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Abstract

Canonical correspondence analysis (CCA) is perhaps the most popular multivariate technique used by environmental ecologists
for constrained ordination; it is an approximation to the maximum likelihood solution of the Gaussian response model. In this
article, we look at the constrained ordination problem from a slightly different point of view and argue that it is this particular point
of view that CCA implicitly adopts. This gives us additional insights into the nature of CCA. We then exploit the new perspective
to generalize the Gaussian response model to incorporate more flexible response functions. A real example is presented to
illustrate the use of the more flexible model.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Constrained ordination analysis has been widely
used by environmental ecologists to study how
different species respond to changes in environmental
conditions. The Gaussian response model can be
generally regarded as an ideal model for such prob-
lems (ter Braak, 1996; Yee, 2004); its parameters are
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typically estimated with canonical correspondence
analysis (CCA), a multivariate technique first pro-
posed by ter Braak (1986). Two facts about CCA
are particularly relevant for our article. Firstly, as a
variation of correspondence analysis, CCA is only an
approximation to the maximum likelihood solution
of the Gaussian response model (e.g., ter Braak,
1985; Yee, 2004). Secondly, from an algebraic point
of view, CCA is known (e.g., Takane et al., 1991)
to be equivalent to a number of other multivariate
techniques such as optimal scoring (also known as
dual scaling) and linear discriminant analysis (LDA),
a popular technique for classification. The connection
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between CCA and LDA can also be found elsewhere
(e.g., ter Braak and Verdonschot, 1995); early ideas for
analyzing ecological data with techniques of the LDA
type can be found in, for example, Green (1971, 1974).

In this article, we first give a brief review of the
constrained ordination problem, the classic Gaussian
response model as well as the equivalence between
the CCA and LDA algorithms (Section 2). Next, we
present a probabilistic model for LDA in the context
of ecological ordination (Section 3). Due to the equiv-
alence between LDA and CCA, this model sheds im-
portant light on the nature of the widely-used CCA al-
gorithm. We then generalize the LDA model to perform
constrained ordination analysis with flexible response
functions (Section 4). Finally, we give an illustrative
example (Section 5).

2. Constrained ordination analysis

In a typical study, one has a data matrix Y = {yik},
whose element yik records the abundance of species
k at site i, and a covariate matrix X = {xim}, whose
element xim is a measurement of a particular environ-
mental factor at site i, e.g., average temperature or
the concentration of a certain chemical contained in
the soil. We will use the vector notation xi = (xi1, xi2,
. . ., xid)T for a total of d environmental variables at site i.

2.1. The general statistical model

Often the abundance measure yik is simply the count
of species k at site i. Therefore yik is often assumed to
follow an independent Poisson distribution; the corre-
sponding rate parameter �ik is modeled as

λik = fk(xi).

The function fk is called the response function for
species k; it is a function of how species k responds
to different environmental conditions. If the conditions
at site i are favorable for species k, λik = fk(xi) will be
large, i.e., the species will be abundant at that site. The

Poisson model gives rise to an explicit likelihood func-
tion for the data:

likelihood =
K∏

k=1

n∏
i=1

e−λikλ
yik

ik

yik!

=
K∏

k=1

n∏
i=1

e−fk(xi)(fk(xi))yik

yik!
.

Apart from a constant not depending on the response
functions fk (k = 1, 2, . . ., K), the corresponding log-
likelihood function is simply

log-likelihood =
K∑

k=1

n∑
i=1

−fk(xi) + yik log fk(xi).

(1)

Conventionally, the function fk is often defined on a
low-dimensional subspace, e.g., along a preferred di-
rection α ∈Rd . In this case, fk(xi) is actually a ridge
function fk(αTxi). The direction α is called the environ-
mental gradient. We shall write zi = αTxi and use the
following notations interchangeably: fk(xi), fk(zi) and
fk(αTxi).

2.2. The Gaussian response model

The so-called Gaussian response model assumes
that the response function fk has the form of a Gaus-
sian density function along the environmental gradient
(Fig. 1), i.e., fk as a function of z = αTx is log-quadratic:

log(fk(zi)) = ak − (zi − uk)2

2t2k
or

log(fk(xi)) = ak − (�T xi − uk)2

2t2k
. (2)

The interpretation of the parameters are as follows:

ak: The maximum of species k on the log-scale—eak

is the expected count of species k at its optimal
environment.

α: The environmental gradient—it is a vector inRd that
assigns each site i an environmental score, zi, ac-
cording to its environment conditions xi. According
to ecological theory (e.g., MacArthur and Levins,
1967), over the course of evolution, species tend
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Fig. 1. Illustration of the Gaussian response curve. This graph depicts
a situation where the environmental conditions at site 2 are close to
being optimal for species 1, whereas site 3 is close to being optimal
for species 2.

to develop maximally separated niches over limit-
ing environmental resources. The optimal α, there-
fore, should be a direction in which the species’
response functions are the most different.

uk: The optimum of species k—species k is most abun-
dant (i.e., λik reaches its maximum) at site i if site
i receives an environmental score equal to uk, i.e.,
if zi = αTxi = uk.

tk: The tolerance of species k—if tk is large, then the
response function is relatively flat, indicating that
the species can survive well under a great variety
of environmental conditions, i.e., it has high tol-
erance; likewise, if tk is small, then the response
function drops sharply as zi moves away from the
optimal point uk, indicating that the species has low
tolerance for different environmental conditions.

2.3. The CCA algorithm

The parameters in the Gaussian response model can
be estimated by directly maximizing the log-likelihood
function (1), something that, surprisingly, has been
devoid in the literature until quite recently (see Yee,
2004). Traditionally, canonical correspondence analy-
sis (CCA) has been the de facto algorithm for estimat-
ing the parameters under the extra assumption that the
species have an equal tolerance parameter, i.e., tk = t
for all k. Notice that the scales of zi, uk and tk are ar-
bitrary; this can be resolved, for example, by requir-

ing
∑K

k=1t
2
k /K = 1 (ter Braak, 1985). The equal toler-

ance assumption, therefore, can be explicitly stated as
tk = t = 1. It was made clear in the original CCA paper
(ter Braak, 1986) that one can first estimate the scores
xi (i = 1, 2, . . ., n) and then simply regress zi onto xi

to estimate the environmental gradient α. By differ-
entiating the log-likelihood function (1) with fk being
Gaussian (2) and tk = 1 for every k, we can obtain the
normal equations for estimating ak, zi and uk:

ak = log

n∑
i=1

yik

n∑
i=1

exp(−(zi − uk)2/2)
, (3)

zi =

K∑
k=1

yikuk

K∑
k=1

yik

−

K∑
k=1

(zi − uk)fk(zi)

K∑
k=1

yik

, (4)

and

uk =

n∑
i=1

yikzi

n∑
i=1

yik

−

n∑
i=1

(zi − uk)fk(zi)

n∑
i=1

yik

. (5)

Under certain mild conditions, it can be argued (ter
Braak, 1985) that both Eqs. (4) and (5) are dominated
by the leading term1 so one can simply approximate
them with the well-known reciprocal averaging equa-
tions of correspondence analysis:

zi =

K∑
k=1

yikuk

K∑
k=1

yik

and uk =

n∑
i=1

yikzi

n∑
i=1

yik

.

In matrix form, these equations can be written as fol-
lows:

z ∝ R−1Yu and u ∝ C−1YT z,

where R = diag{yi·}, C = diag{y·k}, yi· = yi1 + yi2 +
· · · + yiK and y·k = y1k + y2k + · · · + ynk. If the score

1 Alternatively, one can easily see that the term (zi − uk) fk(zi) can-
not be too large because, under the Gaussian assumption, fk(zi) can
only be large if zi − uk is close to zero whereas if zi − uk is far from
zero fk(zi) is necessarily small.
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zi is constrained to be zi = αTxi (or z = Xα), we obtain
the main equations for CCA:

X� ∝ R−1Yu (6)

u ∝ C−1YT X�. (7)

Multiplying (6) by (XTRX)−1XTR on both sides gives

� ∝ (XT RX)−1
XT Yu. (8)

Clearly, estimates of u and z can easily be obtained
from the above equations once α is estimated. In what
follows, we shall always focus on the estimation of α.
Combining Eqs. (8) and (7), we get

� ∝ �α� where �α ≡ (XT RX)−1
XTYC−1YTX,

(9)
which means α can be estimated as the eigenvector of
the matrix �α.

2.4. An equivalent algorithm: LDA

Takane et al. (1991) established that CCA is
mathematically equivalent to Fisher’s reduced-rank
linear discriminant analysis (LDA), an algorithm
widely used in classification. Here, we only present a
highly condensed summary of how this equivalence
can be understood. The data matrices in a typical
classification problem are shown below.

Here, we see that the matrix X is the same as before
whereas the matrix Y is slightly different; it is a binary
matrix of class indicators. The LDA algorithm finds
the most important direction � ∈Rd for classification
by maximizing the Rayleigh quotient

�T B�

�T W�
, (10)

where

B ∝
K∑

k=1

n∑
i=1

yik(x̄k − x̄)(x̄k − x̄)T and

W ∝
K∑

k=1

n∑
i=1

yik(xi − x̄k)(xi − x̄k)T (11)

are the between-class and within-class sum-of-squares
matrices; the maximizing solution is well-known to be
the leading eigenvector of W−1B (see, e.g., Mardia et
al., 1979). Hastie et al. (1995, Section 3) showed that,
when Y is an indicator matrix (the standard situation for
classification), finding the eigenvectors of the matrix
W−1B is equivalent to finding the eigenvectors of the
matrix

�α = (XT X)−1
XT YC−1YT X,

which can be easily seen to resemble the matrix �α

from CCA (see Section 2.3).
To see that they are exactly the same, note that,

in the classification problem, there is only one obser-
vation for each row of X, whereas in the ecological
ordination problem, each row of X corresponds to a
different site and there are multiple species at each site.
That’s why each row of X must be properly weighted
by the total species count yi· = yi1 + yi2 + · · · + yiK

and the quantity XTX must be replaced with XTRX.
Conversely, starting from �α it is also easy to see
that in the classification case when each row of X
belongs to just one of the K classes, the weight matrix
R = I is the identity matrix, so �α = �α. See Takane
et al. (1991) for a more formal argument.

3. A probabilistic model for LDA

We now present a probabilistic model for LDA in the
context of constrained Gaussian ecological ordination.

3.1. Data collection

Recall that x ∈Rd is a vector of d environmental
measurements. The data contained in the matrices X
and Y are typically collected in the following way:
First, n geographical sites are selected and various envi-
ronmental measurements are taken at each site, giving
rise to a sample S = {x1, x2, . . ., xn}. Along the environ-
mental gradient α, we get a univariate sample, which
we shall write as S(α) = {z1, z2, . . ., zn}, where zi = αTxi.
We can think of each zi as having been sampled
from a certain distribution g(z) (e.g., ter Braak, 1996,
Chapter 1):

z1, z2, . . . , zn ∼ g(z). (12)
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Once the sites have been determined, the species are
counted at each site; yik is the count of species k at site
i and is assumed to follow a Poisson distribution with
rate λik = fk(zi). This means we have

E(yik|zi) = fk(zi). (13)

3.2. A weighted sample model

For each species k, we now think of yik—its abun-
dance measure at site i—as the weight it puts on the ob-
servation xi. As a result, we obtain a weighted sample
Sk = {(xi, wik); i = 1, 2, . . . , n}; the weight on each xi

is wik = yik. More specifically, we can think of Sk to
have been generated as follows: each observation xi

from the sample S is replicated yik times to form the
weighted sample Sk.

Now let pk(x) denote the density function of the
weighted sample Sk; notice that pk(x) can be estimated
directly from Sk. We shall use the notation p

(α)
k to de-

note the marginal distribution of pk along the environ-
mental gradient α, i.e., p

(α)
k is the distribution of the

univariate sample Sk(α) = {(zi, wik); i = 1, 2, . . . , n}.
We wish to characterize p

(α)
k and make a connection

between p
(α)
k and the response function fk.

Because of the weights, it is not clear how to de-
termine this distribution, or even how this distribution
is defined in the first place. We will use the following
trick: while it is hard to determine this distribution di-
rectly, we can nevertheless still construct the empirical
distribution of the weighted sample Sk(α). Suppose we
can prove that for every interval I the empirical measure
of I converges almost surely to

∫
I
p(z)dz for some den-

sity p(z). Then, applying the law of large numbers back-
wards and using the fact that a distribution is uniquely
determined by the values it gives to intervals, we can
conclude that the sample must have been generated by
a distribution with density p(z). Note that the final state-
ment is not asymptotic; the detour via the law of large
numbers is just a convenient way to characterize the
distribution of the weighted sample Sk(α).

Theorem 1. Suppose z1, z2, . . ., zn are an i.i.d. sample
from g(z) and that, given zi, wi is a non-negative random
variable with expected value f(zi), i.e., E(wi|zi) = f(zi),
where f is a non-negative, measurable function that sat-
isfies 0 <

∫
f (z)g(z)dz < ∞. Furthermore, suppose

that the wis are independent. Then for every interval I

the empirical measure of I with respect to the weighted
sample {(zi, wi); i = 1, 2, . . ., n} converges almost surely
to
∫
I
p(z)dz with p(z) ∝ g(z)f(z).

Since the weight wik = yik, it follows from Eq. (13)
and Theorem 1 above that

p
(α)
k (z) ∝ g(z)fk(z) (14)

for every k = 1, 2, . . ., K. This implies that if we choose
to model the function p

(α)
k instead of fk and estimate

it directly from the data Sk(α), we can recover the re-
sponse function fk(z) up to a function g(z) that is com-
mon for all k. A proof of a more general version of
Theorem 1 that allows for multivariate zi is given in
Appendix A.

3.3. The Gaussian response function

The classic Gaussian response model assumes that
the response function fk is Gaussian (Section 2.2). If we
choose to model p(α)

k (z) instead, it is easy to see that we
can make a direct connection to the Gaussian response
model if we make the following two assumptions:

A1: The distribution pk(x) is a (multivariate) Gaussian
with mean vector μk and variance-covariance ma-
trix �k; and

A2: g(z) is a uniform distribution on a suitable range
of z.

The first assumption immediately implies that the
marginal distribution p

(α)
k is a univariate Gaussian with

mean αTμk and variance αT�kα. Because of (14), the
second assumption then implies we must have

uk = �T �k and t2k = �T �k�.

This means under the assumptions A1 and A2, model-
ing fk as Gaussian is the same as modeling pk as Gaus-
sian and the location and scale parameters are the same
for fk and p

(α)
k .

The assumption that g(z) is uniform means the sites
are sampled in such a way that different environmen-
tal conditions along the environmental gradient are
equally represented. Of course, it is generally hard to
guarantee such uniformity in reality, but below we will
introduce a criterion for estimating the environmental
gradient α that is invariant to g(z) (Section 4.2) so this
assumption is actually not required at all.
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3.4. Estimation with LDA

With each yik now regarded as a weight on xi, how
should the parameters be estimated? Under the assump-
tion A1, the parameters of pk, namely μk and �k, can
be estimated directly from the sample Sk by (weighted)
maximum likelihood. For any given α, we’ve already
seen that uk = αTμk and t2k = αT�kα, so the main statis-
tical problem is the estimation of α, the environmental
gradient.

Recall that the optimal α should be a direction in
which the species’ response functions are the most dif-
ferent (Section 2.2). This means we can choose α to
make the response functions fk (k = 1, 2, . . ., K) as dif-
ferent as possible. Eq. (14) implies that this is the same
as choosing α to make p

(α)
k (k = 1, 2, . . ., K) as dif-

ferent as possible since the function g is common for
all k.

As in Section 2.3, we first assume �k = � for ev-
ery k; note this is the same as saying that the species
have the same tolerance parameter, t2k = t2 = �T ��
for any α. Since a Gaussian distribution is completely
characterized by its mean and its variance, to make a
number of Gaussian distributions as different as possi-
ble under the assumption �k = �, it suffices to focus on
the separation of the means. A well-known criterion for
measuring the difference among p

(α)
k (k = 1, 2, . . . , k)

under such circumstances is given by Fisher
(1936):

�T ��

�T ��
, (15)

where

Δ =
k∑

k=1
πk(μk − μ̄)(μk − μ̄)T

is the between-species covariance matrix; μ̄ is the over-
all mean of x across all species and πk, the prob-
ability or relative frequency of species k such that
π1 + π2 + . . . + πK = 1. In practice, both � and � must
be estimated empirically from data. Common estimates
are the sample between-species and within-species
sum-of-squares matrices, B and W, as given in (11).
In other words, the environmental gradient α can be
estimated by the LDA algorithm.

In addition, Hastie and Tibshirani (1996) showed
that uk = αTμk is actually the maximum likelihood es-

timate for the mean of pk under the rank constraint that
the means of pk (k = 1, 2, . . ., K) lie in a rank-one sub-
space; the rank-one subspace is spanned by the LDA
solution α. Therefore, in the context of this weighted
sample model, LDA can be seen to provide a direct
maximum likelihood solution to the constrained ordi-
nation problem if the response functions are assumed
to be Gaussian and the tolerance parameters tk are as-
sumed to be equal among all species.

3.5. Implication

Let us summarize our discussion so far. While CCA
is an approximation to the maximum likelihood solu-
tion for the classic Gaussian response model, LDA ac-
tually gives an exact maximum likelihood solution for
the alternative weighted sample model. Because CCA
and LDA are mathematically equivalent and since CCA
is generally accepted as the standard method for solving
the constrained ordination problem, the research com-
munity has, in effect, been implicitly relying on the
weighted sample model we presented above for quite
a long time. An important feature of this alternative
model is that the environmental gradient is explicitly
defined as the direction where the species’ response
functions differ the most. Below, we focus on how
this alternative weighted sample model can be further
exploited to obtain an easy generalization of the con-
strained ordination problem to allow the use of more
flexible response functions.

4. Generalization

There have been growing interests in the ecological
community to conduct constrained ordination analy-
sis using more flexible models (e.g., Johnson and Alt-
man, 1999; Heegaard, 2002). The equal tolerance as-
sumption, for example, is restrictive, although it does
make the ordination diagrams easier to read. For some
problems, the assumption that the response function is
Gaussian may also not be appropriate. For example, a
species does not always respond symmetrically to the
extreme conditions on either side of its optimum; some
species may even exhibit multimodal responses, per-
haps because sub-species (either identified or uniden-
tified) have adapted to different environmental condi-
tions and occupied different niches.
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4.1. A likelihood ratio criterion

For maximal flexibility, we would like to work with
very general response functions fk (k = 1, 2, . . ., K). In
view of our weighted sample model and the relation
(14), this means we want to work with very general
probability distribution or density functions pk (k = 1,
2, . . ., K). Zhu and Hastie (2003) provide the general
principles needed in order to estimate the environmen-
tal gradient α when each pk is an arbitrary probability
distribution function; the principles exploit the likeli-
hood ratio interpretation of Fisher’s LDA criterion (15).
In particular, for any given direction α, a likelihood-
ratio criterion is used to measure the difference among
p

(α)
k (k = 1, 2, . . . , k):

LR(�) = log

n∏
i=1

k∏
k=1

(p(α)
k (�T xi))

yik

n∏
i=1

k∏
k=1

(p(α)(�T xi))
yik

. (16)

Here p(α) is the distribution of αTx ignoring the species
labels. It is easy to see that criterion (16) will be large
when there is an advantage for having a separate model
for each species and small otherwise. Hence, the envi-
ronmental gradient α can simply be estimated as

�̂ = arg max
� ∈Rd

LR(�).

In practice, the computation of LR(α) requires estimat-
ing the functions p

(α)
k and p(α) for any given α; p(α)

k can
be estimated using the sample Sk(α) and p(α) can be esti-
mated using a pooled sample, in this case {(zi, wi·); i =
1, 2, . . . , n} with wi· = wi1 + wi2 + · · · + wiK.

4.2. An invariance property

An important observation here is that the sampling
distribution g does not affect the estimation of α. This
is because, by (14), p

(α)
k (z) ∝ g(z)fk(z) and likewise

p(α)(z) ∝ g(z)f (z) so g(z) appears in both the numer-
ator and the denominator of (16), which implies the
criterion LR(α) is invariant with respect to the sam-
pling distribution g. In other words, the assumption A2
that g(z) is uniform is not required for estimating the
environmental gradient.

This is not to say that the assumption A2 is entirely
irrelevant. If g(z) is uniform, we obtain a further simpli-

fication that allows us to estimate the response function
fk(z) directly with p

(α)
k (z); the (unknown) proportion-

ality constant is not important here since we are inter-
ested mostly in the shape of fk. Likewise, in the classic
Gaussian response model, assuming g(z) to be uniform
allows us to estimate the optimum of species k directly
with uk = αTμk (see Section 3.4).

If g(z) is not uniform, however, we can still esti-
mate it relatively easily from the (unweighted) sam-
ple S(α) = {z1, z2, . . ., zn} and use it to estimate each
response function fk up to an inconsequential scaling
factor, i.e., fk(z) ∝ p

(α)
k (z)/g(z).

4.3. Connection with LDA

We have already seen in Section 3.4 that if pk is
N(μk, �), the environmental gradient α can be esti-
mated by maximizing Fisher’s LDA criterion (15). The
LR criterion (16) presented above is, in fact, related to
the LDA criterion (15). In particular, if we model pk as a
multivariate Gaussian distribution with different means
but a common covariance matrix and p as a Gaussian
distribution that is the same for all species k = 1, 2,
. . ., K, then maximizing LR(α) is equivalent to max-
imizing (15) and performing LDA (Zhu and Hastie,
2003).

4.4. Connection with the Poisson likelihood

Interestingly, this approach of estimating the envi-
ronmental gradient using (16) is not entirely unrelated
to the one that works directly with the original Pois-
son log-likelihood (1). To see this, note that p(�)(z), the
distribution of z ignoring the species labels, is just a
mixture distribution

p(α)(z) =
K∑

k=1
πkp

(α)
k (z), (17)

where πk is the relative frequency of species k. Us-
ing (17), the argument contained in Appendix B shows
that

p
(α)
k (z)

p(α)(z)
= fk(z)

πk

K∑
j=1

fj(z)
. (18)
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Plugging (18) back into (16), we get

LR(�) =
n∑

i=1

K∑
k=1

yik log

(
fk(�T xi)∑K
j=1fj(�T xi)

)

−
n∑

i=1

K∑
k=1

yik log πk. (19)

On the other hand, if yik ∼ Poisson (λik) and the yiks
are independent, then it is well-known (see, e.g., Ross,
1997) that conditional on the sum yi1 + yi2 + · · · +
yiK = ni, each yik has a multinomial distribution with
probability pik, where

pik = λik

K∑
j=1

λij

.

Apart from a constant not depending on the parameters,
the corresponding log-likelihood for this (conditional)
multinomial distribution is nothing but

log-likelihood =
n∑

i=1

K∑
k=1

yik log

(
λik∑K
j=1λij

)

=
n∑

i=1

K∑
k=1

yik log

(
fk(�T xi)∑K
j=1fj(�T xi)

)
.

(20)

since λik = fk(�T xi) (see Section 2.1). Clearly, (19) is
the same as (20) apart from an additive constant that
does not depend on α.

The argument above shows that estimating α by
maximizing (16) is equivalent to maximizing the con-
ditional multinomial log-likelihood (20) for indepen-
dent Poisson observations. This gives us altogether
three estimation methods to choose from: maximiz-
ing the unconditional Poisson log-likelihood (1), max-
imizing the conditional multinomial log-likelihood
(20), and maximizing the log-likelihood-ratio criterion
(16).

Yee (2004) takes the first approach of maximiz-
ing the Poisson log-likelihood (1) directly by fitting
a rank-reduced vector generalized linear model (Yee
and Hastie, 2003), using an extra quadratic term when
the response functions are Gaussian. The advantage
of the second approach using the conditional multino-
mial log-likelihood (20) is that, by conditioning on the

total counts of all species at the given sites, it encour-
ages “competition” among the species, thereby mak-
ing the biological notion of the environmental gradient
more explicit. The general algorithm proposed by Yee
(2004) can be used to maximize the multinomial log-
likelihood (20) as well, but the computation there is
more complex. Typically, multinomial models are fitted
using an iteratively reweighted least-squares (IRLS)
algorithm (McCullagh and Nelder, 1989). With more
than two species, the response variable must be coded
as a vector and a non-diagonal weight matrix is needed
for each observation, hence precluding the possibility
of any simplified algorithms (see Hastie et al., 2001,
Section 4.4.1).

By contrast, the third approach of maximizing the
log-likelihood-ratio criterion (16) is equivalent to but
conceptually much simpler than maximizing the multi-
nomial log-likelihood (20) directly. For fixed α, we es-
timate p

(α)
k separately for each species. Moreover, the

mixture distribution (17) in the denominator can be es-
timated in the same way from a pooled sample (see
Section 4.1). There is no need to form and keep track
of complicated weight matrices.

4.5. Nonparametric modelling: some details

Another attractive aspect of the log-likelihood-ratio
approach is that it is easy to model p

(α)
k using nonpara-

metric techniques and therefore perform constrained
ordination analysis with fully flexible response func-
tions. In this section, we give some details of how this
can be done.

In practice, we use an iterative method such as
Newton–Raphson to maximize LR(α); this means
throughout the computation, we always compute LR(α)
and its derivatives at a given α. To do so, we only need
be able to estimate the marginal probability distribu-
tions p

(α)
k (k = 1, 2, . . ., K) and their derivatives for a

given α. This can be done using standard tools for uni-
variate density estimation (for more details, see Zhu
and Hastie, 2003).

It is often the case that more than one environmen-
tal gradient is estimated. Since both CCA and LDA
amount to solving an eigenvalue problem, the solutions
are simply given by the leading eigenvectors. Using the
two leading eigenvectors from CCA, for example, one
can make an informative biplot of the data to show the
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species–environmental relationship. Although with ar-
bitrary pk it is no longer possible to treat this as an
eigenvalue problem, it is still possible to get ordered
multiple solutions as before. Note that in LDA, the sec-
ond eigenvector of W−1B can be obtained as

arg max
�T W�1= 0

�T B�

�T W�
,

i.e., one simply maximizes the same criterion with an
added constraint that the solution is now orthogonal
(with respect to the metric W) to the previous one;
this can also be achieved by first projecting the data
onto the orthogonal complement of α1 and maximiz-
ing the same criterion without the constraint. Such a
process can be repeated recursively to solve for all the
subsequent eigenvectors. These ideas are readily appli-
cable in the more general case, i.e., one can maximize
the general criterion LR(α) recursively, transforming

the data at each step. Details can be found in Zhu and
Hastie (2003).

5. Example: a vegetation succession study

As a simple illustration, we analyze a data set stud-
ied by ter Braak (1987). A total of 68 vegetation species
were sampled twice at 63 different sites along a rising
seashore, once in 1978 and once in 1984, resulting in a
126 × 68 Y matrix. In order to investigate whether the
vegetation succession tracked the land uplift of 0.5 cm
per year, ter Braak (1987) used CCA with two “envi-
ronmental variables,” elevation and year. That is, the
matrix X is 126 × 2, and the variable along the “envi-
ronmental” gradient is: α1 × elevation + α2 × year. He
then compared the ratio between α1 and α2, which can
be interpreted as changes in vegetation per year, with
the known uplift of 0.5; the ratio he obtained was 0.76.

Fig. 2. Estimated density functions p
(α)
k

of four randomly selected species superimposed onto the histograms of the respective weighted samples
Sk(α) along the estimated environmental gradient.
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Here we analyze this data without any parametric
assumptions on the response function fk and hence
pk. First, we notice that, out of the 126 sites, some
species were observed at fewer than five sites in total.
One can’t possibly estimate a function nonparametri-
cally with fewer than five observations. Therefore, in
our analysis, we include only those species that were
observed at a minimum of five different sites. There
are 38 such species in total. We re-analyze the re-
duced data set with CCA and obtain a ratio of 0.82,
not significantly different from ter Braak’s original re-
sult. This is an indication that these relatively rare
species do not affect the gradient in any significant
way.

We then estimate the gradient by maximizing the
generalized criterion LR(α) using a Newton–Raphson
algorithm. We use the locfit library (Loader,
1999) for nonparametric density estimation. Using

a smoothing parameter of 0.5 in the locfit rou-
tine, the estimated variable along the gradient is
0.8256 × elevation + 0.5642 × year. The ratio of inter-
est based on this gradient is 0.68, which is a little
smaller than the result from CCA and closer to the
known uplift of 0.5.

Fig. 2 shows the estimated density functions p
(α)
k

of four randomly selected species for illustration. Also
shown are the histograms of their counts along the gra-
dient. Fig. 3 shows the corresponding response func-
tions fk of the same four species after accounting for
the sampling distribution g; an estimate of the function
g is displayed in Fig. 4 alongside with the histogram
of S(α) = {z1, z2, . . ., zn}. The same locfit routine
is used to estimate g. The functions p

(α)
k have been

rescaled in both plots so that they can appear side-by-
side with the histograms (Fig. 2) and the functions fk
(Fig. 4).

Fig. 3. Estimated response functions along the estimated environmental gradient of four randomly selected species. The solid line is the response
function fk; the dashed line is the density function p

(α)
k

from Fig. 2.
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Fig. 4. Estimated sampling distribution g(z) along the estimated en-
vironmental gradient.

Remark. It is clear that if α′ = k� for some scalar
multiple k, then LR(α′) = LR(α), so it suffices to restrict
α to be a unit vector (‖�‖ = 1). In this particular ex-
ample, α = (α1, α2)T is a unit vector in R2. One can,
therefore, write α = (cos θ, sin θ) and plot LR(·) as a
function of θ (Fig. 5).

As expected, the function is periodic as θ goes
from 0 to 2π, since LR(α) = LR(−α). Therefore it suf-

Fig. 5. The function LR(·) as a function of θ as θ goes from 0 to 2π.

fices to focus on the interval [0, π]. We can clearly
see from the plot that the maximum occurs at around
θ = arctan 0.68 ≈ 0.60. We also see another local max-
imum at around θ = 1.5. This can be avoided by try-
ing different starting values, a typical approach when
using iterative methods to optimize a function. Gen-
erally, if there are too many local solutions, it is
often necessary to use a larger smoothing parame-
ter so as to smooth out the objective function (Zhu
and Hastie, 2003). Plots such as those in Fig. 2 pro-
vide a good diagnostic tool for judging whether the
smoothing parameter is well chosen. Notice also from
Fig. 5 that the objective function is fairly flat near
its maximum. This means the corresponding confi-
dence interval for the ratio of interest would be fairly
wide.

6. Summary

We have presented an alternative probabilistic
model for the ecological ordination problem, one
that leads directly to the LDA algorithm. Due to
the equivalence between LDA and CCA, this model
gives additional insights into the nature of CCA as
a computational tool. In particular, LDA and hence
CCA can be seen to find the environmental gradient
explicitly as the direction where the species’ response
functions differ the most. Based on this alternative
model, we have developed a simple generalization
of canonical Gaussian ordination that allows the use
of more flexible response functions. It is also shown
that our approach is equivalent to maximizing a
conditional multinomial likelihood function, which,
by conditioning on the total species count at every site,
implicitly encourages competition among the species.

Throughout this article, we have concentrated
on the case where yik is a Poisson random variable.
Sometimes only the presence or absence of a species is
recorded, in which case yik would be a Bernoulli rather
than a Poisson random variable. However, Theorem 1
is valid for general distributions of yik, which implies
that the approach we have proposed for estimating
the environmental gradient based on maximizing the
LR criterion (16) is more generally applicable. What
is not clear in those cases is whether maximizing LR
(16) is still equivalent to maximizing the conditional
likelihood when yik is not Poisson.
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Appendix A. Proof of Theorem 1

We will prove the theorem for multivariate zi ∈Rd .
The empirical measure puts weights wi∑n

j=1wj
on the

points zi, i = 1, . . ., n. Let I ⊂ Rd be a rectangle. We
need to show

n∑
i=1

wi

n∑
j=1

wj

1(zi ∈ I) →
∫
I
g(z)f (z)dz∫

Rd g(z)f (z)dz

almost surely. (21)

Note that, while conditional on zi each wi may have a
different distribution, unconditionally the wis are i.i.d.
with mean E(wi) = E{E(wi|zi)} = ∫

Rd g(z)f (z)dz <

∞. Since wi is non-negative, we have E |wi| =
E(wi) < ∞. Hence, the strong law of large numbers
applies and gives

1
n

n∑
i=1

wi →
∫
Rd

g(z)f (z)dz almost surely.

Likewise, the quantities wi1 (zi ∈ I) (i = 1, 2, . . ., n) are
also non-negative and i.i.d. with mean

E{wi1(zi ∈ I)} = E{1(zi ∈ I)E(wi|zi)}

=
∫

I

g(z)f (z)dz < ∞.

By the strong law of large numbers, we have

1
n

n∑
i=1

wi1(zi ∈ I) →
∫

I

g(z)f (z)dz almost surely.

Eq. (21) now follows.

Appendix B. Derivation of equation (18)

We now establish that Eq. (18) is true when Eq. (17)
holds. First, we give an expression for πk. Let wk be
the count of species k, then conditional on an environ-
mental score z, wk is a Poisson random variable with
rate fk(z), which means E(wk|z) = fk(z). This implies
the expected count (or population size) of species k is

sk
def= E(wk) = E(E(wk|z))

=
∫

E(wk|z)g(z)dz =
∫

fk(z)g(z)dz. (22)

If we write s =∑K
k=1sk, then the relative frequency of

species k, πk, is nothing but

πk = sk

s
. (23)

Empirically πk can be estimated with π̂k = y·k/y··
where y·k =∑n

i=1yik and y·· =∑n
i=1
∑K

k=1yik. From
(22) it is now clear what the missing proportionality
constant in (14) is and we get

p
(α)
k (z) = 1

sk
g(z)fk(z). (24)

Eq. (17) then gives

p(α)(z) =
K∑

k=1

πk

sk
g(z)fk(z) (25)

Dividing (25) into (24) gives us

p
(α)
k (z)

p(α)(z)
=

1
sk

g(z)fk(z)
K∑

j=1

πj

sj
g(z)fj(z)

=
1
sk

fk(z)
K∑

j=1

πj

sj
fj(z)

=
1
sk

fk(z)

1
s

K∑
j=1

fj(z)
= fk(z)

πk

K∑
j=1

fj(z)
,
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where we have used the identities
πj

sj
= 1

s
and

s

sk
= 1

πk

,

which both follow from (23). Hence Eq. (18) is estab-
lished.
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