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ABSTRACT

There exists no significant correlation between the Homestake neutrino data up to run 133 and the
monthly sunspot number, according to a test that is based on certain optimality properties for this type
of problem. It is argued that priorly reported highly significant results for segments of the data are due
to a statistical fallacy: the usual methods for evaluating the significance of common tests for correlation
are not applicable in the sunspot-neutrino context. Moreover, an appropriate evaluation of these tests
gives results that are compatible with the hypothesis of no correlation. Some new methods are intro-
duced for assessing the significance of common measures of correlation in a time series setting, with a
special emphasis on the Spearman rank correlation coefficient.

Subject headings: methods: statistical — Sun: activity — Sun: particle emission — sunspots

1. INTRODUCTION

The Homestake solar neutrino experiment has been mon-
itoring the flux of neutrinos produced in the core of the Sun
for over 25 years. The results deduced from this experiment
have been a puzzle in several ways: the inferred neutrino
flux is several times smaller than those calculated from solar
models (the “solar neutrino problem ). Further, an appar-
ent association between the inferred solar neutrino flux and
various indicators of solar activity such as the sunspot
number has stimulated a considerable amount of research
on that topic (see, e.g., Davis 1996; Bahcall, Field, & Press
1987; Bahcall & Press 1991; Bieber et al. 1990; Basu 1982;
Delache et al. 1993; Dorman & Wolfendale 1991; Krauss
1990; Massetti & Storini 1993; McNutt 1995; Oakley et al.
1994; Raychaudhuri 1986, 1991). The perceived anti-
correlation has motivated proposals in which neutrinos
have a much larger magnetic moment than is implied by
standard electroweak theory (Cisneros 1971; Okun 1986;
Voloshin, Vysotskii, & Okun 1986; Voloshin & Vysotskii
1986). This article addresses the statistical significance of
this anticorrelation. It has two goals: first, to expound the
claim—briefly reported in Walther (1997)—that the report-
ed statistically highly significant results concerning the anti-
correlation are due to a statistical fallacy and that the data
are in fact consistent with no correlation, and, second, to
put forth some new statistical techniques for assessing the
statistical significance of certain nonparametric measures of
correlation in a time series context. A particular aim of this
article is to show that the highly significant results found in
earlier segments of the data disappear when the same sta-
tistical tests used in those analyses are evaluated in a proper
way.

Section 2 describes the data used. Section 3 explains in
nontechnical terms some important points concerning mea-
sures of correlation, which will be relevant when investigat-
ing the neutrino-sunspot correlation. In Section 4 a result
for the Spearman rank correlation coefficient in a time
series context is presented, and some known and new
methods are introduced to evaluate the significance of non-
parametric measures of correlation in this setting, focusing
on the Spearman rank correlation coefficient. Section 5
investigates in some detail the evidence for a neutrino-
sunspot correlation, both for all the Homestake runs up to
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run 133 and for segments of these data for which highly
significant results have been reported. The conclusions are
summarized in § 6.

The article is written in a nontechnical way and should be
understandable to readers with a basic statistical knowl-
edge. The only exception may be § 4, which can be skipped
by a reader who is only interested in the neutrino-sunspot
correlation.

2. THE DATA

The neutrino data of the Homestake experiment (Davis
1996) consist of a run number, and, for each run, of a start
and stop time for the run, a mean 3’Ar production rate in
units of atoms per day, and a lower and upper 68% con-
fidence limit of the production rate. The confidence limits
pose problems for the analysis of the data: They need not
correspond to 1 ¢ error bounds, and the lower bound was
set to zero in those cases where the data analysis provided a
negative value (due to the subtraction of the background
rate). Further, the confidence limits have recently been
revised by the Homestake team. The effect of these issues on
the statistical analysis will be addressed at the appropriate
places below. The Homestake data used in this article were
generously made available by K. Lande (1996, private
communication) and consist of the following 108 runs: runs
18-133, except runs 23, 25, 26, 34, 90, 93, 117, and 123, for
which no data are provided owing to various problems with
the experiment.

The sunspot data used are the monthly sunspot numbers
provided by the National Geophysical Data Center of the
US Department of Commerce.

3. MEASURES OF ASSOCIATION AND THEIR ASSUMPTIONS

This section explains the fallacy with simple examples.
The relevance of the various issues raised here to the
neutrino-sunspot context is discussed in § 5. For simplicity,
this section concentrates on the most commonly used mea-
sures of correlation between random variables X and Y
when n pairs (X, Y;), ..., (X,, Y,) of these quantities are
observed: the Pearson’s product-moment correlation coeffi-
cient r, and its nonparametric counterpart, the Spearman
rank correlation coefficient rg. Similar conclusions to those
exhibited in the following apply also for other measures of



HOMESTAKE SOLAR NEUTRINO CAPTURE RATE 991

correlation and association, such as Kendall’s © or the y°
statistic for contingency tables in the case of nominal of
grouped data. The Spearman coefficient rg is attractive
because it is based on the ranks of the data and hence its
null distribution (the distribution of rg when no correlation
between X and Y is present) does not depend on the dis-
tribution of the data. Thus one can obtain significance levels
in quite general situations with few assumptions. There are
some assumptions, however, and those have to be checked
in each situation at hand. Usually textbooks present the
null distribution of rg only for the case where the (X;, Y,)
pairs are independent and identically distributed. While it
will be seen shortly that this assumption can be somewhat
weakened, a simple Monte Carlo study shows that, e.g., a
serial dependence structure in each variable, typical for a
time series analysis, can have drastic consequences: 10°
simulations of 200 independent standard normal random
variables X, ..., X 00, Y1,---» Y100 Were generated, and
for each simulation the two random walks S, = Y%_, X;
and T, =>%_, Y, k=1, ..., 100, were computed. Clearly,
the two series S; and T, are independent, but the Spearman
rank correlation coefficient rejected the null hypothesis of
independence at the 1% significance level for 66.7% of the
simulations!

The distribution of rg under the null hypothesis of inde-
pendence is derived using the assumption that each pairing
of the ranks of the X's with any permutation of the ranks of
the Ys is equally likely (Bickel & Doksum 1977). This yields
as minimal assumption for the applicability of the exact or
asymptotic null distribution of 4 (see, e.g., Table 8 in Bickel
& Doksum 1977 for the former, and the t-approximation
following eq. [3] for the latter) that at least one of the two
series, say Y, is permutation invariant, meaning that

the distribution of (Y3, ..., Y,)

is the same as the distribution of (Y., ..., Y,)

for any permutation 7 of the integers 1,...,n. (1)

The Monte Carlo study summarized in Table 1 shows how
easily one is led to an erroneous claim of a significant corre-
lation between the sunspot numbers and an independent
random series that violates condition (1) in commonly
encountered ways. Each row of Table 1 treats a different
type of independent time series X and Y. Each of the
random series is simulated 10° times, and the columns give
the relative frequency of rejection of the null hypothesis of

independence at nominal significance levels 5%, 1%, and
0.1%, using the t-approximation for the transformation (3).
Other tests for correlation referred to in this section
produce qualitatively similar results. All significance levels
refer to two-sided tests. In rows 1 through 4, X is taken to
be the series of monthly sunspot numbers of length 100
starting in 1970 January.

Row 1 uses 100 independent standard normal random
variables for the series Y. Y satisfies condition (1), so the
observed relative frequencies of rejection should be equal to
the nominal levels, apart from Monte Carlo simulation
error and the error due to the t-approximation for the
transformation (3). Thus row 1 serves as a check on these
approximations. In rows 2 and 3, Y is a three-point and
six-point running mean of independent standard Gaussian
random variables. The dependence structure in Y violates
condition (1), and the simulation results show how this
leads to erroneously significant results. (The time series of
sunspot numbers clearly does not satisfy condition [1], a
proposition corroborated by these simulations!)

A heuristic explanation of this aspect of the fallacy can be
given as follows: the null distribution of rg (the distribution
of rg¢ when no correlation between the series is present)
depends on the number n of observations. If more data are
available then rg will be concentrated more closely around
zero. Indeed, the standard deviation of rg is approximately
n~1%; see § 4. If there is a serial dependence between the
observations, then one can think of the n pairs of dependent
data as containing only as much “information ” as a smaller
number, say n/4, of independent data. Hence when assessing
the significance of rg, one should compare it to the null
distribution pertaining to a sample of size n/4, not n. The
latter distribution is concentrated more closely around zero
than the former, so rg looks more significant than it really is.

The above heuristic explanation will provide the basic
idea for developing a technique in § 4 for assessing the
significance of rg in such situations. Comparing rows 2 and
3 of Table 1 shows that a larger degree of smoothing leads
to seemingly more significant results, as expected from the
heuristic. This phenomenon will be relevant in the solar
neutrino context; see § 5 below.

An important consequence of the above heuristic is illus-
trated in Figure 1: the scatter plot in Figure 1a shows the
first 100 of 109 typical independent observations (X,
Y)), ..., (X 1995 Y100) from a standard bivariate normal dis-
tribution. Figure 1b shows the plot of the 100 running

TABLE 1

RELATIVE FREQUENCIES OF REJECTION OF NULL HYPOTHESIS OF INDEPENDENCE
AT VARIOUS NOMINAL SIGNIFICANCE LEVELS®

RELATIVE FREQUENCY OF REJECTION AT NOMINAL
SIGNIFICANCE LEVEL (%)

TIME SERIES 5% 1% 0.1%
X = sunspot numbers, Y = (Z, ..., Z gg) c+-eerveereeennenn 49 1.0 0.12
X = sunspot numbers, Y, =Y+*2 Z, (k=1, ..., 100)...... 239 12.0 4.7
X = sunspot numbers, Y, =Y ¥ Z, (k=1, ..., 100)...... 39.7 26.6 15.6
X = sunspot numbers, ¥, =1+ Z, if T,; <k < T,;,,,
Y, =3+ Z, otherwise (k=1,...,100)......cccevueiinennn. 35.7 22.4 11.7

2 Results of a Monte Carlo study using the nominal null distribution of Spearman’s correlation coefficient. The random
series in each row were simulated 10° times. X is the series of the 100 monthly sunspot numbers starting in 1970 January.
The Z, are independent standard normal random variables. T; is the sum of the first i terms of a sequence of independent
exponential random variables with mean 10 months.
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F1G. 1.—(a) Scatter plot of 100 independent standard bivariate normal
observations. (b) Scatter plot of the running means of length 10 of the data
in (a). (c) Scatter plot of 15 independent standard bivariate normal obser-
vations. Pearson’s correlation coefficient is 0.12 for the plot in (a) and 0.30
for plots in (b) and (c).

means of length 10, (5 Y532 X, 76 Dade Y), k=1, ...,
100. The correlation is visibly larger in Figure 1b (Pearson’s
r equals 0.30) than in Figure 1a (r = 0.12). When confronted
with Figure 1b, most people would consider it quite unlikely
that such a correlation is due to chance alone. But this is
just a psychological effect: the brain is calibrated by scatter
plots consisting of independent pairs. But an appropriate
comparison plot would consist of only about 15 such pairs,
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not 100, as will be seen below. Figure 1c shows such a
sample of 15 independent Gaussian pairs with r = 0.30.
Now the correlation looks much less convincing. Indeed,
the probability of obtaining values of |r| of at least the
observed size is larger for the situations in Figures 1b and
1c (about 27%) than for that in Figure 1a (24%), as can be
verified by simulations. This example shows that the scatter
plot, usually the first tool used to examine bivariate data,
can be quite misleading in commonly encountered situ-
ations.

The null distribution of Pearson’s r (see, e.g., [6.5.3] in
Bickel & Doksum 1977) is derived under stronger assump-
tions than condition (1). Its asymptotic behavior is well
known also when certain types of serial correlations are
present, such as in the Gaussian running means case above.
But these results are usually presented only in time series
books (see, e.g., Theorem 11.2.2. in Brockwell & Davis
1987). The above sample-size calculation was done using
that theorem.

Nonparametric methods such as rg or Kendall’s t are
usually not treated in a time series context, and the results
in § 4 seem to be new. Common textbooks give no warning
that the null distributions depend sensitively on assump-
tions such as condition (1). Indeed, conversations with
established senior statisticians have shown that the effect of
serial correlation on statistical procedures seems not well
enough appreciated even within the statistical community.

There are other important ways in which condition (1)
can be violated, even if the data are not smoothed. For
example, different standard deviations of the Y; or different
means are incompatible with condition (1). An example for
the latter case is given in row 4 of Table 1, which shows that
changes in the mean neutrino flux that are completely unre-
lated to the solar cycle can lead to the appearance of a
strong correlation: the neutrino flux is taken to be constant,
equal to 1, for a random time which is distributed exponen-
tially with mean 10 months; then the flux is set to 3 for a
random time with the same distribution; then it is set back
to 1; etc. Each month the flux is measured with independent
standard Gaussian measurement errors. Table 1 shows how
the null distribution of rg erroneously gives highly signifi-
cant results, even though the simulated observations are
uncorrelated with the sunspot number by design (the choice
of 10 months for the mean waiting time is not crucial; vir-
tually any other time will produce similar results).

Even with a constant flux one may obtain erroneous
results due to varying uncertainties for the measurements.
As a consequence, such significant results are not even valid
for testing whether the flux is constant. For an illustration,
let x = (3, 2, 1, 5) be a vector of four observations, and Y},

.., Y, be four independent Gaussian random variables
with mean zero and standard deviations 1, 1, 1, and 4. The
Y's represent observations of a constant quantity with mea-
surement error. In 7.0% of 10° simulations of the Ys, the
correlation rg between x and y was equal to 1, whereas the
table for the exact null distribution of rg gives a value of
4.17%. Similar results obtain when the significance of the

¥2-statistic,
n Y — bx; 2
£ —min 3 [L} , ?

ab i=1 0;

or of the related F-statistic is evaluated by randomly shuf-
fling the x; (Bahcall et al. 1987; Bieber et al. 1990): the best
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correlation (smallest value of x?, resp. largest value of F)
is obtained by exactly one of the 4! = 24 permutations of
the data, yielding a significance level of 1/24 = 4.17%.
However, this best correlation was obtained in 10.3% of the
10° simulations of the Ys. This effect becomes less pro-
nounced with more data or more equal uncertainties, but it
brings out an important point concerning this type of
“shuffle test,” which seems to have become popular in the
astrophysics literature, apparently following its use in
Bahcall et al. (1987): the intuitive physical concept of shuf-
fling the data does not automatically provide a valid
method for evaluating the significance of a test statistic.
Rather, the validity of such a permutation test requires a
careful justification of condition (1) for each situation at
hand. An example concerning the neutrino data will be
givenin § 5.

The relevance of the examples given in this section for the
neutrino-sunspot problem does not lie in the slogan
“correlation does not imply causation.” Rather, in the
above examples there is not even a correlation present
between the two series. In other words, seeing such large
correlation coefficients in the given situations is not unlikely.

4. ACCOUNTING FOR SERIAL CORRELATION

It is well known (see, e.g., Sheskin 1997) that if the pairs
(X4, 1), ..., (X,, Y,) are independent, identically distrib-
uted (or at least one of the series satisfies condition [1]), and
n is large, then the null distribution of ,/nrgy is approx-
imately normal with mean zero and variance 1. Usually, one
employs instead the transformation

Ty =r 722 3)
1—rg

which follows approximately a t,_, distribution (Student’s
distribution with n — 2 degrees of freedom). This approx-
imation is better than the normal approximation to ﬁrs
and gives excellent results for sample sizes as small as
n = 10.

If there is serial dependence in X and Y, then the scaling
in these approximations changes: the variance of the
normal distribution for . /nrs now becomes

o2 =1+18 i E{[2F(X,) — 11[2F(X, +,) — 11}
k=1

x E{[2G(Y,) — 11[2G(Y; +) — 11}, )

where F and G denote the cumulative distribution functions
of X, and Y, respectively, and E denotes expected value.
Analogously, the t,_, approximation for the statistic (3) is
now for T'(n)/t, where t is some constant. These theoretical
results make precise the heuristic given above. The author
can provide a proof in the case where both series are weakly
dependent, e.g., if X is «-mixing or stationary with
corr(X,, X,;) — 0, and Y is B-mixing with ), B(k) < oo (see,
e.g, Doukhan 1994 for a definition of these mixing
coefficients). These conditions are difficult to check and still
somewhat restrictive, but computer simulations show that
the t,_, approximation to T'(n)/z in fact seems to apply in
many commonly encountered situations and also for small
sample sizes, similarly to the independent case. As a simple
example, both X and Y of length n = 12 were simulated
1000 times as five-point running means of independent
standard Gaussians. Figure 2 shows a plot of the percentiles
of the resulting T(12)/1.9 versus the percentiles of the ¢,
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F1G. 2—Percentiles of T(12)/1.9 from 1000 simulations of two series of
independent five-point Gaussian running means of length 12 vs. the per-
centiles of the ¢, , distribution.

distribution, which demonstrates that the approximation is
excellent here.

Clearly, expression (4) is not very usable as it stands, but
modern statistical techniques allow for the rescaling in rg or
T(n) to be done in an automatic way:

The moving block bootstrap (Kiinsch 1989) samples
blocks of length I/ at random from the n — I + 1 such blocks
contained in the original series X and concatenates them to
a bootstrap series X* of length n. Likewise, a bootstrap
series Y* is resampled, independently of X*. The bootstrap
then estimates the sampling null distribution of T(n) by
simulating a large number of bootstrap series (X*, Y*) and
computing T'(n) for each simulation. Comparing the orig-
inal T'(n) to the resampled values of this statistic yields the
bootstrap significance value. One may expect to improve on
this procedure by using the fact stated above that T(n)/z
follows a t,_, distribution. Now only 7 needs to be esti-
mated by the bootstrap. This can be done by equating the
variance of T(n)/t to the variance of the ¢,_, distribution,
which equals (n — 2)/(n — 4):

n—2 Var T(n)
n—4 12

The variance of T(n) can be estimated by the sample
variance v, of the bootstrap replications of T(n). Then one
can solve the above equation to obtain the following esti-

mate for t:
T=\/v,(n—4)/(n—-2). (5

The null hypothesis of independence is then tested by com-
paring T(n)/% to the t,_ , distribution.

Alternatively, the shuffle argument can be rescued by per-
muting blocks of the series instead of individual obser-
vations: it can be shown that asymptotically, as n and the
block length become large, this kind of permutation test will
give the right results.

Both of these methods concatenate pseudo-independent
blocks and thus introduce artificial independence into the
resampled series. This impairs the performance of these
methods because the computation of the ranks used in rg is
based on the whole series, not just on the blocks. Therefore,
a different method is proposed here: If a block X' of length [
is chosen at random from the n — I + 1 blocks contained in
series X, and independently a block Y'is chosen from Y by
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the same method, then one can think of (X', Y’) as a realiza-
tion of length [ of the series (X, Y), where X and Y are
independent. Using the result stated above, one obtains that
the resulting T'(I)/z follow approximately a t, _, distribution.
Resampling the (X', Y') many times and computing the
sample variance v, of the resulting T(/) allows then to esti-
mate 7 by equating variances as introduced above. One

obtains
=l —4/1-2). (6)

The significance of the statistic T'(n) for the whole series is
then evaluated by comparing T(n)/7 to a t,_, distribution.
This approach of resampling blocks and rescaling is related
to the procedures of Carlstein (1989) and Politis & Romano
(1994), who employ such methods in a nonparametric way.

A simulation study was run to compare these procedures.
One thousand pairs of independent series X and Y were
simulated, each of length 108 and a five-point running mean
of Gaussians. Table 2 gives the frequencies of rejection of
the independence hypothesis at various significance levels
for the four methods described above: comparing T(108) to
the moving block bootstrap distribution of that statistic
(“MB bootstrap”), using the moving block bootstrap dis-
tribution to estimate T and comparing T(108)/7 to the ¢,
distribution (“parametric MB bootstrap”), permuting
blocks instead of individual observations in the permu-
tation test, and estimating t by subsampling and compar-
ing T(108)/7 to the t;4¢ distribution (“parametric
subsampling ). For each method, block lengths of 12 and
18 were used and 500 resamples (resp. permutations) were
generated in each of the 1000 simulations. The parametric
subsampling method shows the best results, but the use of
only 1000 simulation mandates some caution in such a
comparison.

5. EVIDENCE FOR A CORRELATION BETWEEN NEUTRINOS
AND SUNSPOTS

First the complete set of 108 experimental runs will be
considered, and it will be shown that a proper test for corre-
lation that is based on certain optimality criteria yields a
clearly nonsignificant result. Then earlier segments of the
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data for which highly significant results have been reported
will be revisited. It will be shown that the tests used there
give results that are in fact compatible with the null hypoth-
esis of no correlation, once these tests are evaluated in a way
that accounts for the uncertainties and guards against a
possible serial correlation under the null hypothesis.

The neutrino flux meeting the Earth at time ¢ is denoted
by flux(t) and is observed by the Homestake experiment at
times ¢; with random errors, yielding the reported flux N;:

N, = flux(t) + o€, i=1, ..., 108 . )

Here the scalars o; denote the uncertainties in the neutrino
measurements, which are usually taken to be “average
uncertainties ” (half the difference between upper and lower
confidence limit) or “upper uncertainties” (the difference
between upper confidence limit and measured neutrino
flux); see Bahcall et al. (1987). The ¢; denote the random
measurement errors after dividing those by the g;. Hence
equation (7) does not require that the o; be exactly equal to
the standard deviations of the error distributions. We make
only the more reasonable assumption that the o, are pro-
portional to those standard deviations, and that the €; are
identically distributed (not necessarily with standard devi-
ation 1).

A test for correlation can now be developed by examining
how linear functions a + bs; of the sunspot numbers s;
explain flux(t;), i.e., using regression techniques. The null
hypothesis H, will be that b =0, i.e., flux(t;) = a for all
i=1, ..., 108. The sunspot numbers used pertain to the
month into which the mean time of the corresponding neu-
trino run falls.

A simple test applies if one is willing to assume that under
H, the measurements for different runs are independent.
This assumption is probably violated as will be explained
below, and a more appropriate test will be presented
promptly. However, assuming independence will make the
results err in favor of an (anti)correlation and allows us to
use a test with certain optimality properties that can be
evaluated exactly by way of a permutation procedure, so it
is informative to make this assumption for a moment. Then
the ¢; are independent and identically distributed. Hence, by

TABLE 2

RELATIVE FREQUENCIES OF REJECTION OF NULL HYPOTHESIS OF INDEPENDENCE AT VARIOUS
NOMINAL SIGNIFICANCE LEVELS, USING FOUR DIFFERENT TESTS?

RELATIVE FREQUENCY OF REJECTION AT NOMINAL

SIGNIFICANCE LEVEL (%)

METHOD 1% 0.5%

Block Length 12

MB bootstrap ................... 1.1 0.2

Parametric MB bootstrap...... 1.5 0.6

Permuting blocks ............... 1.0 0.1

Parametric subsampling........ 0.9 0.4
Block Length 18

MB bootstrap ................... 1.5 0.6

Parametric MB bootstrap...... 19 1.0

Permuting blocks ............... 1.6 1.1

Parametric subsampling........ 1.1 0.6

* Results of a Monte Carlo study using four different tests based on resampling. Results
are based on 1000 simulations of two independent five-point Gaussian running means of

length 108.
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equation (7), the scaled differences,

N,—a
d=—""1i=1, ..
0;

., 108, ®)

satisfy condition (1). Thus the significance of the test sta-
tistic T = Y }°% s,d; can be evaluated exactly (apart from
the Monte Carlo approximation error) by randomly per-
muting the d;. The statistic T has certain optimality proper-
ties for the problem at hand; see Maritz (1995). Extreme
values of T indicate that there is a trend in the d; that varies
in concert with the s;. The permutation distribution of T
will in general not be symmetric about zero, so to obtain
two-sided observed significance levels, one has to double
the appropriate tail probability obtained by comparing T
to the permutation distribution. If one does not want to
hypothesize a value a for the flux, then one has to use an
appropriate estimate d. One can then argue that shuffling
should still produce approximately valid results. The usual
estimate for ais d, = () /2% N;/6?)/Y 128 o7 2. Itis argued in
Cleveland et al. (1996) that the estimate provided by the
combined Homestake maximum likelihood analysis is more
appropriate, and hence we use in the following that esti-
mate: d, = 0.482 atoms day~'. Using 4, instead further
weakens the evidence for a correlation for most of the
results reported below, and changes none of the conclusions
drawn. Likewise, “average errors” result usually in some-
what less significant results than “upper errors,” and so
only results using the latter will be reported. The test just
described was evaluated with 10* random permutations
and resulted in an observed significance level of 8.4%.
Applying the less powerful Spearman rank correlation test
to the s; and d; yields 18.1%, a less significant result, as
expected.

The evidence becomes even weaker if one cannot rule out
a serial correlation within the observed neutrino flux under
the null hypothesis. One example of a likely contributor to
such an effect is a serial correlation within the background
event rate. Background events are caused by cosmic rays
and other sources (Bahcall 1989). The data analysis algo-
rithm of the Homestake experiment estimates the back-
ground rate (assumed to be constant) jointly with the solar
neutrino rate (Davis 1996), and the separation of these two
is necessarily imperfect. For example, several lower con-
fidence bounds or event rates were set to zero because sub-
tracting the estimated background rate would otherwise
lead to impossible negative values. As was explained in the
previous sections, a simple permutation argument is no
longer applicable if the background rate or the solar neu-
trino rate or the analysis apparatus exhibits some kind of
serial correlation under the null hypothesis, e.g., due to a
periodicity in cosmic rays (which does not have to be
related to the solar cycle), or due to the presence of 3’Ar
atoms in the tank that were not extracted after the previous
run. Then the significance of the statistic T' needs to be
evaluated instead with the methods presented in the pre-
vious section, which guard against the effects of a serial
correlation. Permuting blocks or using the moving blocks
bootstrap with a block length of 18 yields significance levels
of 13.8% and 15.4%, respectively. Applying these pro-
cedures to the Spearman correlation based on s; and d;
gives again less significant results.

Most of the highly significant results in the literature were
reported for earlier stretches of the data, which clearly look
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more correlated. However, an appropriate evaluation of the
respective statistical tests will now show that the resulting
evidence is well compatible with the hypothesis of no corre-
lation, as was found for the whole series. While it is
unavoidable to refer to some of these published results in
order to make that point, one needs to keep in mind that
these misinterpretations are not really due to those authors
but to the negligent treatment of this issue in textbooks by
the statistics community, as was explained in § 3.

As shown in § 3, there are at least three issues that have to
be accounted for. First, one needs to be careful not to
smooth the data, as that will make the two series seemingly
more correlated. While this point will not be pursued
further here, it seems at least plausible that the widely
reported improved correlation of various quantities with
smoother functions of the sunspot numbers (Bahcall &
Press 1991; Delache et al. 1993; Massetti & Storini 1993;
Oakley et al. 1994) is due to that effect. Second, one needs to
take care of the uncertainties in the analysis. Third, the
significance of the test statistic has to be evaluated in an
appropriate way to guard against a possible serial corre-
lation in the two series under the null hypothesis of no
cross-correlation. Section 4 provided four methods for that
using the example of the Spearman correlation coefficient.
In the following these methods will always be used with a
block size of 18, unless a short series necessitates a shorter
block length for the permutation test, which will then be
noted.

The F-statistic used by Bieber et al. (1990) incorporates
the uncertainties, which are taken there to be the maximum
of the upper and lower confidence width. The significance
levels reported there for the run numbers between 18 and
108 are 0.08% and 0.4%, as evaluated by a F-table and the
shuffle test, respectively. It was shown in § 3 that the use of
the shuffle test cannot be justified here, because of the differ-
ing uncertainties. Furthermore, when the permutation test
is based on blocks of length 12 to guard against a possible
serial correlation, then the significance drops to 3.4%.
Using the improved set of uncertainties in the same way as
in the cited reference gives 8.6%.

In Bahcall & Press (1991) a segment of the neutrino data
with run numbers between 18 and 105 was considered, and
using the Spearman correlation coefficient, a significance
level of 5 x 10> obtains for the last two-thirds (54 data
pairs) of that segment. Without prior reason why such a
correlation should occur only in a certain segment, these
results have to be adjusted for “fishing” for such a signifi-
cant stretch. In the quoted reference an adjustment factor of
10 is given. (With 27 more runs available now which show
hardly any correlation, one could argue in favor of using an
even bigger adjustment factor. Likewise, some adjustment
would be necessary for the results of the F-statistic above.)
When basing the analysis on the d; in equation (8) to
account for the uncertainties, all four methods introduced
in the previous section yield significance levels between
0.3% and 0.5% for the Spearman correlation coefficient
(between 0.1% and 0.2% if one uses the obsolete set of
uncertainties). Multiplying those numbers by some adjust-
ment factor bigger than 10 makes them comparable to the
range of 5%-10% found for the F-statistic after some
adjustment. The point here is not to justify an exact value of
such an adjustment factor. Rather, it should become clear
that an appropriate evaluation increases the significance
levels of these statistics by an amount that makes it plau-
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sible that the results are compatible with the hypothesis of
no correlation, when taking into account that only the most
significant segments of the data were analyzed.

6. SUMMARY

Standard tests for correlation are built on strong assump-
tions that usually do not apply in a time series context. A
violation of these assumptions can lead to erroneous, highly
significant results. There exist statistical techniques to
evaluate nonparametric measures of correlation in a time
series context. An appropriate test based on certain opti-
mality properties shows that there is no significant corre-
lation between the sunspot number and the solar neutrino
flux up to run 133. A proper reanalysis of reported highly
significant correlations for earlier stretches of the data gives
results that are compatible with the hypothesis of no corre-

lation. These findings allow one to put together a coherent
picture of the somewhat conflicting evidence reported in the
literature: the correlation analysis does not contradict the
periodogram analysis in Bahcall & Press (1991), where no
significant 11 yr component was found in the neutrino data.
And the widely reported improved correlation with
smoother functions of solar activity is likely due to the sta-
tistical effect described in § 3.
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