Doing Thousands of Hypothesis Tests at the Same Time

Bradley Efron

Abstract

The classical theory of hypothesis testing was fashioned for a scientific world of
single inferences, small data sets, and slow computation. Exciting advances in scientific
technology — microarrays, imaging devices, spectroscopy — have changed the equation.
This article concerns the simultaneous testing of thousands of related situations. It
reviews an empirical Bayes approach, encompassing both size and power calculations,
based on Benjamini and Hochberg’s False Discovery Rate criterion. The discussion

precedes mainly by example, with technical details deferred to the references.

Keywords Empirical Bayes, False Discovery Rate, Two-groups model, local fdr, locfdr,

microarray, power.



1. Introduction These are exciting times for statisticians. New “high throughput”
scientific devices — microarrays, satellite imagers, proteomic chips, fMRI scanners — permit
thousands of different cases to be examined in a single experimental run. What arrives at the
statistician’s desk is often a huge matrix comprising data from thousands of simultaneous

hypothesis tests.

Figure 1 concerns a microarray example. Expression levels for N = 6033 genes were
obtained for n = 102 men, n; = 50 normal subjects and ny = 52 prostate cancer patients
(Singh et al., 2002). Without going into biological details, the principal goal of the study was
to pinpoint a small number of “non-null” genes, that is, genes whose levels differ between

the prostate and normal groups.

In this case the data matrix X is 6033 by 102, row ¢ being the expression levels for
gene i, and column j for microarray j, with the first 50 columns representing the normal
subjects Row ¢ provides the usual 2-sample t-statistic “¢;”, 100 degrees of freedom, comparing
prostate cancer and normal expression levels for gene i. For purpose of general discussion,

the t; values have been converted to z-values,
zi =@ (Fioo(t)), (1.1)

where ® and Fjoy are the cumulative distribution functions (cdf) for standard normal and
t100 distributions. Under the usual null assumption of i.i.d. normal sampling, z; will have a
standard N (0, 1) distribution — what we will call the

theoretical null z; ~ N(0,1) (1.2)

The z;’s, null or non-null, are usually correlated in microarray situations but, fortunately,

independence will not be required for the theory that follows.

Multiple comparisons has been an important topic for half a century. Rupert Miller’s
classic text “Simultaneous Statistical Inference”, (1980), concerns doing two or three or
maybe half a dozen tests at the same time. But 6033 simultaneous tests require a qualitative
change in statistical theory: besides correcting p-values for multiplicities, the traditional con-
cern of multiple comparisons methodology, an empirical Bayes kind of inter-case information

forces itself upon frequentists and Bayesians alike.

Biostatistics is not the only beneficiary of computer-age scientific technology. Figure 2
shows the results of a California study comparing language skill differences between econom-
ically advantaged and disadvantaged high school students. An English-language proficiency

test was administered in each of N = 4138 high schools, with say n.qy(7) and ng;s(i) being
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Figure 1: 6033 z-values from prostate cancer microarray study described in the text. Which
of the 6033 genes show evidence of being non-null, i.e. expressed differently in prostate patients as
compared to normal subjects? Solid curve is smooth fit to histogram heights. Data from Singh et

al. (2002).



the number of advantaged and disadvantaged students in the i*" school. A z-value for school

1 was computed according to

Z/?\adv(i) - ﬁdis(i) - A

(1.3)

zi = 1/2 °

ﬁadv(lfﬁadv (7')) lb\dis (i)(lfﬁdis (Z))
Nadv (7') + Ndis (Z)

where p,qy(7) and pyis(i) were the observed test success rates, while the centering constant
A = 0.229 equaled median (Pagy (7)) — median (pais(7)).

A reasonable goal here would be to identify a subset of the high schools, presumably a
small subset, in which the advantaged-disadvantaged performance differences are unusually
large (in either direction). Large-scale hypothesis testing methods apply to the Education
Data just as well as to the Prostate Study. However, the two data sets differ in a crucial way;,
relating to what is called the “empirical null” distribution in Figure 2. Section & discusses

the required change in analysis strategy.

How should the statistician model, analyze, and report problems like the Prostate Study
or the Education Data? This paper presents one point of view on the answer, my point of
view as reported in a series of papers, Efron et al. (2001), Efron and Tibshirani (2002), Efron
(2004, 2005, 2006abc) with 2006¢ being particularly relevant. The discussion here will be as
nontechnical as possible, focusing on the statistical ideas involved and leaving mathematical
details to the references. False discovery rates (Fdr), Benjamini and Hochberg’s (1995) key
contribution to large-scale testing, the organizing idea for what follows, begins the discussion

in Section 2.

Statistical microarray analysis is a hot topic, and there are many other points of view
in a rapidly growing literature, as nicely summarized in Dudoit et al. (2003). The afore-
mentioned papers provide a range of references, some of which will be mentioned in the

sequel.

2. False Discovery Rates Classic multiple comparisons theory concentrated attention
on controlling the probability of a Type 1 error, a “false discovery”, and much of the statis-
tics microarray literature has pursued this same goal, as reviewed in Dudoit et al. (2003).
However, with the number N of cases in the thousands, as in Figures 1 and 2, trying to
limit the probability of even a single false discovery becomes unrealistically stringent. Ben-
jamini and Hochberg’s 1995 False Discovery Rate (Fdr) theory limits instead the expected

proportion of false discoveries, a more relaxed criterion.
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Figure 2: Education Data; z-values (1.2) comparing pass rates for advantaged versus disad-
vantaged students, in N = 4183 California high schools. Solid Curve: smooth fit f to histogram
heights; Dots estimated empirical null ]%(z) ~ N(—.41,1.51%) fit to central histogram heights, as
discussed in Section 5. Data from Rogosa (2003).



The two-groups model provides a simple framework for Fdr theory. We suppose that the

N cases (genes for the Prostate Study, schools for the Education Data) are each either null

or non-null with prior probability pg or p; = 1 — pg, and with z-values having density either
fo(z) or fi(2),

po = Pr{null} fo(z) density if null

2.1
p1 = Pr{non-null} fi(z) density if non-null, (2.1)

The usual purpose of large-scale simultaneous testing is to reduce a vast set of possibili-
ties to a much smaller set of scientifically interesting prospects. In Figure 1 for instance, the
investigators were probably searching for a few genes, or a few hundred at most, worthy of

intensive study for prostate cancer etiology. I will assume

po > 0.90 (2.2)

in what follows, limiting the non-null genes to no more than 10%. Model (2.1) has been
widely used, as in Lee et al. (2000), Newton et al. (2001), and Efron et al. (2001), not

always with restriction (2.2).

False discovery rate methods have developed in a strict frequentist framework, beginning
with Benjamini and Hochberg’s seminal 1995 paper, but they also have a convincing Bayesian
rationale in terms of the two-groups model. Let Fy(z) and Fj(z) denote the cumulative
distribution functions (cdf) of fy(z) and fi(z) in (2.1), and define the mixture cdf F(z) =
poFo(2) + p1Fi(2). Then Bayes rule yields the a posteriori probability of a gene being in the

null group of (2.1) given that its z-value Z is less than some threshold z, say “Fdr(z)”, as
Fdr(z) = Pr{null|Z < z} = poFo(2)/F(2). (2.3)

(Here it is notationally convenient to consider the negative end of the z scale, values like
z = —3. Definition (2.3) could just as well be changed to Z > z or Z > |z|.) Benjamini
and Hochberg’s (1995) false discovery rate control rule begins by estimating F'(z) with the

empirical cdf
F(z) = #{z < 2}/N, (2.4)

yvielding Fdr(z) = poFy(z)/F(z). The rule selects a control level “¢”, say ¢ = 0.1, and
then declares as non-null those genes having z-values z; satisfying z; < 2y, where zg is the
maximum value of z satisfying

Fdr(z) < g. (2.5)

(Usually taking po = 1 in (2.3), and Fj the theoretical null, the standard normal cdf ®(z) of

(1.1).)



The striking theorem proved in the 1995 paper was that the expected proportion of null
genes reported by a statistician following rule (2.5) will be no greater than ¢g. This assumes
independence among the z;’s, extended later to various dependence models in Benjamini and
Yekutieli (2001). The theorem is a purely frequentist result, but as pointed out in Storey
(2002) and Efron and Tibshirani (2002), it has a simple Bayesian interpretation via (2.3):
rule (2.5) is essentially equivalent to declaring non-null those genes whose estimated tail-
area posterior probability of being null is no greater than ¢. It is usually a good sign when

Bayesian and frequentist ideas converge on a single methodology, as they do here.

Densities are more natural than tail areas for Bayesian fdr interpretation. Defining the

mizture density from (2.1),

f(2) = pofo(2) + p1fi(2), (2.6)

Bayes rule gives
fdr(z) = Pr{null|Z = 2z} = pofo(2)/f(2) (2.7)

for the probability of a gene being in the null group given z-score z. Here fdr(z) is the local
false discovery rate (Efron et al. 2001, and Efron 2005).

There is a simple relationship between Fdr(z) and fdr(z),
Fdr(z) = Ef{fdr(2)|Z < 2}, (2.8)

“E” indicating expectation with respect to the mixture density f(z). That is, Fdr(z) is the
mixture average of fdr(Z) for Z < z. In the usual situation where fdr(z) decreases as |z| gets
large, Fdr(z) will be smaller than fdr(z). Intuitively, if we decide to label all genes with z;
less than some negative value zy as “non-null”, then fdr(z), the false discovery rate at the
boundary point zg, will be greater than Fdr(zy), the average false discovery rate beyond the

boundary.

For Lehmann alternatives

Fi(z) = Fy(2)", [v < 1] (2.9)

it turns out that
log{lf_dg—éizz)} zlog{%}—i—log (%), (2.10)
fdr(z) = Fdr(z)/y (2.11)



for small values of Fdr. The prostate data of Figure 1 has v about 1/2 in each tail, making

fdr(z) ~ 2 Fdr(z) near the extremes, as seen next.

The heavy curve in Figure 3 is an estimate of the local false discovery rate fdr(z) for
the Prostate Study, (2.7) based on the algorithm locfdr discussed in Section 3. For |z;| < 2.0
the curve is near 1, so we would definitely not report such genes as interesting possibilities
since they are almost certainly null cases. Things get more interesting as z; gets farther
away from zero. 51 of the 6033 genes, 26 on the right and 25 on the left, have fdr(z;) < 0.20,
a conventional reporting point motivated in Efron (2006c). We could report this list of
51 to the researchers as good bets (better than 80%) for being genuinely non-null cases.
(By comparison, a standard Benjamini-Hochberg procedure, (2.5) with ¢ = 0.1, reports 60
non-null genes, 28 on the right and 32 on the left.)

The beaded curves in Figure 3 are smoothed versions of (2.4), estimates of Fdr(z), (2.3),

and the corresponding right tail quantity
Pr{null|Z > z} = po[1 — Fy(2)]/[1 — F(z)]. (2.12)

At the points where fd/\r(z) = 0.2, the Fdr estimates are 0.108 on the left and .081 on the
right, corresponding roughly to v = 1/2 in (2.9).

Model (2.1) ignores the fact that investigators usually begin with hot prospects in mind,
genes that have high prior probability of being interesting. Suppose py(i) is the prior proba-
bility that gene i is null, and define p, as the average of po(i) over all N genes. Then Bayes

theorem yields this expression for fdr;(z) = Pr{gene; null|z; = z}:

T po() Do
fdr;(z) = fdr(z) T (= i) [n =7 @/ 1= p0] : (2.13)

where fdr(z) = pofo(z)/f(z) as before. So for a hot prospect having py(i) = 0.50 rather than
po = 0.90, (2.15) changes an uninteresting result like fdr(z;) = 0.40 into fdr;(z;) = 0.069.

3. Estimating Fdr and fdr Bayesian model (2.1), the two-groups model, might provoke
the usual frequentist criticism: it assumes the statistician knows quantities that in most
practical situations will be obscure. However, a marvelous thing happens in problems where
thousands of similar situations are observed simultaneously: we can use all of the data to
estimate Bayes rule, usually in a frequentist way, and then proceed as Bayesians. This is the
empirical Bayes approach pioneered by Robbins and Stein in the 1950’s, Efron (2003), now

come to fruition in the Twenty First Century.
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Figure 3:  Heavy curve is estimated local false discovery rate fdr(z), (2.7), for Prostate Data,
using locfdr methodology of Section 3. Beaded curves are estimates of tail areas false discovery
rates Fdr(z) as for (2.3) and the corresponding right tail Fdr. 51 genes, 26 on right and 25 on left,
indicated by dashes, have fdr(z;) < 0.2.



Consider estimating the local false discovery rate fdr(z) = pofo(2)/f(2), (2.7). I will
begin with a “good” case, like the Prostate data of Figure 1, where it is easy to believe in
the theoretical null distribution (1.2),

e 27 (3.1)

If we had only gene i’s data to test, classic theory would tell us to compare z; with
fo(2) = ¢(z2), rejecting the null hypothesis of no difference between normal and prostate

cancer expression levels if |z;| exceeded 1.96.

For the moment I will take pg, the prior probability of a gene being null, as known.
Section 5 discusses py’s estimation, but in fact its exact value does not make much difference
to Fdr(z) or fdr(z), (2.3) or (2.7), if po is near 1 as in (2.2). Benjamini and Hochberg (1995)
take po = 1, providing an upper bound for Fdr(z).

This leaves us with only the denominator f(z) to estimate in (2.7). By definition (2.6),
f(2) is the marginal density of all N z;’s, so we can use all the data to estimate f(z). The
algorithm locfdr, an R function available from the CRAN library, does this by means of
standard Poisson GLM software, (Efron 2005). Suppose the z-values have been binned,
giving bin counts

ye = #{z in bink}, k=1,2.. . K. (3.2)

The prostate data histogram in Figure 1 has K = 89 bins of width A = 0.1.
We take the y, to be independent Poisson counts,

un X Po(vy) k=1,2,...K, (3.3)

Y

with the unknown v, proportional to density f(z) at midpoint “z,” of the &*" bin, approxi-

mately

Modeling log(y) as a p' degree polynomial function of z;, makes (3.3)-(3.4) a standard
Poisson general linear model (GLM). The choice p = 7, used in Figures 1 and 2, amounts to

estimating f(z) by maximum likelihood within the seven-parameter exponential family

f(z) =exp { Zﬁjz]}. (3.5)

Notice that p = 2 would make f(z) normal; the extra parameters in (3.6) allow flexibility

in fitting the tails of f(z). Here we are employing Lindsey’s method, Efron and Tibshirani



(1996). Despite its unorthodox look it is no more than a convenient way to obtain maximum

likelihood estimates in multiparameter families like (3.5).

The heavy curve in Figure 3 is an estimate of the local false discovery rate for the

Prostate data,
fdr(2) = pofo(2)/F(2), (3.6)

with f(z) constructed as above, fy(z) = ¢(z) in (3.1), and py = 0.94 as estimated in Section
5.

At this point the reader might notice an anomaly: if pg = 0.94 of the N = 6033 genes
are null, then about (1 — pg) - 6033 = 362 should be non-null, but only 51 were reported in
Section 2. The trouble is that most of the non-null genes are located in regions of the z axis
where f/d\r(zz) exceeds 0.5, and these cannot be reported without also reporting a bevy of null

cases. In other words, the Prostate study is underpowered, as discussed in the next Section.

Stripped of technicalities, the idea underlying false discovery rates is appealingly simple,
and in fact does not depend on the literal validity of the two-groups model (2.1). Consider
the bin z; € [3.1,3.3] in the Prostate data histogram; 17 of the 6033 genes fall into this bin,
compared to expected number 2.68 = po NAg(3.2) of null genes, giving

fdr = 2.68/17 = 0.16 (3.7)

as an estimated false discovery rate. (The smoothed estimate in Figure 3 is fdr = 0.24.) The
implication is that only about one-sixth of the 17 are null genes. This conclusion can be

sharpened, as in Lehmann and Romano (2005), but (3.7) catches the main idea.

Notice that we do not need the null genes to all have the same density fy(z), it is enough
to assume that the average null density is fo(2), @(z) in this case, in order to calculate the
numerator 2.68. This is an advantage of false discovery rate methods, which only control
expectations, not probabilities. The non-null density fi(z) in (2.1) plays no role at all since the
denominator 17 is an observed quantity. Fxchangeability is the key assumption in interpreting
(3.7): we expect about 1/6 of the 17 genes to be null, and assign posterior null probability
1/6 to all 17. Nonexchangeability, in the form of differing prior information among the 17,

can be incorporated as in (2.13).

Density estimation has a reputation for difficulty, well-deserved in general situations.
However there are good theoretical reasons, presented in Section 6 of Efron (2005), for
believing that mixtures of z-values are quite smooth, and that (3.6) will efficiently estimate

~

fdr(z). Independence of the z;’s is not required, only that f(z) is a reasonably close estimate

of f(2).
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z  fdr local (formula) tail

15 .88 .05 (05 .05
2.0 .69 .08  (09) .05
25 .38 09  (10) .05
3.0 .12 .08  (10) .06
35 .03 10 (13) .07
40 005 .11 (15) .10

Table 1: Boldface standard errors of log fa\r(z), (local fdr), and log F/‘(ﬂ(z), (tail area Fdr); 250
replications of model (3.8), with NV = 1500 cases per replication; “fdr” is true value (2.7). Paren-

theses show average from formula (5.9), Efron (2006b).

Table 1 reports on a small simulation study in which

i ; = 0 with probability 0.9
Zi el N (i, 1) 8 b ' (3.8)
w; ~ N(3,1) with probability 0.1

for i =1,2,...,N = 1500. The table shows standard deviations for log(fd/\r(z)), (3.6), from
250 simulations of (3.11), and also using a delta-method formula derived in Section 5 of
Efron (2006b), incorporated in the locfdr algorithm. Rather than (3.5), f(z) was modeled
by a seven-parameter natural spline basis, locfdr’s default, though this gave nearly the same
results as (3.5). Also shown are standard deviations for the corresponding tail area quantity
log(@(z)) obtained by substituting ﬁ(z) =" f(z’)dz' in (2.3). (This is a little less
variable than using F(z), (2.4).)

The table shows that @(z) is more variable than P/‘a"(z), but both are more than
accurate enough for practical use. At z = 3 for example, Ei\r(z) only errs by about 8%,
yielding f/d\r(z) = 0.12 & 0.01. Standard errors are roughly proportional to N _%, SO even
reducing N to 250 gives @(3) = 0.12 + .025, and similarly for other values of z, accurate

enough to make pictures like Figure 3 believable.

Empirical Bayes is a schizophrenic methodology, with alternating episodes of frequentist
and Bayesian activity. Frequentists may prefer Fdr (or Fdr, (2.5)) to fdr because of con-
nections with classical tail-area hypothesis testing, or because cdfs are more straightforward
to estimate than densities, while Bayesians prefer fdr for its more apt a posteriori interpre-

tation. Both, though, combine the Bayesian two-groups model with frequentist estimation

11



methods, and deliver the same basic information.

A variety of local fdr estimation methods have been suggested, using parametric, semi-
parametric, nonparametric, and Bayes methods; Pan et al. (2003), Pounds and Morris
(2003), Allison et al. (2004), Heller and Qing (2003), Broberg (2005), Aubert et al. (2004),
Liao et al. (2004), and Do et al. (2004), all performing reasonably well. The Poisson GLM
methodology of locfdr has the advantage of easy implementation with familiar software, and

a closed-form error analysis that provided the formula values in Table 1.

All of this assumes that the theoretical null distribution (3.1) is in fact correct for the
problem at hand. By no means is this always a safe assumption! Section 5 discusses situations
like the Education Data of Figure 2, where the theoretical null is grossly incorrect; and where
the null distribution itself must be estimated from the data. Estimation efficiency becomes

a more serious problem in such empirical null situations.

4. Power Calculations and Non-Null Counts Most of the statistical microarray
literature has concentrated on controlling Type I error, the false rejection of genuinely null
cases. Power, the probability of correctly rejecting non-null cases, deserve attention too. In
some ways, power calculations are more accessible in large-scale testing situations than in
individual problems, with a single data set like the Prostate Study being able to provide its
own power diagnostics. This section shows the local false discovery estimate fd/\r(z), (3.6), in

action as a diagnostic tool.

The histogram in Figure 1 has 89 bins of width A = 0.1 each, spanning the range
—4.45 < z < 4.45. The histogram bars are of height “Y;”,

yp = #{z inbin k}, k=12,... K =89. (4.1)

“Wouldn'’t it be great”, one might say, “if we could see the histogram of z-values for just
the non-null cases, the ones we are interested in?” In fact, we can estimate the non-null

histogram from f?d?(z)

The vertical bars in Figure 4 are of height

where f/d\rk is f/d\r(z) evaluated at the centerpoint of bin k. Since 1 — fd/\rk approximates the
non-null probability for a gene in bin k, Y} is an obvious estimate for the expected number
of non-null genes. The total non-null count XY} equals about (1 — po) - N, 362 in this case,

resolving the “anomaly” noted after (3.6) in Section 3.

12
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Figure 4: Vertical bars are non-null counts for Prostate data, estimates of the histogram of

z-values for only the non-null cases. Dotted curve is 50 - f/d\r(z), estimated local false discovery rate
from Figure 3. Power diagnostics obtained by comparing non-null histogram with fdr curve. For
example the expected value of fdr with respect to non-null histogram is 0.68, indicating low power

for Prostate study.
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Power diagnostics are obtained from comparisons of f/d\r(z) with the non-null histogram.
High power would be indicated if f/d\rk was small where Y, was large. That obviously is not

the case in Figure 4. A simple power diagnostic is
- K . K
Efdr, =Y v fdr, / R (4.3)
k=1 k=1

the expected non-null fdr. We want @1 to be small, perhaps near 0.2, so that a typical
—(1)

non-null gene will show up on a list of likely prospects. The Prostate data has E fdr = = 0.68,

indicating low power. If the whole study were rerun we might expect a different list of 51

likely non-null genes, barely overlapping with the first list.

Going further, we can examine the entire non-null histogram of f/d\r(z) rather than just

its expectation. The non-null cdf of fdr is estimated by

Gy= > Yi/d % (4.4)

k:f/d\rkgt

Figure 5 shows G(t) for the Prostate study and for the first of the 250 simulations from
model (3.8) in Table 1. The figure suggests poor power for the Prostate Study, with only
11% probability that a non-null gene will have its estimated fdr(z) values less than 0.2;
conversely, model (3.8) is a high-power situation. Section 3 of Efron (2006b) discusses more

elaborate power diagnostics.

Graphs such as Figure 5 help answer the researcher’s painful question “Why aren’t the
cases we expected on your list of likely non-null outcomes?” Low power is often the reason.
For the Prostate data, most of the non-null genes will not turn up on the list of low fdr cases.

The R program locfdr, used to construct Figure 3, also returns ETfErl and @(t)

5. Empirical Estimation of the Null Distribution Classical hypothesis testing as-
sumes exact knowledge of the null density fy(z), as in (1.2). Benjamini and Hochberg’s Fdr
controlling algorithm (2.5) is based on the same assumption, as is the local false discovery
estimate f?i\r(z) = pofo(z)/ f(z) in (3.6). In fact almost all of the microarray statistics litera-
ture begins with the assumption that fy(z), the null density in (2.1), is known on theoretical
grounds, or can be recovered from permutation calculations (which usually produce only

minor corrections, and discussed later).

Use of the theoretical null is mandatory in classic one-at-a-time testing where theory

provides the only information on null behavior. But large-scale simultaneous testing differs

14
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Figure 5:  Estimated non-null cdf for fdr, (4.4). Prostate data has low power, with only 11%
of the non-null cases having fdr values < 0.20, compared to 64% first simulation of (3.8).

in two important ways: the theoretical null may appear obviously suspect, as it is in Figure
2 where the center of the z-value histogram is more than 50% wider than z ~ N(0, 1) would

predict; and it may be possible to estimate the null distribution itself from the histogram.

If this last statement sounds heretical, the basic idea is simple enough: we make the

“zero assumption”,

Zero assumption  most of the z-values near 0 come from null genes, (5.1)

(discussed further below), generalize the N (0, 1) theoretical null to N(dp,c3), and estimate
(80, 02) from the histogram counts near z = 0. Locfdr uses two different estimation methods,

analytical and geometric, described next.

Figure 6 shows the geometric method in action on the Education data. The heavy solid

curve is log f(2), fit from (3.5) using Lindsey’s method. The two groups model (2.1) and the

zero assumption suggest that if fy is normal, f(z) should be well-approximated near z = 0

©sp.00(2) = (27r0(2))_% exp{ — %(Z ;050> }, (5.2)

by posy.e,(2), with
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making log f(z) approximately quadratic,

1| a2 J 1
— +log(27mag) ¢ + —gz - — 22 (5.3)
2| 0§

log f(z) = logpy — = . 57
0 0

~

The beaded curve shows the best quadratic approximation to log f(z) near 0. Matching its

coefficients (50,31,32) to (5.3) yields estimates (30,30,@\0), for instance oy = (252)’%,

5o =—041, G, =151, and py= 0.92 (5.4)
<]
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Figure 6: Geometric estimation of null proportion py and empirical null mean and standard

~

deviation (8o, 00) for the Education Data of Figure 2. Heavy curve is log f(z), estimated as in

~

(8.2)-(3.5); beaded curve is best quadratic approrimation to log f(z) around its mazimum.

for the Education Data. Trying the same method with the theoretical null, that is taking

(09, 00) = (0,1), gives a very poor fit to log f(z), miscentered and much too narrow. Figure

7 shows the comparison in terms of the densities themselves rather than their logs.

The analytic method makes more explicit use of the zero assumption, stipulating that
the non-null density fi(z) in the two-groups model (2.1) is supported outside some given
interval [a,b] containing zero (actually chosen by preliminary calculations). Let Ny be the
number of z; in [a, b], and define

Po(éo,Uo):(D(b_aO) —@(a_d(]) and Hzpopo. (55)

0o 0o
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Figure T: Solid curve is f(z), (3.2)-(3.5), fit to Education Data; beaded curve is ﬁofo(z),
empirical null fitted geometrically as in Figure 6. Light curve is estimate of pofo(z) based on

theoretical null (1.2).

Then the likelihood function for zg, the vector of Ny z-values in [a, b], is

Frrom(z0) = 0001 = 0) | ;i((g—(g))] 56

2; €20

This is the product of two exponential family likelihoods, which is numerically easy to
solve for the maximum likelihood estimates (30,80, 7o), equaling (-0.41, 1.58, 0.94) for the
Education Data.

Both methods are implemented in locfdr. The analytic method is somewhat more stable
but can be more biased than geometric fitting. Efron (2004) shows that geometric fitting
gives nearly unbiased estimates of dp and oy if py > 0.90. Table 2 shows how the two methods

fared in the simulation study of Table 1.

A healthy literature has sprung up on the estimation of py, as in Pawitan et al. (2005)
and Langlass et al. (2005), all of which assumes the validity of the theoretical null. The zero
assumption plays a central role in this literature (which mostly works with two-sided p-values
rather than z-values, e.g. p; = 2(1 — Fioo(|t;|)) rather than (1.1), making the “zero region”
occur near p = 1). The two-groups model is unidentifiable if fy is unspecified in (2.1), since

we can redefine fy as fo+cfi1, and p; as p; — cpo for any ¢ < p;/po. With p; small, (2.2), and
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mean stdev (formula) mean stdev (formula)
S: 002 .056  (.062) 0.04 .031  (.032)
Go: 1.02  .029  (.033) 1.04  .031  (.031)
Bo: 092 .013  (.015) 0.93 .009  (.011)

Table 2: Comparison of estimates (go, 00, Do), simulation study of Table 1. “Formula” is average

from delta-method standard deviation formulas, Section 5 Efron (2006b), as implemented in locfdr.

f1 supposed to yield z;’s far from 0 for the most part, the zero assumption is a reasonable
way to impose identifiability on the two-groups model. Section 6 of Efron (2006¢) considers
the meaning of the null density more carefully, among other things explaining the upward

bias of py seen in Table 2.

The empirical null is an expensive luxury from the point of view of estimation efficiency.
Comparing Table 3 with Table 1 reveals factors of two or three increase in standard error
relative to the theoretical null, near the crucial point where fdr(z) = 0.2. Section 4 of Efron
(2005) pins the increased variability entirely on the estimation of (dy, 0p): even knowing the
true values of py and f(z) would reduce the standard error of log fd/\r(z) by less than 1%.
(Using tail area Fdr’s rather than local fdr’s does not help — here the local version is less

variable.)

Then why not just always use the theoretical null for fo(z)? The answer is that in
situations like Figure 2, there is direct evidence that something may be wrong with the
null assumption z ~ N(0,1). Large-scale simultaneous testing has as its usual purpose the
selection of a small subset of cases worthy of further consideration, but for the Education
Data it is easy to show that the proportion of non-null cases p; must exceed 41% if we insist
that fo(z) = N(0,1). Saying that 41% of the high schools are unusual really says nothing at
all.

Section 5 of Efron (2006¢) lists several reasons why the theoretical null distribution might
fail in practice, among which one seems particularly dangerous here: unobserved covariates
in the high schools, class size, economic status, racial composition etc., tend to expand the
z-value histogram, null and non-null cases alike. Using an empirical null compensates for all

such effects, at the expense of increased estimation variability. See Section 4 of Efron (2004)
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EMPIRICAL NULL

z  fdr local (formula) tail
15 88 .04 (04 .10
2.0 .69 09 (10) .15
25 38 .16  (16) .23
30 12 .25 (25) .32
35 .03 .38 (38 .42
40 005 .50  (51) .52

Table 3: Standard errors of log fd/\r(z) and log ﬁ(ﬂ(z) as in Table 1, but now using empirical nulls
(geometric method). Delta-method formula estimates for sd{log fd/\r(z)} are included in output of

R program locfdr.

for an example and discussion. Section 5 of Efron (2006¢) presents two microarray examples,

one where the theoretical null is much too narrow, and another where it is much too wide.

My point here is not that the empirical null is always the correct choice. The opposite
advice, always use the theoretical null, has been inculcated by a century of classic one-case-
at-a-time testing to the point where it is almost subliminal, but it exposes the statistician
to obvious criticism in situations like the Education Data. Large-scale simultaneous testing
produces mass information of a Bayesian nature that impinges on individual decisions. The
two-groups model helps bring this information to bear, after one decides on the proper choice
of foin (2.1).

Permutation methods play a major role in the microarray statistics literature. For the
prostate data one can randomly permute the 102 microarrays (i.e. permute the columns of
the data matrix X)), recalculate the ¢ statistics between the first 50 and last 52 columns,
and convert to z-values as in (1.1). Doing this say 1000 times produces a “permutation
null” distribution, almost perfectly N(0,1) for the Prostate data. Unfortunately, this tends
to happen whether or not there are unobserved covariates, or other of the problems that

undermine the theoretical null distribution.

Section 5 of Efron (2006¢) discusses both the strengths and limitations of permutation
testing for large-scale inference. Permutation methods are definitely useful, but they cannot

substitute for empirical null calculations in most settings.
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6. Summary In a sense, statistical theory has been living off of intellectual capital accu-
mulated in the first half of the Twentieth Century, capital that may now seem rather spent
when facing situations like those in Figures 1 and 2. The Fisher-Neyman-Pearson theory of
hypothesis testing was fashioned for a scientific world where experimentation was slow and
difficult, producing small data sets intended to answer single questions. It has been wonder-
fully successful within this milieu, combining elegant mathematics and limited computational

equipment to produce scientificallly dependable answers in a variety of application areas.

“Drinking from a fire-hose” is the way one of my colleagues described the influx of
data from a typical microarray experiment. Here I have tried to indicate one approach to
handling the fire-hose problem as it concerns simultaneous hypothesis testing. Massive data
sets like those in Section 1 are misleadingly comforting in their suggestion of great statistical
accuracy. The size and power calculations of Sections 3-5, carried out via the locfdr algorithm
(available through CRAN) show that the ability to detect specific interesting cases may still
be quite low. Efficient statistical inference is still a necessity, even with the largest data sets.

As I said to begin with, these are exciting times for statisticians, for applied statisticians
certainly, but for theorists too. What I called “empirical Bayes information” accumulates in
a way that is not well understood yet, but seems to me to play a central role in large-scale
simultaneous inference. We are living in an age of heroic statistical methodology — my hope

is that an heroic theory to justify it cannot be far behind.
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