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THRESHOLDING FOR WEIGHTED χ2
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Abstract: Given data from a spherical Gaussian distribution with unknown mean

vector θ, estimates of quadratic functionals are constructed by thresholding. Mean

squared error bounds are derived via a comparison with those already available for a

suitable noncentral χ2 variate. By way of illustration, the resulting inequalities are

used to yield an optimal rate adaptivity result for estimation of integrated squared

derivatives in the white noise model of nonparametric function estimation.
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1. Introduction

Consider estimation of a quadratic functional ρα =
∑d

k=1 αkθ
2
k, αk ≥ 0 on the

basis of independent Gaussian data yk ∼ N(θk, ε
2), k = 1, . . . , d, with unknown

mean θ and known variance ε2. Such quadratic functionals occur throughout
parametric and non-parametric statistics, for example in the analysis of variance
(power analysis and variance components), spectral estimation and bandwidth
selection. For examples, see Johnson and Kotz (1970, Chapter 29) and Section
4.

The standard unbiased estimate is Rα =
∑d

1 αk(y2
k − ε2). If ρα is thought to

be small, this is unattractive due to high variability and significant probability
of a negative estimate. Thresholding provides a simple remedy for both these
defects: set x+ = max(x, 0) and

ρ̂(Rα; t) = (Rα − tε2)+. (1.1)

With appropriate choice of threshold t > 0, one may hope for much better
estimation for small ρα combined with acceptable properties in the event that ρα

is not small. The purpose of this note is to give mean squared error bounds of
this flavor, so long as the weights {αk} are comparable in magnitude.

In the simplest, symmetric, case ρ =
∑d

1 θ2
k and the unbiased estimate

R =
∑d

1(y
2
k − ε2) is, up to a constant, a non-central χ2 variate. An earlier pa-

per, Johnstone (2000) ([J] below) derived distributional and mean-squared error
bounds for this setting.
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For the more general functional ρα, the estimate Rα is now essentially a
weighted combination of non-central χ2 variates. This note develops a compar-
ison with thresholding of an appropriate single non-central χ2 variate so that
the bounds of [J] may be applied. The resulting comparison bounds are insen-
sitive to d, ε and θ and depend on the weights αk only through the imbalance
ᾱ = max αk/min αk. Suppose, then, that min αk = 1 and

1 ≤ αk ≤ ᾱ. (1.2)

Section 1 derives the comparison bound for mean qth power error. Section 2
recalls necessary results on the balanced case and derives illustrative consequences
of the bound obtained in Section 1. Section 3 gives an application to estimation
of nonparametric functionals involving derivatives,

∫
(Dlf)2.

2. Comparison Bound for MSE

The main tool in fact holds for all Lq error measures, q > 0.

Theorem 2.1. With the preceding notations, there exists an absolute constant
γ such that for all d, α, θ, ε2 and t,

E|ρ̂(Rα; ᾱt) − ρα|q ≤ γᾱqE|ρ̂(R; t) − ρ|q. (2.1)

The proof of Theorem 2.1 uses a risk comparison based on a tail domination
condition.

Proposition 2.2. Let U and U ′ be random variables with means 0 ≤ µ ≤ µ′ and
distribution functions F and F ′. Set F̃ (u) = 1 − F (u) and F̃ ′(u) = 1 − F ′(u).
Assume that F (−u) and F̃ (u) = o(u−q) as u → ∞, and similarly for F ′. Suppose
there exists γ > 0 such that

F (µ + s) ≤ γF ′(µ′ + s), F̃ (µ + s) ≤ γF̃ ′(µ′ + s), s ∈ R. (2.2)

Let δ(u) = (u − τ)+ denote soft thresholding. Then

E|δ(U) − µ|q ≤ γE|δ(U ′) − µ′|q. (2.3)

Proof of Proposition 2.2. Integration by parts gives

E|δ(U) − µ|q

= q

∫ τ+µ

−∞
|δ(u) − µ|q−1δ′(u)F (u)du + q

∫ ∞

τ+µ
|δ(u) − µ|q−1δ′(u)F̃ (u)du

= q

∫ τ+µ

τ
|u − τ − µ|q−1F (u)du + q

∫ ∞

τ+µ
|u − τ − µ|q−1F̃ (u)du

= q

∫ µ

0
|w|q−1F (µ + τ − w)dw + q

∫ ∞

0
|w|q−1F̃ (µ + τ + w)dw.
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The result follows by inserting inequalities (2.2) and then retracing steps.

To obtain Theorem 2.1, we set U = Rα, U ′ = ᾱR so that µ = ρα and
µ′ = ᾱρ. If τ = ᾱtε2, then δ(U) = ρ̂(Rα, ᾱt) and δ(U ′) = ᾱρ̂(R; t), and (2.1)
follows directly from (2.3) once conditions (2.2) have been verified. Define ek =
y2

k − θ2
k − ε2 and introduce variables

V1 =
∑

αkek, V2 =
∑

(ᾱ − αk)ek. (2.4)

Recall that random variables Y = (Y1, . . . , Yk) are said to be associated if
Cov (g(Y ), h(Y )) ≥ 0 for all functions g, h monotonically increasing in each ar-
gument. (Tong (1980, Ch. 5.2) collects the properties we use.) Then, since εk

are independent and αk ≥ 0, V1 and V2 are associated and so U − µ = V1 and
U ′ − µ′ = V1 + V2. To verify the tail domination conditions (2.2), the following
lemma is now convenient.

Lemma 2.3. If random variables V1 and V2 are associated, then for all s ∈ R,

P (V1 ≤ s) ≤ P (V1 + V2 ≤ s)
P (V2 ≤ 0)

, (2.5)

P (V1 ≥ s) ≤ P (V1 + V2 ≥ s)
P (V2 ≥ 0)

. (2.6)

Proof. We have

P (V1 ≤ s) = P (V1 ≤ s, V2 > 0) + P (V1 ≤ s, V2 ≤ 0)

≤ P (V1 ≤ s, V2 > 0) + P (V1 + V2 ≤ s).

The association implies that P (V1 ≤ s, V2 > 0) ≤ P (V1 ≤ s)P (V2 > 0). Now
(2.5) follows by rearrangement, and the proof of (2.6) is analogous.

It remains, therefore, to exhibit a lower bound for P (V2 ≥ 0) and P (V2 ≤ 0)
when V2 has the form (2.4). To this we now turn.

2.1. Asymmetry of weighted χ2 variables

Definition. X is a weighted non-central χ2 variable if there exist independent
random variables yk ∼ N(θk, ε

2), k = 1, . . . , d and constants αk ≥ 0, k = 1, . . . d
such that

X =
d∑

k=1

αky
2
k. (2.7)

Proposition 2.4. Let X be a weighted non-central χ2 variable with mean µ.
There exists an absolute constant γ > 0, not depending on d, α, θ, ε2, such that

min{P (X ≤ µ), P (X ≥ µ)} ≥ γ−1.
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The proof is obtained in two steps. First, existence of an upper bound on
the kurtosis of a random variable implies that it cannot be too asymmetric about
its mean, (Lemma 2.5 and Proposition 2.6). Second, such a kurtosis bound is
relatively easy to compute for weighted chi-square variables (Lemma 2.7). (We
remark that this method does not, alas, yield anything like a sharp bound for
γ−1, which we conjecture is given by P (χ2

(1) ≤ 1) = 2[Φ(1) − 1/2] .= 0.36.)

Lemma 2.5. Let W be a positive random variable with EW 2 ≥ 1. If EW ≤ 1
2 ,

then
EW 4 ≥ 1

3(EW )2
. (2.8)

Proof. It is easily checked by rescaling that it suffices to take EW 2 = 1. Suppose
then that EW = ε. The set F of probability measures F supported on [0,∞)
and satisfying

∫
xdF (x) = ε,

∫
x2dF (x) = 1 is convex. Since EW 4 =

∫
x4dF (x)

is linear in F , it is enough to establish a lower bound for the extreme points of
F , which have the form

F = pνa + qνb 0 ≤ a ≤ ε ≤ b, p + q = 1, (2.9)

where νa denotes a unit point mass at x. Such F satisfy

ap + bq = ε a2p + b2q = 1. (2.10)

From (2.9) we have a2p ≤ ε2 and from (2.10) b2q ≥ 1− ε2. Since bq ≤ ε, it follows
that b ≥ ε−1(1 − ε2) and hence

EW 4 ≥ b4q ≥ ε−2(1 − ε2)3.

The latter quantity certainly exceeds 1/(3ε2) if ε ≤ 1/2.

Let X be a random variable with mean µ. Kurtosis is often measured by the
ratio

β2(X) =
E(X − µ)4

[E(X − µ)2]2
.

Proposition 2.6. There exists an absolute constant C ≥ 1/12 such that

min{P (X ≤ µ), P (X ≥ µ)} ≥ C

β2(X)
. (2.11)

Proof. Without loss of generality, after centering, scaling and sign change, we
may assume that µ = EX = 0, EX2 = 1, and confine attention to p = P (X ≤ 0).
We aim to show

EX4 ≥ Cp−1. (2.12)
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Let X+ (and X−) be random variables having the distribution of X conditioned
to be strictly positive (and negative, respectively). Set p = P (X ≤ 0) and
q = P (X ≥ 0); then

1 = EX2 = pEX2
− + qEX2

+.

Suppose first pEX2− ≥ 1/2. Then, by Hölder’s inequality

EX4 ≥ pEX4
− ≥ p(EX2

−)2 ≥ (4p)−1.

Now assume the contrary, that pEX2− < 1/2. Then qEX2
+ ≥ 1/2, and we will

apply Lemma 2.5 to W =
√

2qX+. First note that EX = 0 implies

qEX+ = p|EX−| ≤ p(EX2
−)1/2 ≤

√
p/2,

so that EW ≤ (p/q)1/2.

If p > 1/5, then (2.12) holds trivially with C = 1/5. On the other hand
p ≤ 1/5 implies EW ≤ 1/2 and (2.8) then entails 4q2EX4

+ ≥ q/3p. Hence

EX4 ≥ qEX4
+ ≥ (12p)−1.

Remark. Although harder to exploit for our purposes, an easier inequality like
(2.11) is

P (X ≥ µ) ≥ 1
4

[E|X − µ|]2
E(X − µ)2

,

which may be simply proved starting from the Cauchy-Schwartz bound

[E(X − µ)I{X ≥ µ}]2 ≤ E(X − µ)2P (X ≥ µ).

Lemma 2.7. Let X be a weighted non-central χ2 variable and denote its mean
by µ. Then

β2(X) ≤ 15, (2.13)

with the equality attained, for example, by X = χ2
(1).

Proof. Use the representation (2.7) to write X −µ =
∑d

1 Yk, with Yk = αk(y2
k −

Ey2
k) being independent with mean zero. Thus

E(
∑

Yk)2 =
∑
k

Var Yk, E(
∑

Yk)4 =
∑
k

Var Y 2
k + [

∑
k

Var Yk]2.

Consequently

β2(X) ≤
∑

k Var Y 2
k

[
∑

k Var Yk]2
+ 1.
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Thus (2.13) will follow from the bound Var W 2(µ)≤14[Var W (µ)]2 where W (µ) =
(Z+µ)2−(1+µ2) and Z ∼ N(0, 1). Calculations using EZ2k = π−1/22kΓ(k+1/2)
show that

Var W 2(µ)
[Var W (µ)]2

= 2
(4µ2 + 14)2 − 168

(4µ2 + 2)2
,

which is decreasing in µ2, and yields the desired bound at µ = 0.

3. MSE Bounds for Chi-square Distributions and Consequences

We recall some results from [J] in the special case αk = 1 and ε2 = 1. For
this we adopt the notation Wd ∼ χ2

d(ξ) and set

σ2(ξ) = Var Wd = 2d + 4ξ. (3.1)

Let F̃d(w) = P (χ2
d ≥ w) denote the survivor function of central χ2. A threshold

estimator with threshold t will be denoted ξ̂t(w) = (w − d − t)+ and we write
r(ξ, t; d) = E(ξ̂t(Wd)− ξ)2 for its mean squared error. Define auxiliary constants

η1 = 2F̃d+2(d + t), η2 = η1 + t/d,

which will be small for d large and t = o(d) large.

Proposition 3.1.([J]) For all d ≥ 1, ξ ≥ 0 and t ≥ 2,

r(ξ, t) ≤ σ2(ξ) + t2, (3.2)

r(ξ, t) ≤ r(0, t) + η1 + (1 + η2)ξ2, (3.3)

r(0, t) ≤ 8
( t + d

t + 2

)2
F̃d(d + t), (3.4)

∂2r

∂ξ2
(ξ, t) ≤ 2(1 + t/d). (3.5)

Bound (3.2) has a variance character and is useful for large ξ. Bound (3.3)
has a ‘bias’ flavor and is effective for small ξ. Bound (3.4) shows that the risk at
0 is small for suitably large t, while bound (3.5) is a global curvature estimate.
While the inequalities hold for all degrees of freedom d ≥ 1, in the large d limit
they transform to the appropriate bounds for a Gaussian shift problem - see [J]
for details.

Bounds (3.2)-(3.5) are intended to be reasonably sharp and, when combined
with the comparison bound (2.3), are the basic tools for deriving MSE bounds
for weighted chi-square situations. These bounds may be less sharp, but more
convenient, for particular applications. We give an example here, to be used in
Section 3.
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Corollary 3.2. Let tβd =
√

2d
√

2β log d for β ≥ 1. There exists a constant
c = cβ such that for d ≥ 16,

r(ξ, tβd) ≤ cd1−β + min{2ξ2, σ2(ξ) + t2βd}. (3.6)

Proof. Bound (3.2) yields immediately r(ξ, tβd) ≤ σ2(ξ) + t2βd, whereas (3.3)
and (3.4) together yield, for t = tβd

r(ξ, tβd) ≤ 8
( t + d

t + 2

)2
F̃d(d + t) + 2F̃d+2(d + t) + (1 + η2)ξ2.

As a corollary of a more refined bound, Lemma 6.1 of [J] shows that for d ≥ 16
and s ≤ d1/6, we have F̃d(d + sσd) ≤ s−1e−s2/2. From this follows, after some
simple algebra, the bound r(ξ, tβd) ≤ cd1−β + 2ξ2 for d ≥ 16 and suitable c = cβ.

Using the comparison Theorem 2.1, this goes over the the weighted case.

Corollary 3.3. Suppose that yk ∼ N(θk, ε
2), k = 1, . . . , d are independent. Let

tβd =
√

2d
√

2β log d for β ≥ 1. There exists c = cβ such that for d ≥ 16,

E[ρ̂α(Rα; ᾱtβd) − ρα]2 ≤ γᾱ2[cd1−βε4 + min{2ρ2
α, σ2(ρα) + t2βdε

4}]. (3.7)

Proof. Direct application of Theorem 2.1 and then (3.6) bounds the left side of
(3.7) by

γᾱ2E[ρ̂(R; t) − ρ]2 = γᾱ2[cd1−βε4 + min{2ρ2, σ2(ρ) + t2βdε
4}].

Since ρ =
∑

θ2
k ≤ ∑

αkθ
2
k = ρα, (3.7) follows.

4. Illustration: estimation of
∫
(Dlf)2

Assume observations from the white noise model Yt =
∫ t
0 f(s)ds + εWt, 0 ≤

t ≤ 1 with {Wt} standard Brownian motion, ε known, and f ∈ L2
per[0, 1] periodic

and unknown. We seek to estimate Qf =
∫ 1
0 (Dlf)2, where l ∈ N. In various

contexts of regression, density estimation and the present white noise model,
this question has received considerable recent attention, in particular because of
applications to bandwidth selection. A selection of recent references, in addition
to those mentioned below, includes Hall and Marron (1987), Donoho and Nuss-
baum (1990), Hall and Johnstone (1992), Birgé and Massart (1995), Laurent
(1996) and Cheng (1997).

Bickel and Ritov (1988), and later independently Fan (1991), found an inter-
esting dichotomy in this problem. To recall this, assume that f has σ mean-square
derivatives satisfying the Sobolev condition∫ 1

0
f2 + (Dσf)2 ≤ B2. (4.1)
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In smooth cases, σ > 2l + 1/4, efficient estimation of Qf is possible at rate ε2

as ε → 0. But, in less smooth settings, l < σ ≤ 2l + 1/4, the minimax rate of
convergence is just ε2r, where

r =
8(σ − l)
4σ + 1

. (4.2)

When σ is unknown, Efromovich and Low (1996) showed, in a density es-
timation setting, that adaptation to the optimal rate (4.2) was not possible for
Qf =

∫
(Dlf)2: an extra logarithmic term is necessary in the non-parametric

zone. In what follows, we construct an estimator that adapts to varying levels
of smoothness at the best possible rate allowed by the result of Efromovich and
Low (1996) when σ is unknown. Begin with the Fourier basis,

φ0(t) = 1, φ2k−1(t) =
√

2 sin 2πkt, φ2k(t) =
√

2 cos 2πkt, k ≥ 1,

which in the white noise model, as is well known, has a sequence representation

yk = θk + εzk zk
i.i.d∼ N(0, 1), k ∈ N

(4.3)
θk =

∫ 1

0
φkf.

The functional Qf takes a weighted quadratic form
∫

(Dlf)2 =
∞∑
0

λl
kθ

2
k λ0 = 0, λ2k−1 = λ2k = (2πk)2, k ≥ 1. (4.4)

To prepare to apply the weighted chi-square risk inequality, divide the sum into
dyadic blocks over which the polynomially growing weights λl

k are balanced.
Specifically, blocks Bj with associated weights κj are defined by setting B0 =
{0, 1, 2} and

Bj = {dj + 1, . . . , 2dj}, dj = 2j , j ≥ 1,
(4.5)

κj = (πdj)2l = π2l22jl, j ≥ 0.

Given k ∈ N, let j(k) be the index of the block Bj in which k lies, and set

αk =
λl

k

κj(k)
∈ [1, ᾱ], ᾱ = 22l. (4.6)

In terms of the blocks Bj, Qf may be rewritten as∫
(Dlf)2 =

∑
j≥0

κjρj, ρj =
∑

k∈Bj

αkθ
2
k, (4.7)
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and, of course, the aim is to apply the results of the previous section to estimation
of ρj .

Smoothness condition (4.1) implies (proof in appendix) the uniform decay
condition

ρj =
∑
Bj

αkθ
2
k ≤ C22−2σj =: ρ̄j, j ≥ 1, (4.8)

if we set C = π−σB. Denote by Θσ(C) the collection of sequences θ satisfying
this decay condition – it is in fact a norm ball in the periodic Besov space Bσ

2,∞
on [0, 1] which contains the periodic Sobolev space Bσ

2,2 whose norm balls appear
in (4.1). We use Θσ(C) below simply for convenience. See also Remark 1 below.

In smoother cases the low frequencies are most important whereas, in rough
settings, higher frequencies are critical. The estimate therefore combines unbi-
ased estimation at lower frequencies (where efficiency is the goal)

Q̂e =
k0∑

k=1

λl
k(y

2
k − ε2), k0 = 2j0 , 2−(4l+1)j0 = ε2

√
log2 ε−2, (4.9)

with thresholding at higher frequencies

Q̂t =
j1∑

j=j0+1

κj ρ̂j, 2−j1 = ε4. (4.10)

Here ρ̂j is a threshold estimate of type (1.1) studied in previous sections: starting
from the unbiased estimate Rj =

∑
k∈Bj

αk(y2
k − ε2) of ρj , and recalling dj = 2j ,

ρ̂j = (Rj − ᾱtjε
2)+, tj =

√
2dj

√
2(4l + 1) log dj . (4.11)

The thresholds tj correspond to setting β = 4l + 1 in Corollary 3.3. These
higher, and hence more conservative, thresholds are used because (4.7) shows that
higher frequency blocks Bj receive larger weights κj , and the higher thresholds
combat the “noise amplification” induced in the estimate (4.10). Abramovich
and Silverman (1998) first used this device.

Of course j0 and j1 as just defined need not be integer valued. We agree
that a sum

∑b
j=a is taken to run over j = �a	 = floor(a) to j = 
b� = ceiling(b).

Below, c denotes a constant depending at most on l and σ, and not necessarily
the same at each appearance.

Theorem 4.1. Let Q̂ = Q̂e + Q̂t. Then the following hold.
(i) If σ > 2l + 1/4, let Rf =

∫
(D2lf)2 to find

sup
f∈Θσ(C)

|E(Q̂ − Qf)2 − 4ε2Rf | = o(ε2). (4.12)
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(ii) If l < σ ≤ 2l + 1/4,

sup
f∈Θσ(C)

E(Q̂ − Qf)2 ≤ cC2(2−r)(ε2
√

log(Cε−1)r(1 + o(1)). (4.13)

Thus, in the “parametric zone”, σ > 2l + 1/4, Q̂ is an efficient estimator of
Qf – indeed Q̂e is essentially the efficient estimator of Ibragimov and Has’minskii
(1977) (see also Hall and Johnstone (1992, Proposition 1)) and Q̂t is negligible.
In the “non-parametric” zone, l < σ ≤ 2l + 1/4, the rate bound in (4.13) is the
best allowed by the lower bounds of Efromovich and Low (1996), and comes from
Q̂t, with Q̂e being negligible here.

Proof. In the series expression (4.4), decompose Qf = Qef + Qtf + Qrf where
the ranges of summation match those of Q̂e and Q̂t in (4.9) and (4.10). Using
the triangle inequality for ‖δ‖ =

√
Eδ2,

√
E(Q̂ − Qf)2 ≤

√
E(Q̂e − Qef)2 +

√
E(Q̂t − Qtf)2 + Qrf. (4.14)

1◦. Tail Bound. This is negligible in all cases: using (4.6), (4.8) and (4.10),

Qrf ≤
∞∑
j1

κjρj ≤ cC2
∞∑
j1

22jl−2jσ ≤ cC22−2(σ−l)j1 = cC2ε8(σ−l) = o(εr). (4.15)

In particular, in the efficient case when σ > 2l + 1/4, 8(σ − l) > 8l + 2 ≥ 2, so
that Qrf = o(ε2).

2◦. Efficient Term. Since Q̂e is unbiased, we have, using (4.9) and (3.1),

E(Q̂e − Qef)2 = Var Q̂e = 4ε2
k0∑
1

λ2l
k θ2

k + 2ε4
k0∑
1

λ2l
k . (4.16)

The second term is always negligible: from (4.4) and (4.9),

ε4
k0∑
1

λ2l
k ≤ cε4

k0∑
1

k4l ≤ cε4k4l+1
0 =

cε2√
log ε−2

= o(ε2).

In the parametric zone, σ > 2l + 1/4, using (4.6), (4.6) and (4.8), uniformly on
Θσ(C),

Rf−
k0∑
1

λ2l
k θ2

k =
∞∑

k0+1

λ2l
k θ2

k≤cᾱ
∞∑

k0+1

κ2
jρj ≤cC2

∞∑
j0+1

24lj−2σj ≤ cC22−j0/2 = o(1).

(4.17)
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Combining the three previous displays, in the parametric case

sup
Θσ(C)

|E(Q̂e − Qef)2 − 4ε2Rf | = o(ε2).

To verify that the efficient term is negligible in the non-parametric zone
l < σ < 2l + 1/4, one checks that the first term on the right side of (4.16) is
o(ε2r). Indeed, as for (4.17),

ε2
k0∑
1

λ2l
k θ2

k ≤ cε2
j0∑
1

2(4l−2σ)j .

If 2l ≤ σ ≤ 2l + 1/4, this is obviously O(ε2) = o(ε2r). If l < σ < 2l, the right side
is bounded by cε222(2l−σ)j0 and is seen to be o(ε2r) after substituting (4.9) and a
short calculation.

3◦. Thresholding term. The rest of the proof is concerned with bounding

√
E(Q̂t − Qtf)2 ≤

j1∑
j0

√
κ2

jE(ρ̂j − ρj)2. (4.18)

For the threshold estimate ρ̂j defined at (4.11), the risk inequality Corollary 2.3
yields

E(ρ̂j − ρj)2 ≤ γᾱ2[c2−4ljε4 + 2min{ρ2
j , σ

2(ρj) + t2jε
4}],

where σ2(ρj) = 2djε
4 +4ρjε

2. Since dj = 2j ≤ t2j (compare (4.11), we may bound

κ2
jE(ρ̂j − ρj)2 ≤ cε4κ2

j2
−4lj + cκ2

j min{ρ̄2
j , ρ̄jε

2} + cκ2
j min{ρ̄2

j , t
2
j ε

4}
= T1(j) + T2(j) + T3(j).

We verify, with exceptions as noted, that the maps j → Tm(j), which with slight
abuse of notation will be regarded as functions of real arguments, have unique
maxima jm and have geometric decay away from these maxima, so that the
maximum term in (4.18) determines the rate of convergence.

Consider first the main term T3. Since, for l < σ, j → κ2
j ρ̄

2
j is geometrically

decreasing, and j → κ2
j t

2
j ε

4 is geometrically increasing, the point of maximum j3

occurs at the solution of ρ̄2
j = t2j ε

4. Now j3 = j+ + O(1) as ε → 0 (details are in
the appendix of [J]), where

2−(2σ+1/2)j+ =
ε2

C2

√
log

C

ε
,

and

T3(j+) = cκ2
j+C42−4σj+ = cC42−4(σ−l)j+ = cC4

( ε2

C2

√
log

C

ε

)r
.
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Since T3(j3) ≤ cT3(j+), this yields the upper bound (4.13). (Note that in the
parametric zone σ > 2l + 1

4 , r > 1, and so T3(j3) = o(ε2) is negligible.)
The T1 term is easily handled: T1(j) ≤ cε4 and so

∑j1
1

√
T1(j) ≤ j1ε

2 = o(ε).
For T2, first define j4 as the solution of ρ̄jε

2 = t2jε
4: since j → ρ̄jε

2 is decreasing, it
follows that T2(j) ≤ cT3(j) for all j ≥ j4. It remains, then, to consider j ∈ [j0, j4].
Calculation shows

(1 + 2σ)j4 = log2 C2ε−2 − log2 log2 Cε−1 + O(1).

If σ ≥ 2l, note that j0 = (4l+1)−1(log2 ε−2− 1
2 log2 log2 ε−1) satisfies j0−j4 → ∞

as ε → 0, and so the range [j0, j4] is ultimately empty. Turning to l < σ < 2l,
observe for j ≤ j4 that ε2 ≤ ρ̄j (since the point of equality occurs at j5 =
(2σ)−1 log2 C2ε−2 > j4 for small ε). Hence T2(j) ≤ cκ2

j ρ̄jε
2 ≤ cε222(2l−σ)j grows

exponentially, but nevertheless

T2(j) ≤ cκ2
j5 ρ̄j5ε

2 = cκ2
j5 ρ̄

2
j5 = cC224(l−σ)j5 = O((ε2)4(σ−l)/2σ) = o(ε2r).

Thus T1 and T2 are both negligible and this completes the analysis of the thresh-
olding term, and hence the proof.

Remarks. 1. It would be possible to extend the dyadic block methods of
this section to other Besov spaces Bσ

p,q, and to dispense with the periodicity
assumption, by using appropriate wavelet bases. Since differentiation is not ex-
actly diagonalized in wavelet bases, some extra technical bookkeeping would be
needed.

2. The blocking technique clearly extends to more general quadratic func-
tionals

∑
λjθ

2
j , (cf. e.g., Donoho and Nussbaum (1990), Fan (1991) so long as the

coefficients λj satisfy the balancing relation (4.6). In particular, the λj should
grow at most at a polynomial rate.

3. In the same vein, extensions are possible to estimation of certain quadratic
functions in inverse problems with random noise. At least formally, consider a
model of the form Y = Kf+εW where K : H1 → H2 is a bounded linear operator
between Hilbert spaces, and W is an appropriate white noise process. Suppose
that K has singular value decomposition Kuk = bkvk in terms of orthonormal
bases {uk}, {vk} for H1,H2 and singular values bk > 0. Writing f =

∑
k fkuk,

then the observed data takes the form (4.3) with yk = 〈Y, vk〉, θk = 〈Kf, vk〉 =
bkfk and zk = 〈W,vk〉. A quadratic functional Qf of the form

∑
µkf

2
k satisfies

Qf =
∑

λkθ
2
k with λk = µk/b

2
k. From the previous remark, the methods of this

paper will apply if the coefficients λk have at worst polynomial growth.
4. Finally, suppose that f is piecewise continuously differentiable, in the

sense that Df has a finite number of jump discontinuities. Estimation of the sum
of squares of the jumps of f , γ(f) say, has recently been considered, along with
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applications to growth models, by Müller and Stadtmüller (1999). A theorem of
Wiener (Katznelson (1968, p.42) and Zygmund (1959, p.40)) asserts that γ(f) is
given by the large N limit of the normalized sum of squares of Fourier-Stieltjes
coefficients

1
2N + 1

2N∑
0

(
∫

φkdf)2 =
1

2N + 1

2N∑
0

λkθ
2
k

in the notation of (4.4). Thus, at least in principle, an estimator of γ(f) could
be built and studied using the methods of this section.

5. The thresholds in (4.11) are chosen high, with logarithmic terms, in order
to achieve the adaptivity claimed in (4.13) as the smoothness σ varies. One could
achieve smaller mean squared error in many settings with smaller (and even data
determined) thresholds, but adaptivity would necessarily be sacrificed.
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Appendix

Proof of (4.8). In analogy with (4.4), we have
∫
(Dσf)2 =

∑∞
k=0 λσ

kθ2
k, (this

is often taken as a definition of the left side for σ /∈ N). Condition (4.1) is then
equivalent to ∑

k

(1 + λσ
k)θ2

k ≤ B2.

Since λσ
k = α

σ/l
k (π2j)2σ , with σ/l ≥ 1 and αk ≥ 1, we recover (4.8):

B2 ≥
∑

k∈Bj

λσ
kθ2

k ≥ π2σ22jσ
∑
Bj

αkθ
2
k.
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