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Abstract

Mallows has conjectured that among distributions which are Gaussian but
for occasional contamination by additive noise, the one having least Fisher
information has (two-sided) geometric contamination. A very similar problem
arises in estimation of a non-negative vector parameter in Gaussian white
noise when it is known also that most, i.e. (1− ε), components are zero.

We provide a partial asymptotic expansion of the minimax risk as ε→ 0.
While the conjecture seems unlikely to be exactly true for finite ε, we verify it
asymptotically up to the accuracy of the expansion. Numerical work suggests
the expansion is accurate for ε as large as .05. The best `1-estimation rule is
first but not second order minimax. The results bear on an earlier study of
maximum entropy estimation and various questions in robustness and function
estimation using wavelet bases.
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1 Introduction

In many estimation settings, there is definite prior information concerning the values
of a parameter vector θ. One may have bounds on the individual components θi –
“all θi lie between 0 and 1,” or on particular functionals of the whole vector—“the
squared length of θ is at most c,” or “most of the θi are zero.” Many estimation meth-
ods have been developed to capitalize on such prior information, either explicitly
in the form of constraints on an optimization procedure (e.g. positivity-constrained
least squares) or implicitly in the sense that the estimator performs well “if and only
if” θ satisfies the prior constraints. An example of the latter are maximum entropy
regularization estimates in the case of “nearly black” θ (e.g. Frieden (1972), Gull
and Daniel (1978)).

How does one compare the performance of various possible estimators when such
prior information is present? One common, admittedly conservative, approach is
the worst-case analysis: given some error measure, compute the maximum expected
error over the restricted parameter space, and then seek the estimator that minimizes
this maximum risk. The resulting best or minimax risk provides (i) a benchmark
against which to measure other estimators, and (ii) a measure of the value of the
prior information (by comparison with the minimax risk computed ignoring the
prior information).

This paper presents an asymptotic evaluation of this minimax risk in a simple,
but hopefully representative, context: estimation of non-negative signals that are
mostly zero, such as spectra, star maps and the like. Our model is idealized in certain
significant ways: a signal-plus-noise model is adopted, and the noise is assumed to
be i.i.d. Gaussian. These assumptions permit a more detailed analysis, but at the
price of a degree of non-robustness to departures from the model.

To state the problem precisely, let X ∼ N(θ, 1). Denote the mean squared
error, or risk, of an estimator d(x) by R(θ, d) = Eθ (d(X)− θ)2. If G(dθ) is a prior
probability distribution, denote the integrated risk of d by r(G, d) =

∫
R(θ, d)G(dθ).

Let δa denote point mass at a and P([0,∞)) the class of probability measures
supported on [0,∞). Consider a class of priors on [0,∞) with an atom at 0:

Gε = {G = (1− ε)δ0 + εH : H ∈ P([0,∞))} .

This paper is concerned with asymptotic evaluation of the (restricted Bayes) mini-
max risk1

m(ε) = sup
Gε

inf
d
r(G, d) = inf

d
sup
Gε
r(G, d) (1)

as ε → 0. This problem or a close relative arises in a variety of contexts, some of
which we now review.

Nearly black objects . As part of a study of maximum entropy estimation, Donoho
et. al. (1992a) consider the problem of estimating a non-negative vector θ∼

= (θi)
n
i=1

from noisy data
Xi = θi + Zi i = 1, . . . , n. (2)

1Here and later, footnote numbers refer to extra details found in the Appendix

2



where the noise terms Zi are i.i.d. N(0, σ2). They show that a maximum entropy
rule, defined as a minimiser θ̂ME,λ(x) of∑

i

(θi − xi)2 + 2λ
∑
i

θi log θi, (3)

achieves significant savings over linear rules in mean squared error when and only
when most components θi of the unknown object are nearly zero. It is then natural
to define the class of “ε-black images” Θn(ε) as the set of non-negative sequences
(θi) of length n satisfying #{i : θi > 0} ≤ nε. The worst case error of an estimator
θ̂n(x) is

mn(θ̂n, ε) = sup
ΘN (ε)

Eθ n
−1

n∑
1

(θ̂n,i(X)− θi)2.

A benchmark against which particular estimators may be measured is the minimax
risk

mn(ε) = inf
θ̂n

mn(θ̂n, ε). (4)

As n becomes large, mn(ε) approaches a limit m(ε), and the evaluation of m(ε) is
exactly equivalent to the problem (1) (Donoho et. al., 1992a, Theorem 1).

Robust estimation. Denote the Fisher information of an absolutely continuous
distribution F with density f by I(F ) =

∫
f ′2/f . In Huber’s (1964, 1981) asymptotic

minimax approach to robust estimation, there arises the problem of minimising
Fisher information over neighborhoods of the standard Gaussian distribution. One
possibility is to consider Gaussian variables that are occasionally contaminated by
additive noise, i.e. distributions F = Φ ∗ G, where G belongs to G ′ε = {G = (1 −
ε)δ{0} + εH, H ∈ P((−∞,∞))}. Here Φ is the standard Gaussian distribution and
∗ denotes convolution. Mallows (1978) noted that the distribution G0 minimizing
I(Φ ∗ G) would be symmetric and discrete: G0 =

∑
pjδgj , with G0({0}) = 1 − ε.

He further stated that “a plausible guess is that pj = cpj, gj = jg for j > 0,” i.e.,
that G0 is a two-sided geometric distribution. This problem is connected with (1)
through Brown’s (1971) identity

r(G)
4
= inf

d
r(G, d) = 1− I(Φ ∗G).

Thus Mallows’ problem is identical to (1) except that G ′ε allows two-sided contami-
nation distributions.

Parametric robustness. Bickel (1983,1984) studied the question of optimal (min-
imax) estimation of θ subject to good risk properties at θ = 0: namely to calculate

inf
d
{sup

θ
R(θ, d) : R(0, d) ≤ s}. (5)

Bayes-minimax compromises (of which this is an important special case) were earlier
studied by Hodges and Lehmann (1952) and Efron and Morris (1971). For related
work, see also Berger (1982) and Marazzi (1980). As Bickel notes, this problem is
central to estimation of a parameter η in the presence of a nuisance parameter θ,
when one believes that θ = 0 but desires robustness against the possibility of error.
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Introducing a Lagrange multiplier ε shows an equivalent form of (5) to be (1),
using G ′ε in place of Gε:

inf
d
{(1− ε)R(0, d) + ε sup

θ
R(θ, d)}

= inf
d
{(1− ε)R(0, d) + ε sup

H∈P(−∞,∞)

R(H, d)} (6)

= inf
d

sup
G′ε
R(G, d)

Equivalence of the two problems means that for given s and optimal rule d∗s in (5),
there exists ε = ε(s) such that the optimal rule d∗ε in (6) equals d∗s. Bickel also
describes in greater detail the connections between (6), the identities of Brown and
Stein, and Mallows’ problem.

The remainder of this note is organised as follows. Section 2 presents a three
term asymptotic expansion for the minimax risk (1) and compares it with numerical
approximations. Higher order properties of the simple l1 rules studied in Donoho
et. al. (1992a) are briefly described. Section 3 outlines the proof of the main result
and Section 4 briefly describes connections with other constraint sets (lp balls) and
with wavelet transforms.

2 Main Results.

Introduce, following Mallows, the geometric prior

Gε = (1− ε)
∞∑
k=0

εkδkn,

The lattice spacing n = n(ε) is defined implicitly along with an additional parameter
a = a(n) by the two equations

φ(n+ a) = εφ(a) (7)

(n+ a)φ(a) = 2Φ(a) (8)

Here Φ and φ are the standard Gaussian distribution and density functions respec-
tively. The origin of these equations is discussed later, but for now we note that the
orders of magnitude of n(ε) and an = a(n) are given by

n ∼
√

2 log ε−1, an ∼
√

2 log c0n, c0 = (2
√

2π)−1. (9)

Define the Bayes risk of a prior G, and the maximum risk (relative to Gε) of an
estimator d respectively by

r(G) = inf
d
r(G, d), m(d, ε) = sup

Gε
r(G, d).

The expression (1) for minimax risk now takes the simpler form

sup
Gε
r(G) = m(ε) = inf

d
m(d, ε).
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Theorem 1 The minimax risk

m(ε) = εn2Φ(an)− π2

6
εanφ(an) +O

(
εa2
n

n2

)
. (10)

The geometric prior Gε is asymptotically least favorable and the Bayes estimator
dGε is asymptotically minimax to this order:

m(dGε , ε)− r(Gε) = O

(
εa2
n

n2

)
. (11)

Formula (10) will be checked numerically below. For theoretical interpretation,
some remarks are in order. Definition (8) shows that nφ(an) = 2 +O(an/n), which
converts the second term to (π2/3)(εan/n) without increasing the order of error.
Setting Φ̃ = 1− Φ, we obtain

m(ε) = εn2 − εn2Φ̃(an)− (
π2

3
)
εan
n

+O

(
εa2
n

n2

)
. (12)

Since n2Φ̃(an) ∼ 2n/an, this shows that (10) is actually a third order expansion of
m(ε) and that the geometric prior is third -order minimax. We are unaware of any
previous settings in which third-order minimaxity in a parameter other than sample
size has been established, though Levit(1986) gives bounds on the third term of the
minimax risk for estimating a Gaussian mean restricted to an interval as the noise
level decreases.

Finally, we note that, expressed in terms of ε, the order of error is εa2
nn
−2 ∼

ε(log log ε−1/ log ε−1).

Simpler approximations. The dependence of m(ε) on ε in (10) is implicit, since
it involves the solutions of equations (7) and (8). Two cruder approximations may
be derived2 , the second involving only elementary functions. To this end, let
n2

0 = 2 log ε−1 and recall that c0 = (2
√

2π)−1.

m(ε) = εn2
0Φ((2 log c0n0)1/2)− 2εn0(2 log c0n0)1/2 +O(ε log n0) (13)

= εn2
0 − 2εn0(2 log c0n0)1/2 − εn0(2 log c0n0)−1/2 +O(εn0(log n0)−3/2)(14)

First-order minimax rules. In the two-sided version of (1) that uses G ′ε in place
of Gε, the first-order asymptotic minimax behavior of m(ε) was described by Bickel
(1983). The corresponding result for (1) is proved in Donoho et. al. (1992a) and
says simply that

m(ε) = εn2
0(1 + o(1)). (15)

Denote by ‘`1-rule’ an estimator of the form dλ(x) = max(x− λ, 0) for λ > 0. The
name arises because θ̂λ = (dλ(xi)) is the co-ordinatewise solution to the problem

min
θ≥0

∑
i

(θi − xi)2 + 2λ
∑
i

θi.
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Both Bickel (1983) and Donoho et. al. (1992a) show for their respective settings that
`1-rules with λ(ε) ∼ n0(ε) = (2 log ε−1)1/2 are first-order asymptotically minimax:

m(dλε , ε) ∼ m(ε).

However, as Bickel notes, the first-order approximation is rather crude and not
practically useful. The next result gives higher-order behavior of the best `1-rule.

Theorem 2 Let λε minimize m(dλ, ε). Then

λε = (n2
0 − 6 log n0 − log 2π)1/2 +O(n−3

0 log n0) and (16)

m(dλε , ε) = ε
[
n2

0 − 6 log n0 − log 2π + 3 + 18n−2
0 log n0 +O(n−2

0 )
]
. (17)

Discussion of (17). A simple relation between n0 and n results from putting
the definition ε = e−n

2
0/2 into (7):

n2
0 = n2 + 2nan. (18)

Substituting (18) into (17) and comparing with (10) shows immediately that the
best `1-rule is not even second-order minimax. Although hardly needed here for
theoretical purposes, the extra terms in expansion (17) occur naturally in the proof
and are retained to provide possibly greater numerical accuracy.

Numerical evaluation. Table 1 compares the various approximations for a range
of values of ε. Note, for example, that ε = 10−6 corresponds to a single non-zero
pixel in a 1000 × 1000 screen image. To calculate approximation (10), values of n
and an were obtained by solving equations (7) and (8) numerically.

As a check on these values, one can take geometric priors Gν,ε =
(1 − ε)∑∞0 εkδkν and compute the Bayes risk r(Gν,ε) by numerical integration and
summation. By numerical minimization over ν, one obtains an optimal spacing
ν = nlo(ε) and thus a lower bound mlo(ε) to m(ε) that Mallows’ conjecture suggests
ought to be quite sharp (and would in fact equal m(ε) were the conjecture to be
exactly true). The results for selected values of ε are displayed in Table 2.

A corresponding numerical upper bound for m(ε) was obtained by locating the
maximum θmax of the risk function of the Bayes rule corresponding to Gnlo(ε),ε and
evaluating the left side of (6) using this Bayes rule and θmax to obtain the upper
bound mup(ε). Table 2 shows that even at ε = .2 the upper and lower bounds differ
by only 2.5%, and the bounds become tighter as ε decreases.

The agreement between Table 2 and (10) is remarkable at ε = .02 and ε = .01,
suggesting that (10) is likely to be quite accurate for smaller ε. Over the range of
numerical calculations, approximation (10) is typically smaller than mlo(ε), but by
an amount less than the difference between the upper and lower bounds mup−mlo.
This implies a relative error in m(ε) of about 6% at ε = .05, dropping to about 2.5%
at ε = .001. By contrast, the first order expression (15) is too large by a factor of 2
for plausible values of ε, and the approximations (13) and (14), while considerably
better for small ε, are useless above ε ∼ 10−6, due to the logarithms being undefined.
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Table 3 shows the approximations to λε and m(dλε , ε) as given by Theorem 2.
Formulas (34) and (44) in the proof of Theorem 2 below show that it is in principle
not difficult to calculate m(dλε , ε) directly by evaluating the critical λε numerically
and then substituting into (34). This was done to provide a check on (17). For
ε ≥ .02, the approximation is undefined, and indeed the asymptotic formula is barely
satisfactory over the range shown. It would presumably improve for ε ≤ 10−6. In
any case, the table shows clearly the higher-order suboptimality of the `1-rule over
a wide range of ε.

< Tables 1, 2, and 3 about here >

3 Approximating minimax rules

This section outlines the proofs of Theorems 1 and 2, with some details deferred
to the Appendix. The usual device for proving that the geometric prior Gε is
asymptotically minimax is to show that its Bayes risk is close to the maximum risk
m(dGε , ε) of the Bayes rule corresponding to Gε. For Gε, the Bayes risk

r(Gε) = (1− ε)R(0, dGε) + ε(1− ε)
∞∑
k=1

εk−1R(kn, dGε) (19)

Since the “maximum risk”

m(d, ε) = sup{(1− ε)R(0, d) + ε
∫
R(θ, d)H(dθ) : H ∈ P([0,∞))},

it may be rewritten for the Bayes estimator as

m(dGε , ε) = (1− ε)R(0, dGε) + ε sup
θ≥0

R(θ, dGε). (20)

To establish (11), the method is to construct a lattice spacing n so that up to terms
of order O(a2

n/n
2), the maximum of R(θ, dGε) is attained at each of the support

points {kn; k = 1, 2, . . .} of the positive component of Gε.
To this end, approximations to the risk of dGε are useful. The posterior distribu-

tion Gε ( {kn} | x ) is proportional to εkφ(x− kn), and for n in the range of interest
(≥ 2.5), this is almost entirely concentrated on at most two points. So, introduce
the change of variables x = k0n+ z and note that

Gε ( {kn} | x ) ∝


ε−1φ(z + n) k = k0 − 1
φ(z) as k = k0

εφ(z − n) k = k0 + 1.

In fact, for most z, a single value of k dominates, so that the Bayes estimator
dGε , being the mean of the posterior distribution, approximately equals kn. The
contributions from the support points (k0−1)n and k0n balance when ε−1φ(z+n) =
φ(z), that is, when log ε−1 − nz − n2/2 = 0. The defining equation (7) shows that
this occurs when z = an, that is, when x = k0n + an. One finds similarly that
k0n and (k0 + 1)n balance when z = an + n. Thus the posterior distribution is
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approximately periodic in x with period n, at least for x situated away from the left
endpoint of the support of Gε.

For x within n/2 standard deviations of k0n + an, we therefore approximate
dGε(x) by the Bayes rule for a two point prior putting mass proportional to 1 at k0n
and to ε−1 at (k0 − 1)n. The approximation is slightly modified for x ≤ n/2 + a to
the Bayes rule for the two-point prior δ0 + εδn.

Explicitly, let z ∼ N(ζ, 1) and ζ ∼ δ0 + ε−1δ−n. Then

d0(z) = E( ζ | z ) =
−ne−nz

e−na + e−nz
. (21)

Let k0(x) denote the positive integer k for which kn+ a is closest to x, and set

dε(x) = nk0(x) + d0 (x− nk0(x)) . (22)

Estimator dε uniformly approximates dGε both pointwise and in risk3 :

|dGε(x)− dε(x)| ≤ Mne−n
2/2 (23)

|R(θ, dGε)−R(θ, dε)| ≤ Mn2e−n
2/2 (24)

[Here and below M denotes a generic constant, not necessarily the same at each
appearance.]

Figure 1 displays the approximate form of dε and its risk function. Thus4

any maxima of θ → R(θ, dε) with values greater than (1 − δ)n2 occur only within
intervals of the form [kn− βn, kn + βn] for k ≥ 1 and a small positive constant β.
Set γ = 1

2
− β. Now replace consideration of estimator dε on each of these intervals

by a single two point prior Bayes rule: the inequality5

sup {|R(θ, dε)−R(θ − k0n, d0)| : |θ − k0n| ≤ βn} ≤Mnφ(γn− an) (25)

means we need only look at the maximum of the risk function

R0(ζ) = Eζ (d0(z)− ζ)2

on the single interval |ζ| ≤ βn.
The logistic form (21) of d0 still precludes explicit evaluation of R0(ζ), so consider

as a further approximation the step function

d00(z) = −nI(z < an), (26)

with easily evaluated risk function and derivative

R00(ζ) = Eζ(d00(z)− ζ)2 = (n2 + 2nζ)Φ(an − ζ) + ζ2 (27)

R′00(ζ) = 2nΦ(an − ζ)− (n2 + 2nζ)φ(an − ζ) + 2ζ. (28)

For large n, Taylor expansions give the error in these approximations6 :

R0(ζ)−R00(ζ) = −nφ(an − ζ)[1 +
π2

6

an − ζ
n

+O(n−2(an − ζ)2)] (29)

R′0(ζ)−R′00(ζ) = −n(an − ζ)φ(an − ζ)[1 +O(n−1|an − ζ|)], (30)
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valid uniformly in |ζ| ≤ const.
The aim now is to choose an so that the risk function R0(ζ) attains its maximum

at a support point of the prior, namely 0. A sign change argument7 shows that in
fact R0(ζ) has a single local maximum. Together, (28) and (30) show that R′0(0) ≈ 0
if a is required to satisfy the second defining equation (8). Further approximation8

in (30) shows that for this choice of an,

R′0(−n−1) ∼ nanφ(an) > 0, R′0(0) ∼ −1
6
π2a2

nφ(an) < 0. (31)

Thus for large n, the maximum of R0(ζ) occurs at some point ξ∗ ∈ (−n−1, 0). From
(8) and (9) follows nφ(an) ∼ 2, and since R0(ζ) turns out to be concave on (−n−1, 0),

R0(ξ∗)−R0(0) ≤ n−1|R′0(0)| = O(a2
n/n

2). (32)

which is the order of error claimed in Theorem 1.

Together, (24), (25) and (32), imply that

supR(θ, dGε) = R0(0) +O(n2e−n
2/2 + nφ(γn− an)− a2

n/n
2),

R(kn, dGε) = R0(0) +O(n2e−n
2/2 + nφ(γn− an)), k ≥ 1.

Thus (19) and (20) show that, up to terms of order O(εa2
n/n

2), dGε is asymptotically
minimax. This establishes (11), the first part of Theorem 1.

The approximation (10) to the minimax risk requires also the risk of dGε at θ = 0.
Replacing dGε by the two point prior δ0 + εδn, yields an approximation9

R(0, dGε) = εnφ(an)
[
1 +O(a2

n/n
2)
]
. (33)

Since r(Gε) ≤ m(ε) ≤ m(dGε , ε), we now evaluate the minimax risk from (27), (29)
and (33) as

m(ε) = (1− ε)εnφ(an) + ε{n2Φ(an)− nφ(an)(1 +
π2

6

an
n

) +O(εa2
n/n

2)},

which reduces to (10).

Remark. It does not seem likely that the geometric prior is exactly least favorable
for ε > 0 in this setting – it would be necessary to choose the lattice spacing n so
that the risk of dGε was constant at θ = kn for k = 1, 2, . . .. However, the geometric
prior is probably asymptotically minimax to higher orders: this might be shown
using a three piece linear approximation to d0, tangent to d0 at 0, in place of (26).

Theorem 2: Asymptotics for `1 rule. These are fairly straightforward, since the
maximum risk of θ → R(θ, dλ) on [0,∞) occurs10 at ∞ for any λ > 0, and equals
1 + λ2. Evaluating also R(0, dλ), we obtain

m(dλε , ε) = inf
λ
H(λ) = inf

λ
(1− ε)

[
(λ2 + 1)Φ̃(λ)− λφ(λ)

]
+ ε(1 + λ2). (34)

The derivatives of H are easily found, and in particular show that H is convex.
The form (16) of λε is obtained11 by a one-step approximation to the initial value
n2

0 = 2 log ε−1 and substitution into H yields (17).
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4 Discussion

The problem (1) studied in this paper is essentially identical to Mallows’ problem
involving two sided contamination. Problem (1) is technically simpler, since one
doesn’t have to deal with the effect of prior probability mass at negative atoms, but
it seems likely that the techniques developed here would readily yield corresponding
expansions and third order results for Mallows’ model.

Most of the recent work on minimax properties of various models for sparsity
(references below) has concentrated on first-order risk behavior, in part for reasons
set out in Donoho, Johnstone, Kerkyacharian and Picard (1993). Two and three
point asymptotically least favorable prior distributions arise commonly in this work.
Thus, an additional contribution of this paper is to provide tools that might be
adapted to study of higher order risk properties in these related settings.

Sparsity and wavelet bases. As preparation for studying the beneficial properties
of wavelet bases in function estimation, Donoho and Johnstone (1992b,c) have inves-
tigated minimax estimation in Gaussian white noise of a mean vector known to lie
in a finite dimensional lp ball 0 < p <∞. Since ||θ||pn,p =

∑n
1 |θi|p → #{i : |θi| > 0}

as p→ 0, the ‘nearly black’ conditions studied here may be regarded in some sense
as l0− ball constraints.

Indeed, a characteristic property of the wavelet transform is that the wavelet
coefficients of smooth or piecewise smooth functions are typically sparse – at higher
resolution levels, only those coefficients in the vicinity of a discontinuity of the
function or its derivatives are significantly non-zero.

Not surprisingly, therefore, the ideas and methods of each paper are related.
Thus, an asymptotically least favorable distribution over {θ ≥ 0 : ||θ||n,p ≤ r} (as
n → ∞ in model (2) ) is (1 − ε)δµ + εδµ, where ε and µ are determined by εµp =
n−1(r/σ)p and equations (7) and (8) (with n replaced by µ). Indeed a two point
prior of this form is all that is needed to establish first-order asymptotic minimaxity
in the nearly black setting in Donoho et. al. (1992a). The lp - balls ( and their weak
analogs) with 0 < p < 1 arise naturally in the study of optimal spatially adaptive
function estimates (such as, for example, variable kernel estimators – Donoho (1992),
Johnstone (1993)).

Related work. In problem (2) the large sample (n→∞) limit plus constraints led
to a “restricted Bayes” minimax problem (1) for estimating a Gaussian mean sub-
ject to contraints on the class of prior distributions. (For more on the large sample
limiting process, see Johnstone (1993)). A number of other such restricted minimax
problems have been studied: as noted above, Donoho and Johnstone (1992b) study
moment constraints, see also Feldman (1991). The limit as p → ∞ yields the case
when the mean is known to be bounded in absolute value, by η say. See, e.g. Casella
and Strawderman, (1981), Donoho, Liu and MacGibbon (1990). Casella and Straw-
derman gave the exact minimax value for η < 1.05, when a symmetric two point
prior 1

2
δη + 1

2
δ−η is exactly least favorable. Although this paper also studies situa-

tions in which “ most of the mass is small”, the situation here is of large, infrequent
non-zero components, as compared to uniformly non-zero, but small components.
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The relation between the “sparse” and “dense” settings becomes clearer in Donoho
and Johnstone (1992b), where the Lp moment constraint is combined with an lq loss
function (here of course q = 2). As η → 0, the “sparse” situation arises when p < q
(e.g. p = 0), and the “dense” case when p ≥ q (e.g. p =∞).
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5 Appendix

1. Note on terminology. The use of the term “minimax risk” in the title of the pa-
per derives from the motivating problem (4) of estimating a high dimensional vector
with few non-zero components. The reduced form (1) poses a minimax problem in
which Nature chooses from a restricted class of prior distributions on a single Gaus-
sian mean. After noting connections with the restricted Bayes ideas of Hodges and
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Lehmann (1952), Bickel (1983) refers to (1) as a restricted minimax problem. The
fuller term restricted Bayes minimax emphasises that the payoff function r(G, d)
involves expectation with respect to the prior distribution as well as the data dis-
tribution.

2. The derivation of approximations (13) and (14) involves three steps. First,
define a0 = (2 log c0n)1/2 (compare (9)) and a one-step Newton approximation an to
the solution of (8) starting from a0. Second, express the right side of (10) in terms
of n and a0. Finally, obtain an expression in terms of n0 rather than n by exploiting
(18) derived from (7). A sequence of approximations results, of which (13) and (14)
are the crudest. The rather tedious details are omitted.

3. Proof of (23) and (24) Denote the unnormalised posterior εkφ(x − kn) by
φk = φk(x). Fix k0 ≥ 1 and consider x ∈ [(k0 − 1)n + a + n/2, k0n + a + n/2]. In
this interval, setting z = x− k0n, we have

n−1[dGε(x)− nk0] =
∞∑
−k0

jφj/
∞∑
−k0

φj,

n−1[dε(x)− nk0] = −φ−1/(φ0 + φ−1).

We apply the equality

a+ δ1

b+ δ2

=
a

b
+

(
δ1

b
− a

b

δ2

b

)(
1 +

δ2

b

)−1

(35)

for

a = −φ−1, b = φ0 + φ1,

δ1 =
∑

j 6=0,−1

jφj, δ2 =
∑

j 6=0,−1

φj.

For |z − a| ≤ n/2, the rapid decay of Gaussian tails ensures that δ1 and δ2 are at
most a constant multiple of the leading terms δ3 = φ−2 + φ1. Add the fact that
|a/b| ≤ 1, and it will be enough to show that δ3/b is O(e−n

2/2). But simple algebra
using (7), namely log ε = −n2/2− an, yields

log φ1/φ0 = (z − a)n− n2 ≤ −n2/2

log φ−2/φ−1 = −(z − a)n− n2 ≤ −n2/2.

For k = 0 (so that x = z) and x ≤ n/2 + a, apply a similar argument using
a = φ1 and b = φ0 + φ1. In this case,

log φ2/φ0 = 2n(z − an)− 3n2 ≤ −2n2

and so one obtains the stronger estimate

dGε(x) = dε(x) +O(ne−2n2

). (36)

To establish (23), note the global bounds

|dGε(x)− x+| ≤ n, |dε(x)− x+| ≤ n, (37)
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where x+ = x ∨ 0. From (23),

R(θ, dGε)−R(θ, dε) ≤ Eθ|dGε − dε| |dGε + dε − 2θ|
≤ O(ne−n

2/2)Eθ[2n+ 2|x+ − θ|]
= O(n2e−n

2/2).

4. Maxima of R(θ, dε) The key to showing that R(θ, dε) has maxima only within
intervals [kn−βn, kn+βn] is to show, for k0 ≥ 1 and θ− k0n ∈ [βn, (1−β)n], that
dε(x)−k0n is essentially zero over a somewhat larger range of x. More precisely, one
can pick γ < β/2 and note that dε(x)−k0n is an odd function about x = k0n+a+n/2
to verify that

sup {|dε(x)− k0n| : x− k0n− a ∈ [γn, (1− γ)n]} ≤ e−γn
2

(38)

Using (38) on the set {z = x− k0n ∈ [a+ γn, a+ (1− γ)n]} and (37) plus bounds
on Gaussian tails on the complement of the set leads to

Eθ[dε(x)− θ]2 ≤ n2
[
(1− β)2 +MΦ̃(βn/4)

]
. (39)

To establish the claim, it remains to establish (39) also for θ ≤ n − βn. This
is done analogously, but now using the inequality dε(x) ≤ n[1 + en

2γ]−1 valid for
x ≤ a+ (1− γ)n.

5. Proof of (25) The bound (25) is easily established after noting that dε(k0n+
z) = d0(z) for |z − a| ≤ n/2, so that (if ζ = θ − k0n ∈ [−βn, βn], z = x− k0n)

|R(θ, dε)−R(ζ, d0)| ≤ Eθ
{

(dε(x)− θ)2 + (d0(x)− θ)2, |z − a| > n/2
}

≤ 2Eζ
[
n2 + (z − ζ)2, |z − a| > n/2

]
≤ Mnφ(γn− a).

6. Proof of (29) and (30) Suppose first that γ is an even function and set
γk =

∫∞
−∞ v

kγ(v) dv. Then if z ∼ N(ζ, 1),

Eζγ [n(z − an)] = n−1
∫ ∞
−∞

γ(v)φ(an − ζ + n−1v) dv

= γ0n
−1φ(an − ζ) + 1

2
γ2n

−3φ′′(an − ζ) + · · ·

Using the derivatives φ′′(x) = (x2− 1)φ(x) and φ′′′(x) = x(x2− 3)φ(x), and arguing
analogously for odd functions, we obtain

Lemma 3 Suppose
∫ |v|kγ(v) dv < ∞ for k ≤ 4, and that γn(w) = cnγ(nw). Ac-

cording as γ is even or odd

Eζγn(z − an) = cnn
−1φ(an − ζ)[γ0 +O(n−2[(an − ζ)2 − 1])],

Eζγn(z − an) = −cnn−2(an − ζ)φ(an − ζ)[γ1 +O(n−2[(an − ζ)2 − 3])].
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Before applying the lemma, we note the following relations between estimators
d0, d00 and their risk functions:

d0(z) = d00(z) + ψ(z); ψ(z) = nψ̃(nw); w = z − an

where ψ̃(w) is an odd function defined for w > 0 by

ψ̃(w) = −e−w/(1 + e−w).

Using the risk (27) and its derivative (28) of d00, and the identity ∂/∂ζEζg(z) =
Eζ(z − ζ)g(z):

R0(ζ) = R00(ζ) + Eζ
[
ψ2 + 2ψ(d00 − ζ)

]
(40)

R′0(ζ) = R′00(ζ) + Eζ(z − ζ)
[
ψ2 + 2ψ(d00 − ζ)

]
− 2Eζψ. (41)

Applying Lemma 3 to the various components of (40) and (41) yields (showing
leading terms only, and setting r = φ(an − ζ))

r−1Eψ2 = nγa,0 + · · ·
r−12Eψd00 = −nγb,0 + (ζ − an)γb,1 + · · ·

r−1Eψ = n−1(ζ − an)γc,1 + · · ·
r−1E(z − an)ψ2 = n−1(ζ − an)γd,1 + · · · (42)

r−12E(z − an)ψd00 = −γe,0 − n−1(ζ − an)γee,1 + · · ·
r−1E(z − an)ψ = n−1γf,0 + · · ·

where

γa,0 = 2
∫ ∞

0
[e−x/(1 + e−x)]2 dx = 2 log 2− 1

γb,0 = 2
∫ ∞

0
e−x/(1 + e−x) dx = 2 log 2

γb,1 = 2
∫ ∞

0
xe−x/(1 + e−x) dx = π2/6,

and it is unnecessary to compute the remaining constants. Combining the terms
in (42) in accordance with (40) and (41), and tracking the error terms provided by
Lemma 3 leads to (29) and (30).

7. Single maximum for R0(ζ) Using Stein’s unbiased estimate of risk (Stein,
1981), we may write (setting z = x− a, ζ = η − a and γ(x) = −n(1 + enx)−1,)

R0(ζ)− c = Eη(γ(x) + η − a)2 − c
= Eη[(γ(x) + x− a)2 − 2γ′(x)− (1 + c)].

For large values of n and a = a(n), the integrand turns out to have at most four
sign changes. Since the Gaussian kernel is totally positive of all orders, R0(ζ) − c
can have at most four sign changes. Since R0(ζ) ↗ ∞ as |ζ| ↗ ∞ and R0 dips
down to values that are at most O(a2

n) near ζ = a + c log n/n and ζ = −n + a, it
follows that R0 can have at most one maximum of order n2.
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8. Proof of (31). Here it is necessary to retain one extra term in the approxi-
mation to R′0(ζ) derived from (41) and (42):

R′0(ζ) = −
[
n2 + 2nζ + n(an − ζ) + (an − ζ)2γb,1 + γe,0

]
φ(an − ζ)

+ 2nΦ(an − ζ) + 2ζ + o
(
(an − ζ)2φ(an − ζ)

)
.

This expansion is valid at least for |ζ| ≤ constant, and so (31) follows by substitution.
Differentiation shows that

R′′(ζ) ∼ −n2anφ(an − ζ) < 0

on [−n−1, 0], so that R0(ζ) lies below its tangent at ζ = 0. This establishes the
bound (32).

9. Proof of (33). Let d1(x) = nεφ(x − n)/ [φ(x) + εφ(x− n)] be the Bayes
rule for the two point prior δ0 + εδn. Set ∆ = d2

Gε − d2
1 = (dGε − d1)(dGε + d1).

Let I0, I1 and I2 be the events that x lies in (−∞, n/2 + a), [n/2 + a, 3n/2 + a]
and (3n/2 + a,∞) respectively. Using (23), (36), (37), bounds on the tail of the
Gaussian distribution, and finally that |dGε(x)| ≤ |x|+ n, |d1(x)| ≤ n,

E0[∆, I0] ≤ Mne−2n2

E0[|x|+ n, I0] ≤Mn2e−2n2

E0[∆, I1] ≤ Mn2e−n
2/2E0[|x|+ n, Ic0] ≤Mn2e−n

2/2φ (n/2 )

E0[∆, I2] ≤ ME0[|x|2 + n2, I2] ≤Mnφ (3n/2 ) .

Using equation (7), ε = e−n
2/2−nan , we have

E0d
2
1(x) =

∫ ∞
−∞

n2

[1 + en(n+a−x)]2
φ(x) dx

= nεφ(an)

[∫ ew dw

(1 + ew)2
+
an
n

∫ wew

(1 + ew)2
dw +O

(
an
n

)2
]
,

after making the substitution w = n(n + a − x). This establishes (33) since the
first integral equals one and the transformation x = ew[1 + ew]−1 reduces the second
integral to

∫ 1
0 w(x) dx, which vanishes since w(x) = log x/(1 − x) is odd about

x = 1/2.

10. Maximum risk of `1-rule. The `1-rule dλ(x) = (x − λ)+ may be written in
the form x+ ψ(x) with ψ(x) = −xI{x ≤ λ} − λI{x > λ}. Applying Stein’s (1981)
unbiased estimate of risk,

R(θ, dλ) = 1 + Eθ
[
2ψ′(x) + ψ2(x)

]
= 1 + Eθ

[
−2I(x < λ) + x2I(x ≤ λ) + λ2I(x > λ)

]
(43)

The integrand in (43) crosses any horizontal line at most twice, so it follows from
the variation diminishing property of the Gaussian kernel that R(θ, dλ) attains its
maximum on [0,∞) at either 0 or +∞.
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11. Minimum of H(λ). We record the following derivatives and approximations:

H ′(λ) = 2(1− ε)
[
λΦ̃(λ)− φ(λ)

]
+ 2λε (44)

H ′′(λ) = 2(1− ε)Φ̃(λ) + 2ε (45)

λΦ̃(λ)− φ(λ) = −λ
∫ ∞
λ

x−2φ(x) dx = λ−2φ(λ)
[
1 +O(λ−2)

]
(46)

(λ2 + 1)Φ̃(λ)− λφ(λ) =
∫ ∞
λ

x−2(x2 − λ2)φ(x) dx = 2λ−3φ(λ)[1 +O(λ−2)](47)

To approximately locate a zero of (44), set λ2(a) = n2
0 − 3 log an2

0, where n2
0 =

2 log ε−1. The choices a0 = (2π)1/3 and a1 = a0(1 − cn−2
0 log n2

0) (for c > 0 large)
lead to

H ′ (λ(a0)) ∼ −9ελ(a0)n−2
0 log a0n

2
0 < 0, H ′ (λ(a1)) ∼ (c− 9)εn−2

0 log a0n
2
0 > 0.

From (45), H is convex, and so λε is bracketed between λ(a0) and λ(a1). Since
λ2(a1) − λ2(a0) = 3 log(a0/a1) = O(n−2

0 log n0), (16) follows. From (45), H is
convex, and since H ′ (λ(a0)) < 0,

0 ≤ H (λ(a0))−H(λε) ≤ (λ(a0)− λε)H ′ (λ(a0))

≤ |λ(a0)− λ(a1)| |H ′ (λ(a0)) |
= O(εn−4

0 log2 n0). (48)

Finally, using (34) and (47), and setting λ1 = λ(a0),

H(λ1) = (1− ε)
{

2λ−3
1 φ(λ1)

[
1 +O(λ−2

1 )
]}

+ ε(1 + λ2
1)

= ε
[
λ2

1 + 3 + 9n−2
0 log(2π)1/3n2

0 +O(λ−2
1 )

]
.

In view of error bound (48), this establishes (17) and completes the proof of Theorem
2. In fact, the bound (48) suggests that (17) could easily be improved by adding
the next term in expansion (47).
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Table 1: Various approximations to the minimax risk m(ε). n and an are the
solutions to equations (7) and (8). n0 = (2 log ε−1)1/2. Equation (10) is the third-
order approximation provided by Theorem 1, (15) is the first-order approximation,
and (13), (14) are simpler, but less accurate, versions of (10).

ε n n0 an m(ε)(10) m(ε)(15) m(ε)(13) m(ε)(14)
7.5e−2 2.40 2.27 −0.12 2.00e−1 3.88e−1 NA NA
5.0e−2 2.47 2.44 −0.02 1.50e−1 2.99e−1 NA NA
4.0e−2 2.52 2.53 0.01 1.28e−1 2.57e−1 NA NA
3.0e−2 2.58 2.64 0.06 1.04e−1 2.10e−1 NA NA
2.0e−2 2.66 2.79 0.13 7.69e−2 1.56e−1 NA NA
1.0e−2 2.81 3.03 0.23 4.52e−2 9.21e−2 NA NA
5.0e−3 2.96 3.25 0.30 2.62e−2 5.29e−2 NA NA
2.0e−3 3.15 3.52 0.39 1.25e−2 2.48e−2 NA NA
1.0e−3 3.29 3.71 0.45 7.04e−3 1.38e−2 NA NA
1.0e−4 3.73 4.29 0.59 9.78e−4 1.84e−3 NA NA
1.0e−5 4.15 4.79 0.69 1.26e−4 2.30e−4 NA NA
1.0e−6 4.53 5.25 0.77 1.57e−5 2.76e−5 1.39e−5 7.31e−6
1.0e−7 4.89 5.67 0.84 1.88e−6 3.22e−6 1.66e−6 1.51e−6
1.0e−8 5.23 6.06 0.90 2.19e−7 3.68e−7 1.94e−7 1.95e−7
1.0e−9 5.55 6.43 0.94 2.52e−8 4.14e−8 2.24e−8 2.32e−8
1.0e−10 5.86 6.78 0.98 2.84e−9 4.60e−9 2.54e−9 2.67e−9
1.0e−11 6.16 7.11 1.02 3.18e−10 5.06e−10 2.85e−10 3.02e−10
1.0e−12 6.45 7.43 1.05 3.51e−11 5.52e−11 3.17e−11 3.36e−11
1.0e−15 7.24 8.31 1.14 4.54e−14 6.90e−14 4.14e−14 4.40e−14
1.0e−18 7.98 9.10 1.20 5.60e−17 8.28e−17 5.16e−17 5.46e−17

Table 2: Numerically computed approximations to the minimax risk m(ε) and risk
of the best `1-rule. Compare with asymptotic approximations in Table 1 (Col (10))
and Table 3 (Col (17)) respectively. nlo(ε) is the numerical approximation to n(ε)
corresponding to mlo(ε).

ε mlo(ε) mup(ε) m(dλε , ε) nlo(ε) θmax
0.2000 0.3907 0.4100 0.4100 2.4781 4.2655
0.1000 0.2481 0.2604 0.2600 2.5890 4.6248
0.0500 0.1534 0.1602 0.1670 2.7018 4.9684
0.0200 0.0784 0.0811 0.0873 2.8564 5.4028
0.0100 0.0461 0.0474 0.0522 2.9776 5.7182
0.0050 0.0267 0.0272 0.0306 3.1012 6.0227
0.0020 0.0127 0.0128 0.0148 3.2662 6.4096
0.0010 0.0071 0.0072 0.0084 3.3911 6.6913
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Table 3: Maximum risk over ε-black objects for the best `1-rule. λε and m(dλε , ε)
are the approximations given in Theorem 2 by (16) and (17) respectively. λt and
m(dλt , ε) denote the numerically determined optimal values (λt is the root of (44)
and m(dλt , ε) = H(λt).) For comparison, m(ε) given by (10), is the third order
approximation to minimax risk.

ε λε λt m(dλε , ε) m(dλt , ε) m(ε)
7.5e−2 NA 1.00 NA 0.219 0.195
5.0e−2 NA 1.15 NA 0.167 0.148
4.0e−2 NA 1.23 NA 0.143 0.126
3.0e−2 NA 1.34 NA 0.116 0.103
2.0e−2 NA 1.48 NA 8.73e−02 7.65e−2
1.0e−2 0.84 1.72 5.87e−2 5.22e−02 4.51e−2
5.0e−3 1.29 1.94 3.33e−2 3.06e−02 2.62e−2
2.0e−3 1.74 2.23 1.56e−2 1.48e−02 1.25e−2
1.0e−3 2.02 2.43 8.81e−3 8.41e−03 7.04e−3
5.0e−4 2.28 2.63 4.89e−3 4.72e−03 3.92e−3
2.0e−4 2.58 2.88 2.22e−3 2.17e−03 1.79e−3
1.0e−4 2.80 3.06 1.22e−3 1.19e−03 9.78e−4
5.0e−5 3.00 3.23 6.67e−4 6.53e−04 5.32e−4
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