
Photocurrent Estimation from Multiple Non-destructive

Samples in a CMOS Image Sensor

Xinqiao Liu and Abbas El Gamal

Information Systems Laboratory

Department of Electrical Engineering

Stanford University

Stanford, CA 94305

chiao@stanford.edu, abbas@isl.stanford.edu

ABSTRACT

CMOS image sensors generally su�er from lower dynamic range than CCDs due to their higher readout noise.
Their high speed readout capability and the potential of integrating memory and signal processing with the
sensor on the same chip, open up many possibilities for enhancing their dynamic range. Earlier work have
demonstrated the use of multiple non-destructive samples to enhance dynamic range, while achieving higher
SNR than using other dynamic range enhancement schemes. The high dynamic range image is constructed
by appropriately scaling each pixel's last sample before saturation. Conventional CDS is used to reduce o�set
FPN and reset noise. This simple high dynamic range image construction scheme, however, does not take
full advantage of the multiple samples. Readout noise power, which doubles as a result of performing CDS,
remains as high as in conventional sensor operation. As a result dynamic range is only extended at the high
illumination end. The paper explores the use of linear mean-square-error estimation to more fully exploit
the multiple pixel samples to reduce readout noise and thus extend dynamic range at the low illumination
end. We present three estimation algorithms: (1) a recursive estimator when reset noise and o�set FPN
are ignored, (2) a non-recursive algorithm when reset noise and FPN are considered, and (3) a recursive
estimation algorithm for case (2), which achieves mean square error close to the non-recursive algorithm
without the need to store all the samples. The later recursive algorithm is attractive since it requires the
storage of only a few pixel values per pixel, which makes its implementation in a single chip digital imaging
system feasible.

1. INTRODUCTION

Dynamic range is a critical �gure of merit for image sensors. It is de�ned as the ratio of the largest non-
saturating photocurrent to the smallest detectable photocurrent, typically de�ned as the standard deviation
of the noise under dark conditions. CMOS image sensors generally su�er from lower dynamic range than
CCDs due to their higher readout noise, and thus higher noise under dark conditions. However, the high
speed non-destructive readout capability of a CMOS image sensor and the ability to integrate memory and
signal processing with the sensor on the same chip, open up many possibilities for enhancing its dynamic
range. Earlier work 1,2 have demonstrated the use of multiple capture to enhance image senor dynamic
range. The idea is to capture several images at di�erent times within the normal exposure time | shorter
exposure time images capture the brighter areas of the scene while longer exposure time images capture
the darker areas of the scene. The captured images are then combined into a single high dynamic range
image by appropriately scaling each pixel's last sample before saturation. Conventional CDS is used to
reduce reset and o�set FPN. It was shown that this multiple capture scheme achieves higher SNR than
other dynamic range enhancement schemes.3 The scheme does not take full advantage of the multiple pixel
samples, however. Readout noise, whose power is doubled as a result of performing CDS, remains as high as
for conventional sensor operation. As a result dynamic range is only extended at the high illumination end.

In this paper we explore the use of linear mean-square-error (MSE) estimation4 to more fully exploit the
multiple pixel samples. The motivation is to reduce readout noise and thus extend dynamic range at the low
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illumination end. Dynamic range is also extended at the high end by considering only pixel samples before
saturation. We present three estimation algorithms.

1. A recursive algorithm when reset noise and o�set FPN are ignored. In this case only the latest estimate
and the new sample are needed to update the photocurrent estimate.

2. A non-recursive algorithm when reset noise and FPN are considered.

3. A recursive estimator for case (2), which is shown to yield mean square error close to the non-recursive
algorithm without the need to store all the samples.

The later recursive algorithm is attractive since it requires the storage of only a constant number of values
per pixel. Since it is also completely local, operating on each pixel output separately, it is ideally suited for
implementation in a single chip digital imaging system.5

The rest of the paper is organized as follows. In section 2 we describe the sensor noise model used
in the derivation of the photocurrent estimation algorithms. In section 3 we describe the three estima-
tion algorithms. In section 4 we present simulation results that demonstrate the dynamic range and SNR
improvements using our algorithms.

2. SENSOR MODEL

Figure 1 depicts a simpli�ed pixel model and the chargeQ(t) versus time t under di�erent lighting conditions.
During capture, each pixel converts incident light into photocurrent iph, for 0 � t � T , where T is the
exposure time. The photocurrent is integrated onto a capacitor and the charge Q(T ) (or voltage) is read
out at the end of exposure time T . Dark current idc and additive noise corrupt the photocharge. The noise
can be expressed as the sum of three independent components, (i) shot noise U(T ) � N (0; q(iph + idc)T ),
where q is the electron charge, (ii) readout circuit noise V (T ) (including quantization noise) with zero mean
and variance �2V , and (iii) reset and FPN noise C with zero mean and variance �2C , which is the same for all
multiple captures. Thus the output charge from a pixel can be expressed as

Q(T ) =

�
(iph + idc)T + U(T ) + V (T ) + C; for Q(T ) � Qsat

Qsat; otherwise

where Qsat is the saturation charge, also referred to as well capacity. The SNR can be expressed as

SNR(iph) = 10 log10
(iphT )

2

q(iph + idc)T + �2V + �2C

Note that SNR increases with iph, �rst at 20dB per decade when reset and readout noise dominate, then
at 10dB per decade when shot noise dominates. SNR also increases with T . Thus it is always preferred to
have the longest possible exposure time. Saturation and motion blur, however, impose practical limits on
exposure time.

3. PHOTOCURRENT ESTIMATION FROM MULTIPLE SAMPLES

The multiple capture scheme as originally described1,2 enhances dynamic range at the high illumination end
as illustrated in Figure 1. In the high light case, the pixel saturates before the end of integration time T ,
and thus its true photocurrent value cannot be faithfully reproduced. Using the multiple capture scheme
the pixel charge is non-destructively read out at t = f0; �; : : : ; Tg and the pixel photocurrent is estimated
by appropriately scaling the di�erence between the last sample before saturation and the sample at 0. The
subtraction of the sample at 0 reduces reset noise and o�set FPN. For example, for the high light case
in Figure 1, the sample at 0 is subtracted from the third sample and the di�erence is scaled by 3� . The
justi�cation for ignoring all other samples before saturation is that the last sample has the highest SNR.
This is quite acceptable at the high illumination end, where shot noise dominates, but results in no dynamic
range enhancement at low illumination where no saturation occurs and readout noise dominates.
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Figure 1. Simpli�ed photodiode pixel model and the photocharge Q(t) vs. time t under di�erent light
intensity

Dynamic range at the low illumination end can be enhanced using the multiple samples by appropriately
averaging the samples before saturation to reduce readout noise. In order for this averaging to be e�ective,
however, the sensor signal and noise model discussed in the previous section must be taken into consideration.
In this section we use linear MSE estimation to derive the optimal weights to be used in the averaging. We
assume n + 1 pixel charge samples Qk captured at times 0; �; 2�; : : : ; n� = T and de�ne the pixel current
i = iph + idc. The kth charge sample is thus given by

Qk = ik� +

kX
j=1

Uj + Vk + C; for 0 � k � n;

where Vk is the readout noise of the kth sample, Uj is the shot noise generated during the time interval
((j � 1)�; j� ], and the Ujs, Vk, C are independent zero mean random variables with

E(V 2
k ) = �2V > 0; for 0 � k � n;

E(U2
j ) = �2U = qi�; for 1 � j � k; and

E(C2) = �2C :

At time k� , we wish to �nd the best unbiased linear MSE estimate, Îk, of i given fQ0; Q1; : : : ; Qkg, i.e., we
wish to �nd b0; b1; : : : ; bk such that

Îk =

kX
j=0

bjQj ;

minimizes
�2
k = E(Îk � i)2:

subject to
E(Îk) = i:

In the following subsections, we present estimation algorithms for three cases, (1) when reset noise and o�set
FPN are ignored, (2) when reset noise and FPN are considered, and (3) a recursive estimator for case (2),
which is shown to yield mean square error close to algorithm in (2) without the need to store all the samples.

3.1. Estimation Ignoring Reset Noise and FPN

Here we ignore reset noise and o�set FPN, i.e., set C = 0. Even though this case does not correspond to
any practical sensor situation, the simpli�cation makes it possible to cast the optimal estimation algorithm
in a recursive form. As we shall see in the next subsection, this is not the case in general.
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To derive the best estimate, de�ne the pixel current samples as

~Ik =
Qk

k�
= i+

Pk
j=1 Uj

k�
+

Vk

k�
; for 1 � k � n

At time k� , we wish to �nd the best unbiased linear mean square estimate of the parameter i given
f~I1; ~I2; : : : ; ~Ikg, i.e., coeÆcients a1; a2; : : : ; ak such that

Îk =
1

gk

kX
j=1

aj ~Ij ;

where gk =
Pk

j=1 aj , minimizes

�2
k = E(Îk � i)2;

subject to
E(Îk) = i

The mean square error (MSE) �2
k is given by

�2
k = E(Îk � i)2

=
1

g2k

� kX
j=1

(
kX
l=j

al

l
)2
�2U
�2

+
kX

j=1

(
aj

j
)2
�2V
�2

�

The optimal ajs can be found using the optimality conditions

@�2
k

@aj
= 0; for 1 � j � k;

and the unbiased estimator constraint.

The optimal estimate can be expressed in the recursive form

Îk = Îk�1 + hk(~Ik � Îk�1);

where the gain hk is given by

hk =
ak

gk�1 + ak

and the aks are given by

ak = k(1 +
ak�1

k � 1
+

�2U
�2V

wk�1);

for wk =
Pk

j=1
aj
j
.

The MSE �2
k can also be expressed in a recursive form as

�2
k =

g2k�1
g2k

�2
k�1 +

1

g2k
((2akgk�1 + a2k)

�2U
k�2

+ a2k
�2V
(k�)2

)

The initial conditions for computing the estimate and its MSE are given by

a1 = 1;

Î1 = ~I1; and

�2
1 =

�2U
�2

+
�2V
�2

To compute the estimate Îk+1 and the MSE �2
k+1 we need to know �2U = qi� , which means that we need to

know i! We solve this problem by using the latest estimate of i, Îk, to approximate �
2
U . We found that this

approximation yields MSE very close to the optimal case, i.e., when i is known.
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3.2. Estimation Considering Reset noise and FPN

With reset noise and o�set FPN taken into consideration, we rede�ne ~Ik as

~Ik =
Qk � wQ0

k�
; for 1 � k � n:

The weight w is obtained by solving for the optimal b0 and is given by

w =
�2C

�2C + �2V
:

Note that ~Ik corresponds to an estimate with a weighted CDS operation. The weighting has the e�ect of
reducing the additional readout noise due to CDS.

The pixel current estimate given the �rst k samples can be expressed as

Îk = Ak
~Ik ;

where

Ak = [a
(k)
1 a

(k)
2 : : : a

(k)
2 ]; and

~Ik = [~I1 ~I2 : : : ~Ik]
T :

The optimal coeÆcient vector Ak is given by

Ak = �(
�2U
�2

Mk +
�2V
�2

(Tk + wDkF
T
k ))

�1 �

2
Lk;

where

Mk =

2
664

1 1
2 : : : 1

k

1 1 : : : 2
k

: : :

1 1 : : : 1

3
775 ; Dk =

2
6664

1
1
...
1

3
7775 ; Fk =

2
6664

1
1
2
...
1
k

3
7775 ; Lk =

2
6664

1
2
...
k

3
7775 ; Tk = diagfFkg

and � is the Lagrange multiplier for the unbiased constraint

kX
j=1

a
(k)
j = 1:

It can be shown that the above solution cannot be expressed in a recursive form and thus �nding Îk
requires the storage of the vector ~Ik and inverting a k � k matrix.

3.3. Recursive Algorithm

Now, we restrict ourselves to recursive estimates, i.e., estimates of the form

Îk = Îk�1 + hk(~Ik � Îk�1);

where again

~Ik =
Qk � wQ0

k�
:

The coeÆcient hk can be found by solving the equations

d�2
k

d hk
=

dE(Îk � i)2

d hk
= 0; and

EÎk = i:
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De�ne the MSE of ~Ik as

�2
k = E(~Ik � i)2 =

1

k2�2
(k�2U + (1 + w)�2V )

and the covariance between ~Ik and Îk as

�k = E(~Ik � i)(Îk � i)

= (1� hk)
k � 1

k
�k�1 �

(1� hk)hk�1
k(k � 1)�2

�2V + hk�
2
k:

The MSE of Îk can be expressed in terms of �2
k and �k as

�2
k = (1� hk)

2�2
k�1 +

2(k � 1)(1� hk)hk
k

�k�1 �
2hk�1(1� hk)hk

k(k � 1)�2
�2V + hk

2�2
k:

To minimize the MSE, we require that
d�2

k

d hk
= 0;

Which gives

hk =
�2
k�1 �

(k�1)
k

�k�1 +
hk�1�

2

V

k(k�1)�2

�2
k�1 �

2(k�1)
k

�k�1 +
2hk�1�2V
k(k�1)�2 +�2

k

Note that hk, �k and �k can all be recursively updated.

To summarize, the suboptimal recursive algorithm is as follows.

Set initial parameter and estimate values as follows:

h1 = 1

~I1 =
(Q1 � wQ0)

�

Î1 = ~I1

�2
1 =

�2U + (1 + w)�2V
�2

�2
1 = �2

1

�1 = �2
1

At each iteration, the parameter and estimate values are updated as follows:

~Ik =
(Qk � wQ0)

k�

�2
k =

1

k2�2
(k�2U + (1 + w)�2V )

hk =
�2
k�1 �

(k�1)
k

�k�1 +
hk�1�

2

V

k(k�1)�2

�2
k�1 �

2(k�1)
k

�k�1 +
2hk�1�2V
k(k�1)�2 +�2

k

�k = (1� hk)
k � 1

k
�k�1 �

(1� hk)hk�1
k(k � 1)�2

�2V + hk�
2
k

�2
k = (1� hk)

2�2
k�1 + 2hk�k � hk

2�2
k:

Îk = Îk�1 + hk(~Ik � Îk�1)

Note that to �nd the new estimate Îk, only three parameters, hk, �k and �k, the old estimate Îk�1 and the
new sample value ~Ik are needed. Thus only a small �xed amount of memory per pixel is required.
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4. SIMULATION RESULTS

In this section we present simulation results that demonstrate the SNR and dynamic range improvements
using the non-recursive algorithm described in Subsection 3.2 compared to those achieved by the recursive
algorithm in Subsection 3.3 and the earlier multiple capture scheme.1,2

The simulation results are summarized in Figures 2, 3, 4. The sensor parameters assumed in the simu-
lations are as follows.

Qsat = 18750 e-

idc = 0:1 fA

�V = 60 e-

�C = 62 e-

T = 32 ms

� = 1 ms

Figures 2 and 3 compare the equivalent readout noise RMS and SNR values at low illumination level
corresponding to iph = 2 fA as a function of the number of samples k for conventional sensor operation and
using the non-recursive and the recursive estimation algorithms. As can be seen in Figure 2, the equivalent
readout noise after the last sample is reduced from 86 e- when no estimation is used to 35:8 e- when the
non-recursive estimator is used and to 56:6 e- when the recursive estimator is used. Equivalently, as can
be seen in Figure 3, SNR increases by 6:6 dB using the non-recursive estimator versus 3:34 dB using the
recursive estimator. Also note the drop in the equivalent readout noise RMS due to the weighted CDS used
in our algorithms.
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Figure 2. Equivalent Readout noise rms value vs. k.

Figure 4 plots SNR versus iph using the standard multiple capture scheme1,2 and using our estimators.
Note that using our estimators consistently improves SNR, with the most pronounced improvement being
at the low illumination end. More signi�cantly the sensor dynamic range de�ned as the ratio of the largest
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Figure 3. SNR vs. k.

non-saturating photocurrent imax to the smallest detectable photocurrent imin is increased from 73:5 dB
using the standard multiple capture scheme to 81:5 dB using the non-recursive estimator and to 77:5 dB
using the recursive estimator.

5. CONCLUSION

We presented estimation algorithms that exploit the high speed imaging capability of CMOS image sen-
sors to enhance its dynamic range and SNR beyond the standard multiple capture scheme.1,2 While the
standard multiple capture scheme extends dynamic range only at the high illumination end, our algorithms
also extend it at the low illumination end by averaging out readout noise. The non-recursive estimation
algorithm presented signi�cantly increases dynamic range and SNR but requires the storage of all frames
and performing costly matrix inversions. To reduce the storage and computational complexity we also de-
rived a recursive algorithm. We showed that the dynamic range and SNR improvements achieved using the
recursive estimator although not as impressive as using the non-recursive estimator, are quite signi�cant.
The recursive algorithm, however, has the important advantage of requiring the storage of only a few pixel
values per pixel and modest computational power, which makes its implementation in a single chip digital
imaging system quite feasible.
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