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The Block Criterion for Multiscale Inference
About a Density, With Applications to

Other Multiscale Problems

Kaspar RUFIBACH and Guenther WALTHER

The use of multiscale statistics, that is, the simultaneous inference about various
stretches of data via multiple localized statistics, is a natural and popular method for
inference about, for example, local qualitative characteristics of a regression function,
a density, or its hazard rate. We focus on the problem of providing simultaneous con-
fidence statements for the existence of local increases and decreases of a density and
address several statistical and computational issues concerning such multiscale statis-
tics. We first review the benefits of employing scale-dependent critical values for multi-
scale statistics and then derive an approximation scheme that results in a fast algorithm
while preserving statistical optimality properties. The main contribution is a methodol-
ogy for calibrating multiscale statistics that does not require a case-by-case derivation
of its specific form. We show that in the above density context the methodology pos-
sesses statistical optimality properties and allows for a fast algorithm. We illustrate the
methodology with two further examples: a multiscale statistic introduced by Gijbels and
Heckman for inference about a hazard rate and local rank tests introduced by Dümbgen
for inference in nonparametric regression.

Code for the density application is available as the R package modehunt on CRAN.
Additional code to compute critical values, reproduce the hazard rate and local rank
example and the plots in the paper as well as datasets containing simulation results and
an appendix with all the proofs of the theorems are available online as supplemental
material.

Key Words: Fast algorithm; Local increase in a density; Multiscale test.

1. INTRODUCTION

There has been considerable recent interest in the inference about qualitative charac-
teristics of a regression function, a density, or its hazard rate, such as the number or lo-
cation of monotone or convex regions, local extrema, or inflection points. As the location
and extent of these local characteristics are not known in advance, it is natural to em-

Kaspar Rufibach is Lecturer in Biostatistics, Institute of Social- and Preventive Medicine, University of Zurich,
Switzerland (E-mail: kaspar.rufibach@ifspm.uzh.ch). Guenther Walther is Associate Professor, Department of
Statistics, Stanford University, 390 Serra Mall, Stanford, CA 94305 (E-mail: gwalther@stanford.edu).

175

© 2010 American Statistical Association, Institute of Mathematical Statistics,
and Interface Foundation of North America

Journal of Computational and Graphical Statistics, Volume 19, Number 1, Pages 175–190
DOI: 10.1198/jcgs.2009.07071

D
ow

nl
oa

de
d 

by
 [S

ta
nf

or
d 

U
ni

ve
rs

ity
] a

t 1
2:

45
 2

3 
Ja

nu
ar

y 
20

13
 



176 K. RUFIBACH AND G. WALTHER

ploy multiscale methods for such an inference; that is, one simultaneously examines local
regions of various sizes and locations. This approach was used by Chaudhuri and Mar-
ron (1999, 2000) and Dümbgen and Spokoiny (2001) in conjunction with kernel estimates
with varying bandwidths, by Dümbgen (2002) and Rohde (2008) with local rank tests, by
Hall and Heckman (2000) with local linear smoothers, by Ganguli and Wand (2004) with
local splines, and by Gijbels and Heckman (2004) and Dümbgen and Walther (2008) with
local spacings.

For a concise exposition we will focus our theoretical investigations on the problem of
inference about a density, as did Dümbgen and Walther (2008). But it will become clear that
the methodology introduced in this article can be adapted to the other contexts cited above,
and it may be relevant for multiscale methods beyond the area of shape-restricted inference.
We illustrate this by applying our methodology in two other contexts: Section 5 considers
a multiscale statistic that was recently introduced by Gijbels and Heckman (2004) for in-
ference about a hazard rate, and Section 6 considers local rank tests that were introduced
by Dümbgen (2002) for inference in nonparametric regression.

Our main focus is thus to detect and localize local increases (or decreases) of a uni-
variate density f based on a vector X of iid observations X1, . . . ,Xn. The nature of the
problem suggests considering local test statistics on multiple intervals and then perform-
ing a simultaneous inference with these multiple tests. This general program of multiscale
inference was implemented in this context by Dümbgen and Walther (2008) as follows:

Consider all intervals Ijk := (X(j),X(k)), 1 ≤ j < k − 1 ≤ n − 1, and on each such

interval Ijk compute the local test statistic Tjk(X) :=
√

3
k−j−1

∑k−1
i=j+1(2

X(i)−X(j)

X(k)−X(j)
− 1). If

f is nonincreasing on Ijk , then one obtains the deterministic inequality Tjk(X) ≤ Tjk(U),
where U is the vector of U [0,1] random variables Ui := F(Xi), 1 ≤ i ≤ n. Thus we can
conclude with confidence 1 − α that f must have an increase on every interval Ijk for
which Tjk(X) exceeds a critical value cjk(α) that can be simulated with U [0,1] random
variables. More precisely: With confidence 1 − α one can claim that f must have an in-
crease on every Ijk ∈ D+(α), where

D+(α) := {Ijk :Tjk(X) > cjk(α)},
provided that

P
{|Tjk(U)| ≤ cjk(α) for all 1 ≤ j < k − 1 ≤ n − 1

} ≥ 1 − α,

and furthermore f must have a decrease on every Ijk for which Tjk(X) < −cjk(α); see
Remark 1 in Section 8. Note that this approach yields a guaranteed finite sample simulta-
neous confidence level 1 − α for the above statements.

A central problem of the multiscale inference is the choice of the local critical values
cjk(α). The traditional approach to this problem is to treat all of the local test statistics as
equal, that is, one sets cjk(α) := κ̃n(α), where κ̃n(α) is chosen, for example, via Monte
Carlo, such that

P

{
max

1≤j<k−1≤n−1
|Tjk(U)| ≤ κ̃n(α)

}
≥ 1 − α. (1.1)

(Of course, such an equal treatment requires that all local statistics are first standardized to
the same mean and variance; Tjk(U) has mean 0 and variance unity for all (j, k).) It can
be shown that for these critical values κ̃n(α) ∼ √

2 logn.
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BLOCK CRITERION FOR MULTISCALE INFERENCE ABOUT A DENSITY 177

Dümbgen and Spokoiny (2001) pioneered an approach that assigns different critical
values to different scales k−j

n
. In the present context their method amounts to setting

cjk(α) :=
√

2 log en
k−j

+ κn(α), that is, κn(α) is chosen via Monte Carlo such that

P

{
max

1≤j<k−1≤n−1

(
|Tjk(U)| −

√
2 log

en

k − j

)
≤ κn(α)

}
≥ 1 − α. (1.2)

A motivation for this choice is as follows: There are ∼ 1
h

disjoint intervals Ijk of ‘length’
h = k−j

n
. As the distribution of Tjk(U) is roughly standard normal, maxj,k Tjk(U) over

these intervals will be of size
√

2 log 1
h

. Intervals of this length that overlap with those
disjoint intervals will result in local statistics Tjk(U) that are correlated and will not affect
the overall maximum in a relevant way. Thus maxj,k Tjk(U) over small intervals Ijk with
k − j ≤ const will be of the size ∼√

2 logn, whereas maxj,k Tjk(U) over large intervals
Ijk with k − j ≥ const · n will stay bounded. Consequently, in the traditional approach
(1.1) the overall critical value κ̃n(α) will essentially be determined by the stochastically
larger null distribution at the small scales, with a corresponding loss of power at large

scales. Method (1.2) counters this by first subtracting off
√

2 log en
k−j

, the putative size of

maxj,k Tjk(U) on scale k−j
n

, thus putting the various scales on a more equal footing.
This approach has strong theoretical support: As detailed in Section 2, it can be shown

that this calibration leads to optimal large sample power properties for detecting increases
and decreases on small scales and on large scales. In contrast, the traditional approach
(1.1) will necessarily lead to a suboptimal performance except for signals on the smallest
scale. One disadvantage of the calibration (1.2) is the fact that its particular form depends
on the particular setup at hand. For example, likelihood ratio type statistics will require a
different calibration, whose particular form must be derived from theoretical considerations
that are nontrivial. The main contribution of this article is a method of calibration that is
generally applicable without the need for such case-by-case specifications, which is simple
to implement and which is shown to share the large sample optimality properties of the
calibration (1.2) in the statistical context under consideration here.

We start with a small simulation study in Section 2 to investigate the effects of dif-
ferent calibrations in a finite sample context. Section 3 addresses a computational prob-
lem inherent in multiscale inference: There are of the order n2 intervals Ijk , and on each
such interval a local test statistic needs to be computed. We will introduce a methodol-
ogy to choose a particular subset of intervals that results in a total computational cost of
O(n logn) while essentially retaining the optimal power properties. This efficient compu-
tational strategy provides the main ideas for the general method of calibration, which is
introduced in Section 4 and is shown to combine computational efficiency with statistical
optimality. In Section 5 we apply this methodology to a multiscale statistic introduced by
Gijbels and Heckman (2004) for inference about a hazard rate, and in Section 6 we apply it
to the local rank statistics introduced by Dümbgen (2002) for inference about a regression
function. We summarize our findings in Section 7. Some computational details, remarks,
and further illustrations are in Section 8. Proofs are deferred to a supplementary file that is
available online.
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178 K. RUFIBACH AND G. WALTHER

2. CALIBRATING THE MULTISCALE STATISTIC

In this section we will investigate the effects of the different calibrations (1.1) and (1.2).
Dümbgen and Walther (2008) showed that the relevant quantity for detecting an increase
of the density f on an interval I is H(f, I) := infI f ′|I |2/√F(I), where |I | denotes the
length of I , and they established the following theorem for the calibration (1.2):

Theorem 1. Let fn be a density with distribution function Fn that satisfiesH(fn, In) ≥
Cn

√
log(e/Fn(In))/n for a bounded interval In. Then

Pfn(D+(α) contains an interval J ⊂ In) → 1,

provided that Cn = √
24 + bn√

log(e/Fn(In))
with bn → ∞.

Note that In and fn may vary with n. This theorem allows us to deduce large sample
optimality on small scales (i.e., intervals In with Fn(In) → 0) as well as on large scales
(intervals In with lim infFn(In) > 0):
Optimality for small scales. In this case we can take Cn = √

24 + εn for certain εn → 0
and there is a threshold effect for H(fn, In) at

√
24 log(e/Fn(In))/n: If the factor

√
24

is replaced by
√

24 + εn for certain εn → 0, then the multiscale statistic will detect and
localize the increase with power converging to 1. On the other hand, it can be shown that
in the case

√
24 − εn no procedure can detect such an increase with nontrivial asymptotic

power.
Optimality for large scales. If Cn → ∞, then the multiscale procedure will detect the

increase with power converging to 1. It was shown by Dümbgen and Walther (2008) that
Cn → ∞ is also a necessary condition for any test to have asymptotic power 1.

This optimality result for small scales as well as for large scales supports the strategy
(1.2), which employs larger critical values for smaller scales than for larger scales. In a
finite sample context, this arrangement of critical values will simply shift power from the
small scales to the large scales when compared to the traditional calibration (1.1). The
above results show that as the sample size gets large, this disadvantage at small scales dis-
appears, whereas the advantage at large scales persists, so then strategy (1.2) will dominate
strategy (1.1). It is of interest to see from what sample size on this effect sets in, and what
the trade-off in power looks like for smaller sample sizes.

We performed a simulation study for samples with n = 200, 1000, and 5,000 observa-
tions from a density that equals 1 on [0,1] apart from a linear increase with slope s on an
interval [a, b]: f (x) = 1{x ∈ [0,1]}+ s(x − (a +b)/2)1{x ∈ [a, b]}. To examine the power
on a large scale we set b − a = 1/2 and as a small scale we took b − a just large enough to
get meaningful power, viz. 0.15, 0.07, and 0.03, respectively. In each simulation run, the
interval [a, b] was located randomly in [0,1]. The finite sample critical values κ̃n(0.95)

and κn(0.95) were simulated with 105 Monte Carlo samples. Figure 1 shows the power of
each method as a function of the slope parameter s. The relevant graphs are the dashed
blue curve for the traditional method (1.1) and the dashed black curve for the method with
the additive correction term (1.2).
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Figure 1. Power curves for sample sizes n = 200, 1000, and 5,000 for increases on a large scale (left) and on a
small scale (right). Each curve is based on 1000 simulations at each of 20 lattice points and gives the proportion
of simulations that produce an interval Ijk ∈ D+(0.05) with Ijk ∩ [a, b] �= ∅.
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180 K. RUFIBACH AND G. WALTHER

The plots in Figure 1 show that the method with the additive correction term (1.2) has
a clear advantage on the large scale, whereas the traditional method (1.1) has more power
on the small scale under consideration. However, it turns out that this advantage extends
only over a small part of the scale range: The scale b − a above which method (1.2) has
more power than (1.1) was found for the three sample sizes to be 0.25, 0.13, and 0.06,
respectively. The plot with n = 5,000 shows the onset of the threshold effect described
above.

Thus we conclude that for sample sizes in the hundreds, there is a trade-off in power
between the two methods, with method (1.2) having more power on a large part of the scale
range. For sample sizes in the thousands, this advantage extends to all but the smallest
scales.

3. A FAST APPROXIMATION

Computing a local test statistic on intervals at various locations and sizes is compu-
tationally expensive: There are of the order n2 intervals Ijk , and on each such interval
one has to compute a local test statistic. The idea for a fast but accurate approximation
is based on the following observation: For large intervals, there is not much lost by con-
sidering only endpoints with indices on an appropriate grid, because the distance between
potential endpoints will be small compared to the length of the interval (where distance
and length are in terms of empirical measure). We will show how this idea can be fi-
nessed in a way that reduces the computational complexity in the above density case to
O(n logn), while at the same time essentially retaining the optimality results with respect
to power.

The algorithm can be described as follows: We start out by first considering as potential
endpoints only every Dth observation, and we consider only intervals that contain between
M and 2M − 1 observations. Then we increase M to 2M and D to

√
2D and iterate while

M ≤ n/2. This algorithm produces a sparse collection of intervals that approximates the
collection of all intervals. The indices of the endpoints of these intervals lie on a grid that
is finer for small intervals and coarser for larger intervals. Incrementing D only by a factor
of

√
2 while the interval size is doubled results in an approximation loss that becomes

negligible relative to the size of the interval and yields the optimal computational and
statistical properties as detailed below; see also Remark 3.

Table 1 gives a more formal description of the algorithm.
Thus we set the notation such that Iapp(1) contains the largest intervals, and Iapp(lmax)

contains the smallest intervals. Iapp := ⋃lmax

l=1 Iapp(l) is then the collection of all intervals
that we are considering for our approximation. We define D+

app(α) analogously to D+(α)

with Iapp in place of all intervals {Ijk,1 ≤ j < k ≤ n}.

Theorem 2. Iapp contains O(n logn) intervals. Moreover, Theorem 1 continues to
hold when D+(α) is replaced by D+

app(α) provided Cn = √
24 + bn

(log(e/Fn(In)))1/4 with

bn → ∞.
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BLOCK CRITERION FOR MULTISCALE INFERENCE ABOUT A DENSITY 181

Table 1. Pseudo-code to enumerate the sets of intervals Iapp(l), l = 1, . . . , lmax .

Set D,M > 1
lmax ← �log2(n/M)�
for l = 1, . . . , lmax do

Iapp(l) ← {}
dl ← round(D2(lmax−l)/2)

ml ← round(M2lmax−l )

Add all intervals Ijk to Iapp(l) for which
(a) j, k ∈ {1 + idl , i = 0,1, . . .} (we consider only every dl th observation)
and
(b) ml ≤ k − j − 1 ≤ 2ml − 1 (Ijk contains between ml and 2ml − 1 observations)

end %for

Thus in the above density case the multiscale statistics on Iapp can be computed in
O(n logn) steps; see Remark 4. At the same time this procedure retains the statistical opti-
mality properties on both large and small scales. The slightly different result of Theorem 2
compared to Theorem 1 affects only the secondary structure of the threshold effect at small
scales, that is, the rate at which Cn = √

24 + εn → √
24.

Iapp will be a closer approximation to the collection of all intervals if the initial value
of D is chosen smaller and the initial value of M is chosen larger (as this results in fewer
iterations of the algorithm that increase D). We found that D = 2 and M = 10 yields
a very good approximation for a range of sample sizes, as illustrated in Figure 1: The
relevant power curves are the solid blue and black lines, which have to be compared to
the respective dashed lines. Thus we use D = 2 and M = 10 in the following. Section 8
provides further simulation results that illustrate how different choices of D and M affect
the approximation.

4. THE BLOCK CRITERION

Section 2 has shown that employing different critical values for different scales can
result in advantageous statistical properties in the above density context. Therefore, it
is worthwhile to explore such a calibration in other settings. One disadvantage of the
method (1.2) is that the form of the correction term depends on the particular situation
at hand, namely on the tail behavior of the local statistics as well as on a certain entropy
and the behavior of the increments of a certain stochastic process; see theorem 7.1 in the
article by Dümbgen and Walther (2008). Deriving these properties is typically a nontrivial
task. It is thus of interest to develop methodology that does not require these case-by-case
specifications.

The motivation for our methodology derives from the above computational considera-
tions that group intervals into blocks: As each block contains intervals of about the same
length (scale), we will assign to each such interval the same critical value. Then we set
these critical values such that the significance level of the lth block decreases as ∼l−2.

More formally, in the above density setting let α ∈ (0,1) and define ql(α) to be the
(1 − α)-quantile of maxIjk∈Iapp(l) |Tjk(U)|. We suppress the dependence of ql(α) on the
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182 K. RUFIBACH AND G. WALTHER

sample size n for notational simplicity. Let α̃ be the largest number such that

P

(
lmax⋃
l=1

{
max

Ijk∈Iapp(l)
|Tjk(U)| > ql

(
α̃

(A + l)2

)})
≤ α, (4.1)

where A ≥ 0; we found that A := 10 works well in practice and we use this choice in
the following. Section 8 shows that the critical values ql(

α̃

(A+l)2 ) can be simulated with a

simple extension of the algorithm used for methods (1.1) and (1.2).
Now we can define D+

block(α) analogously to D+(α) by taking as critical value in the
lth block ql(

α̃

(A+l)2 ). By construction, we can again claim with guaranteed finite sample

simultaneous confidence 1 − α that f must have an increase on every Ijk ∈ D+
block(α).

The next theorem shows that in the setup under consideration here, we obtain the same
statistical optimality properties as for the method (1.2).

Theorem 3. Theorem 1 continues to hold when D+(α) is replaced by D+
block(α) pro-

vided Cn = √
24 + bn

(log(e/Fn(In)))1/4 with bn → ∞.

The proof of Theorem 3 shows that if we apply the block procedure to all intervals
Ijk , that is, we do not enforce (a) in Table 1, then we recover the stronger assertion of
Theorem 1. Of course, in that case we would lose the computational efficiency that Iapp
affords.

In Figure 1, the power curves of the block method are depicted by a solid red line, which
has to be compared to the solid blue line of the traditional method (1.1) and the solid black
line of the method (1.2) that uses an additive correction term. Thus one sees that in a
finite sample context, the block method is intermediate between the other two methods.
In particular, it gives more power to small scales than method (1.2), and we found this
to be a desirable feature in many examples that we investigated. The increased power at
small scales arises by construction: Whereas the significance level for the lth block can be
shown to decrease exponentially as ∼exp(−c

√
l) for method (1.2) (see Proposition 1 in the

Supplemental materials), the block method employs the slower polynomial decrease ∼l−2.
Another reason for the better power at small scales of the block method is the fact that the
critical values in each block automatically adapt to the exact finite sample distribution of
the local test statistics.

The block calibration described in this section can be readily adapted to other settings.
The next two sections explore how this calibration performs when applied to multiscale
statistics that have recently been introduced for inference on hazard rates and for regression
functions. A theoretical treatment of these cases is beyond the scope of this article, so we
evaluate the performance with simulation studies.

5. INFERENCE ABOUT A HAZARD RATE

Gijbels and Heckman (2004) considered the problem of detecting a local increase in a
hazard rate. They constructed a multiscale statistic by localizing a statistic introduced by
Proschan and Pyke (1967): Let X1, . . . ,Xn be an iid sample from a distribution F whose
left endpoint of support is 0. Consider the normalized spacings Di := (n − i + 1)(X(i) −
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BLOCK CRITERION FOR MULTISCALE INFERENCE ABOUT A DENSITY 183

Table 2. Proportion of rejections of the null hypothesis at the 5% significance level in 10,000 simulations for
the hazard rate example.

n = 50 n = 250

Method (1.1) Block method Method (1.1) Block method

a1 = −0.2, σ = 0.1 0.128 0.147 0.556 0.622
a1 = 0, σ = 0.2 0.122 0.146 0.317 0.384

X(i−1)), i = 1, . . . , n, where X(0) := 0. Gijbels and Heckman (2004) considered the local
sign test

max
1≤s≤n−1

max
1≤k≤n−s

V∗
sk, (5.1)

where V∗
sk = v

−1/2
k (

∑
s≤i<j≤s+k Vij −μk), Vij = 1(Di > Dj), μk = (k+1)k/4, and vk =

(2k + 7)(k + 1)k/72. Thus s indexes the starting point and k indexes the bandwidth (scale)
of the local statistic. Alternatively one can reparameterize the local statistic by start- and
endpoint. Then (5.1) is seen to be equivalent to

max
1≤j<k≤n

Wjk, (5.2)

where Wjk = v
−1/2
k−j (

∑
j≤i<i′≤k Vii′ − μk−j ).

We can now apply the algorithm given in Table 1 and the block methodology described
in Section 4 with Wjk in place of Tjk . Gijbels and Heckman (2004) showed that guaranteed
finite sample significance levels can be obtained by simulating critical values using the
standard exponential distribution for the Xi as null distribution for the null hypothesis of a
constant failure rate.

We illustrate the methodology by repeating the simulation study of Gijbels and Heck-
man (2004). n = 50 observations were drawn from a distribution whose hazard rate h

is modeled via logh(t) = a1 log t + β(2πσ 2)−1/2 exp{−(t − μ)2/(2σ 2)}, t > 0. Parame-
ter values a1 ≤ 0, β = 0 pertain to the null hypothesis of a nonincreasing failure rate,
whereas β > 0 will result in a local increase for certain values of a1,μ,σ . Gijbels and
Heckman (2004) considered alternatives with β = 0.3,μ = 1 and various values of a1, σ .
The values a1 = −0.2, σ = 0.1 result in a local increase on a small scale, whereas the val-
ues a1 = 0, σ = 0.2 result in a local increase on a large scale. Table 2 shows the power of
the multiscale test (5.2) against these alternatives with the calibration (1.1) used by Gijbels
and Heckman (2004) and the block method of Section 4.

6. LOCAL RANK TEST FOR NONPARAMETRIC REGRESSION

As a further example we apply our methodology to the local rank tests introduced by
Dümbgen (2002) in the context of regression. Consider the standard nonparametric regres-
sion model Yi = f (xi) + εi , for i = 1, . . . , n, with an unknown regression function f and
independent random errors εi having continuous distribution function and mean zero. De-
noting the ranks of Yi among the numbers Yj+1, . . . , Yk by Rjk(i), a local monotone trend
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184 K. RUFIBACH AND G. WALTHER

Table 3. Proportion of rejections of the null hypothesis at the 5% significance level for sample size n = 800 in
10,000 simulations for the regression example.

Method (1.1) Method (1.2) Block method

b − a = 0.02, c = 0.2 0.353 0.169 0.355
b − a = 0.5, c = 0.05 0.916 0.976 0.943

of the observations Yj+1, . . . , Yk can be detected via the linear rank statistics

Zjk(Y) =
k∑

i=j+1

β

(
i − j

k − j + 1

)
q

(
Rjk(i)

k − j + 1

)

for appropriate functions β and q on (0,1). For the case of the Wilcoxon Score function
β(x) = q(x) = 2x − 1 it was shown by Dümbgen (2002) that the appropriately standard-
ized local test statistic |Zjk(Y)| can be written as

6
∑

j<a<b≤k(b − a) sign(Ya − Yb)

(k − j)(k − j + 1)
√

k − j − 1
.

Dümbgen (2002) calibrated these local test statistics using calibration (1.2) with the ad-
ditive correction factor −

√
2 log n

k−j
. The null distribution for constant f is obtained by

simulation with uniform random variables in place of the Yi .
We can now apply the algorithm given in Table 1 and the block methodology de-

scribed in Section 4 with Zjk in place of Tjk . We compared the block calibration with
the calibrations (1.1) and (1.2) in a simulation study. We used the regression function
fa,b,c(x) = c(x − a)/(b − a)1{x ∈ [a, b]} for x ∈ [0,1] ⊇ [a, b] with 800 equispaced de-
sign points on [0,1] and errors from a logistic distribution with μ = 0 and σ = 0.05. For a
given interval length b − a the interval [a, b] was randomized in [0,1]. The results of the
simulation are summarized in Table 3.

7. CONCLUSIONS

Employing a calibration for multiscale statistics that varies with scale can result in im-
portant improvements in terms of power. In the context of certain inferences about a density
we described an approximation scheme that allows for an O(n logn) algorithm to compute
an appropriate multiscale statistic while preserving statistical optimality properties. We in-
troduced a general block method for calibrating multiscale statistics. This method has the
advantage that its specification does not depend on the particular problem at hand. We in-
vestigated the performance of this block method in several settings. It was shown that the
block method is computationally efficient and possesses statistical optimality properties
for certain inferences about local increases and decreases of a density. We also applied the
block method to two multiscale statistics that have recently been introduced for detecting
local increases in a hazard rate and in a regression function. Simulation studies show that
the block method produces favorable results in these settings.
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BLOCK CRITERION FOR MULTISCALE INFERENCE ABOUT A DENSITY 185

All the methods described in this article are implemented in the R package modehunt,
available from CRAN. The package also provides tables of critical values for some com-
binations of α and n as well as functions to simulate finite sample critical values.

8. COMPUTATIONAL DETAILS, REMARKS, AND
FURTHER ILLUSTRATIONS

8.1 SIMULATING THE NULL DISTRIBUTION OF THE MULTISCALE STATISTIC

It was explained in Section 1 that the joint finite sample null distribution of the local
statistics Tjk for the null hypothesis of a constant density can be obtained by Monte Carlo
simulation using n iid U [0,1] random variables U = (U1, . . . ,Un); see also Remark 1
below. After S Monte Carlo simulation runs the critical values κ̃n(α) and κn(α) for meth-
ods (1.1) and (1.2) are taken as the 100(1 − α)th percentile of the S simulated values of
the respective max1≤j<k−1≤n−1(· · ·) given in (1.1) and (1.2).

For method (4.1) we need to find lmax critical values ql(α̃/(A+ l)2), l = 1, . . . , lmax , for
a given α ∈ (0,1). To this end, for each simulation run we record the max of each block in
an S × lmax array A whose (s, l)th entry is maxIjk∈Iapp(l) |Tjk(U)| for the sth simulation
run. Next we sort the columns of A and store these in the array B. This is done so that
we can efficiently compute various percentiles of the different columns. Now the desired
critical values are given by ql := B(S − [(S − i)(A + 1)2/(A + l)2], l), l = 1, . . . , lmax ,
where i is the smallest integer i ∈ {1, . . . , S} such that the proportion of rows r of A for
which

∑lmax

l=1 1(A(r, l) > ql) > 0 is not larger than α. This index i can be quickly found via
bisection.

We were initially concerned about the required number S of Monte Carlo simulation
runs, for two reasons: first, we have to estimate several critical values ql simultaneously;
second, those critical values are further out in the tails. However, we found that over mul-
tiple sets of S = 5 · 105 Monte Carlo simulations the standard error of these critical values
was not larger than that for κn over multiple sets of S = 105 Monte Carlo simulations.
We thus recommend S = 5 · 105 Monte Carlo runs. The computing time is in the order of
minutes for the examples in this article.

8.2 REMARKS

Remark 1: Finding local increases or decreases is a multiple testing problem, so an
important issue is to justify the validity of the resulting confidence statement. Key to this
are the deterministic inequalities Tjk(X) ≤ Tjk(U) if f is nonincreasing on Ijk (‘≥’ if f

is nondecreasing on Ijk), where Ui := F(Xi), 1 ≤ i ≤ n. These inequalities yield

Pf

(
Tjk(X) ≥ c̃jk(α) for some 1 ≤ j < k − 1 where f is nonincreasing on Ijk

)
≤ P

(
Tjk(U) ≥ c̃jk(α) for some 1 ≤ j < k − 1

)
≤ α

provided the c̃jk(α) are chosen such that P(Tjk(U) ≤ c̃jk(α) for all 1 ≤ j < k − 1) ≥
1 − α. Hence we can claim with finite sample confidence 1 − α that f must have an

D
ow

nl
oa

de
d 

by
 [S

ta
nf

or
d 

U
ni

ve
rs

ity
] a

t 1
2:

45
 2

3 
Ja

nu
ar

y 
20

13
 



186 K. RUFIBACH AND G. WALTHER

increase on every Ijk with Tjk(X) ≥ c̃jk(α). Statements about increases and decreases
require the control of |Tjk(U)| with cutoffs cjk(α) in place of Tjk(U) and c̃jk(α), as de-
tailed in Section 1. Note that for the three forms of calibrations cjk discussed in this article,
1 − α confidence statements about increases only (using the c̃jk(α)) remain valid at level
1 − α′ with some α′ ∈ (α,2α) if the analysis concerns both increases and decreases (using
cjk(α)).

Remark 2: A key point in establishing Theorem 1 is to show that κn(α) stays bounded
in n, that is, after subtracting off

√
2 log(· · ·) to adjust for multiple testing over different in-

tervals on a given scale, there is no further adjustment necessary for combining the multiple
scales.

Remark 3: It is shown below that consistent detection of an increase is possible
only if the corresponding interval contains at least logn observations, that is, ml ≥ logn,
where the notation ml is from Table 1. For these scales l one finds dl/ml = C

√
2l/n ≤

C(logn)−1/2, that is, the approximation error at the endpoints relative to the size of the
interval becomes negligible as n increases.

As an alternative approximation scheme one can consider the univariate version of
the multivariate algorithm given by Walther (2009). That algorithm also uses ml =
round(n2−l ), but dl = round(n2−l l−1/2/6). In that case dl/ml = Cl−1/2, hence the ap-
proximation error relative to the size of the interval decreases with the size of the interval.
The rate of decrease of dl/ml may be sufficient to establish statistical optimality as in
Theorem 2. Furthermore, if one considers only intervals with ml ≥ logn, then that approx-
imation scheme can be shown to result in only O(n) intervals. Of course, the computational
complexity of O(n logn) cannot be improved because the data need to be sorted.

Remark 4: Theorem 2 establishes that Iapp contains O(n logn) intervals. A naive
computation of the local test statistics will add another factor n to the computational com-
plexity for computing the local statistics on these O(n logn) intervals. But the particular
statistic used here can be computed in constant time after computing the vector of cumu-
lative sums of the observations once in the beginning, thus resulting in overall complexity
of O(n logn).

8.3 FURTHER SIMULATIONS AND ILLUSTRATIONS

Figure 1 in Section 3 illustrated that for the choice D = 2 and M = 10, Iapp provides a
good approximation to the collection of all intervals in the context of the calibration (1.1),
which does not use an additive correction term, and the calibration (1.2) with additive cor-
rection term. Figure 2 illustrates how the quality of the approximation changes for different
values of D and M . The power curves in Figure 2 are for the same model as in Figure 1,
but with a different sample size n = 500 to avoid displaying redundant information. The
plots on the top row show the performance of Iapp for various choices of D and M with
the calibration (1.1), so we are trying to approximate the dashed power curve. The plots
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Figure 2. Power curves for the same model as in Figure 1 with various choices of D and M for Iapp . The left
(right) plots show power for increases on a large (small) scale.

in the bottom row use the calibration (1.2), so the approximation is for the dashed-dotted

curve. These plots show small gains if one would use D = 2 and M = 20 instead of D = 2

and M = 10, but this would come at the cost of a longer running time for the algorithm.
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Figure 3. Power curves for the same model as in Figure 1 with various choices of D and M for the block
procedure. Also shown are power curves for the calibration (1.1) and the calibration (1.2), both using all intervals,
that is, no approximation. The left (right) plot shows power versus alternatives on a large (small) scale.

On the other hand, one sees that D = 10 and M = 10 is just too coarse an approximation

as it leads to a significant loss of power in some cases. These simulations confirm D = 2

and M = 10 as an appropriate choice.

Figure 3 illustrates how various choices of D and M affect the block procedure. As in

Figure 1 one sees that the power of the block procedure is typically intermediate between

the calibration (1.1), which does not use an additive correction term, and the calibration

(1.2) with additive correction term. An exception is the choice D = 10 and M = 10 which

results in a large power loss due to the coarseness of the approximation, just as above. For

alternatives on large scales the choice D = 2 and M = 15 or M = 20 results in more power

than with D = 2 and M = 10. This is due to a finer approximation that comes at the cost

of a longer running time of the algorithm.

To demonstrate the performance of the block procedure on a smooth density we consid-

ered simulations from f (x) = pN(μ,σ)+(1−p)U [0,1]. Figure 4 gives the power curves

for n = 200 and our default choice D = 2 and M = 10 when the increase is on a large scale

(σ = 0.05,p ∈ [0.01,0.4]) and on a small scale (σ = 0.001,p ∈ [0.01,0.075]). We obtain

the same qualitative behavior of the power curves as for the discontinuous density con-

sidered before: The power of the block procedure is intermediate between the calibration

(1.1), which does not use an additive correction term, and the calibration (1.2) with additive

correction term.
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Figure 4. Power curves for the calibrations (1.1), (1.2), and the block procedure versus increases on a large scale
(left) and on a small scale (right) in the case of a uniform density with a Gaussian bump.

SUPPLEMENTAL MATERIALS

Proofs and computer code: The supplement materials contain the proofs of all the theo-
rems in the article (proof.pdf) and an R package, which implement all proposed meth-
ods. The package also contains tables and functions to simulate critical values. The file
block_method_code.zip contains additional code to reproduce the hazard and local rank
test examples and to generate the plots in the article. In addition, datasets containing the
power curve data to reproduce the figures in the article are provided. (Supplemental
Materials.zip)
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