) � c � pn; R(s(1);Haar) � 2 log2(n):

On the other hand, let s(2) be a smoothly localized sinusoid at the Nyquist frequency:

s
(2)
i = exp(�(i� n=2)2=(10n2)) sin(�i). Then

R(s(2); F ourier) � C � log(n); R(s(2);Haar) � c � n:
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In both cases we have that working in an ideally-selected basis

max
j=1;2

R�(s(j);L) � C log(n);

while working in a �xed basis fares far worse:

max
j=1;2

R(s(j); F ourier) � c � pn; max
j=1;2

R(s(j);Haar) � c � n:

It would, obviously, be desirable to have an algorithm that selects a basis in a near-ideal

fashion. However, there seems reason to doubt that this is possible. Note that in the case of

the complete wavelet packet library for signals of length n, the cardinality of library L > 2n.

It seems plausible that if the number L of orthonormal bases in the library L is very large,

then it will be very di�cult to mimic a basis oracle, since the task of searching through a

very large number of bases will lead to inevitable mistakes { bases which apparently look

good, but only because of noise 
uctuations and over-zealous data mining.

As it turns out, using the right entropy, one can select, empirically, a basis with near-

ideal properties. We suppose that the library has the following structure: the collection of

all Ln bases in the library L contains Mn di�erent vectors. For example, suppose we are

working with a complete wavelet-packet library. The complete table of all coe�cient func-

tionals in all wavelet packet bases has Mn = n log2(n) coe�cients. Let tn =
q
2 log(Mn),

let � > 8, and let �n = (� � (1 + tn))
2. Note that �n is not materially larger than 2 log(n).

De�ne the empirical entropy

E�(y;B) =
X
i

min(y2i [B];�n):

Let B̂ be the best orthonormal basis according to this entropy:

B̂ = arg minB2LE�(y;B):

In the empirical best basis, apply the hard-threshold de-noising

ŝ�i [B̂] = �p�n

(yi[B̂]):

Theorem 1 With probability exceeding �n = 1 � e=Mn,

kŝ� � sk22 � (1� 8=�)�1 � �n � R�(s;L): (3)

In the above result, it happens that the size of the library enters not through the number

of bases, which may, as in the wavelet packets library, be exponentially large, but through

the log of the numberMn of vectors in the library; and that results di�er from ideal by only

a logarithmic factor in n provided that the number of distinct vectors is at most polynomial

in n.

In the normalization we have chosen, the ideal risk R�(s;L) is typically of size a power
of n for usual signals; like n for vectors which are poorly compressed in any basis, and like

n1�r for an r 2 (0; 1), which are well compressed in some basis. Hence when Mn grows at
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most polynomially the term �n grows logarithmically, and does not typically change the

rate behaviors.

Comparing (3) with (2), one sees that the result is very nearly the same as in the �xed

basis case. Suppose that the number Mn grows at most polynomially in n. Then, in the

ideal basis, the RHS of (3) is larger than the RHS of (2) by at most a constant factor. Thus

selecting a basis worsens the risk upper bound by at most a constant factor, compared to

working in an ideal basis. Since (2) has been shown in [8] to be in some sense optimal,

clearly (3) cannot be signi�cantly strengthened either.

4 Proof by Minimum Complexity Argument

De�ne the Complexity functional

K(~s; s) = k~s� sk22 + �nNL(~s);

where

NL(~s) = min
B

#fi : ~si[B] 6= 0g
is the minimum complexity (non-zeroness) of ~s in any basis in the library L.

We make three simple observations, which the reader should verify:

K1. The estimator ŝ� is the empirical minimum complexity estimate:

ŝ� = arg minK(~s; y):

K2. The theoretical complexity of ŝ� upperbounds the loss:

K(ŝ�; s) � kŝ� � sk22:

K3. The minimum theoretical complexity is within a logarithmic factor of the ideal risk:

min
~s
K(~s; s) = min

B

X
i

min(s2i [B];�n)

� �n �min
B

X
i

min(s2i [B]; 1)

= �n � R(L; s):

In view of the above substititions, our main result reduces to the following bound, which

says that the empirical minimum complexity estimate achieves almost theoretical minimum

complexity.

Complexity Bound. With probability at least �n = 1 � e=Mn,

K(ŝ�; s) � (1 � 8=�)�1 �min
~s
K(~s; s): (4)

We �rst let s0 denote a signal of minimum theoretical complexity:

K(s0; s) = min
~s
K(~s; s):
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As ŝ� has minimum empirical complexity,

K(ŝ�; y) � K(s0; y):

As kŝ� � yk22 = kŝ� � s� zk22 we can relate empirical and theoretical complexities by

K(ŝ�; y) = K(ŝ�; s) + 2hz; s� ŝ�i+ kzk22;
and so combining the last two displays,

K(ŝ�; s) � K(s0; s) + 2hz; ŝ� � s0i:
Now de�ne the random variable

W(k) = supfhz; s2 � s1i : ksj � sk22 � k;�nNL(sj) � kg:
Then K(ŝ�; s) � K(s0; s) + 2W(K(ŝ�; s)). Lemma 2 below bounds W(k) � 4k=� for all k

with probability exceeding �n. Hence, with probability exceeding �n,

K(ŝ�; s) � K(s0; s) + 8=� �K(ŝ�; s):

(4) follows by simple algebra.

Lemma 2 With probability exceeding �n,

W(k) � 4k=�; for all k:

Proof. Fix a positive integer j and consider k in the range [j�n; (j + 1)�n). (Note

that W(k) � 0 for k < �n.) Let s
1 and s2 be \sparse" vectors feasible for the optimization

problem W(k), containing at most j = bk=�nc nonzero coe�cients in bases B1 and B2,

say. Let S = S(m1 [m2) denote the linear span of the � 2j distinct vectors occurring

nontrivially (in setsm1 and m2, respectively) in the representations of s1 and s2. Then let

PS denote orthonormal projection onto S. Evidently
jhz; s2 � s1ij � kPSzk2 � ks2 � s1k � 2

p
kkPSzk2; (5)

where ks2 � s1k � 2
p
k because the sj are feasible for the optimization problem.

LetM denote the collection of all distinct vectors occurring in some basis in the library

L. Let � > 0 be a constant to be determined later. On the event

Aj = fkPS(M)zk2 �
q
2j(1 + �) (1 +

q
2 log(M));8m�M;#m = 2jg

we have from (5),

jhz; s2 � s1ij � 2
p
k
q
2j(1 + �)(1 +

q
2 log(M))

= 4
p
k
q
j�n=� � 4k=�

on setting � = 1. On the event En = \j�1Aj, the bound desired by the lemma holds.

Appealing to Lemma 3 below,

P (Ac
j) � 2=(Mn (2j)!):

>From 2
P1

1 1=(2j)! � e we get P (Ec
n) � e=Mn and Lemma 2 follows.
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Lemma 3 Let M vectors in Rn
be given, and let C(D;M) denote the collection of all

subsets consisting of D out of those M vectors. Then for � > 0

P ( sup
S2C(D;M)

kPSzk2 >
p
D(1 +

q
2(1 + �) log(M))) � 2M��=D!: (6)

Proof. As kPSzk2 is a Lipschitz functional on Gauss space, with EkPSzk22 = D, Borell's

inequality [14] gives

P (kPSzk2 >
p
D + t) � 2e�t

2=2 t > 0:

Setting t =
p
D �

q
2(1 + �) log(M), we have e�t

2=2 = M�D(1+�). Letting p denote the

probability in the left-hand side of (6),

p � #C(D;M) � 2e�t2=2 =
 
M

D

!
� 2 �M�D(1+�) � 2=D! �M�� :

5 Discussion

1. Variations. Other entropies and thresholding schemes admit of similar treatment. For

example, the Stein's Unbiased estimate of risk for soft thresholding mentioned in [7] or

the Minimum Description Length entropy proposed in [13]. Details for other entropies and

thresholding schemes will appear in [9]

2. Improved results. A version of our main result dealing with expectations is also

possible. Also, working harder, one can get results for � < 8.

3. Statistical Literature. There is currently a great deal of interest in the statistical

literature in convergence properties of the method of Sieves, in the abstract method of

maximum likelihood, and in the method of maximum penalized likelihood. Key papers

in this literature include Nemirovskii, Tsybakov and Polyak (1985), van de Geer (1988),

and Birg�e and Massart (1992). The argument we have given above is similar to arguments

appearing in that literature; we have written our proof to emphasize the similarity. The

statistical literature fcuses, generally, on a single basis; they select a best model (subset of

terms in that one basis), whereas here we work in an exponentially growing collection of

bases, and select both a basis, and a model in that basis. Adapting forthcoming results of

Birg�e and Massart on penalized estimators should allow one to obtain parallel results in

density estimation, for example, and in random-design nonparametric regression models.
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