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BACKWARD RICCI FLOW ON LOCALLY HOMOGENEOUS
THREE-MANIFOLDS

XIAODONG CAO∗ AND LAURENT SALOFF-COSTE♭

Abstract. In this paper, we study the backward Ricci flow on locally homogeneous
3-manifolds. We describe the long time behavior and show that, typically and after
a proper re-scaling, there is convergence to a sub-Riemannian geometry. A similar
behavior was observed by the authors in the case of the cross curvature flow.

1. Introduction

1.1. The Ricci flow. In [IJ92], J. Isenberg and M. Jackson studied the Ricci flow on
homogeneous 3-manifolds. As homogeneous 3-manifolds are the models and building
blocks of the geometrization of 3-manifolds, it is natural and important to study the
behavior of various geometric flows in this basic case. See [CK04, Chapter 1]. Further
studies are in [KM01], [Lot07] and [Gli08].

For obvious reasons, works have focussed on the forward behavior of the Ricci flow
although, in the homogeneous case, the flow reduces to an ODE system and there
is no obstruction to the study of the backward flow. In [CNSC08] and [CSC08], the
authors studied the forward and backward limits of the cross curvature flow on homo-
geneous 3-manifolds. Indeed, in the case of the cross curvature flow it is not entirely
clear which direction is more natural. The results obtained in [CSC08] suggest that
the backward behavior of the Ricci flow should be studied as well and this is the
subject of this paper.

Recall that the Ricci flow on a manifold is a flow of Riemannian metric g(t) satis-
fying the equation

∂g

∂t
= −2Rc, g(0) = g0,

where Rc denotes the Ricci curvature tensor (in this instance, the Ricci curvature
tensor of the metric g(t)). This can be normalized in various ways by setting g̃(t̃) =

ψ(t)g(t), t̃ =
∫ t
0
ψ(s)ds. Setting ψ̃(t̃) = ψ(t), we obtain

∂g̃

∂t̃
= −2R̃c+

(
∂ ln ψ̃

∂t̃

)
g̃, g̃(0) = g0.
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For compact manifolds, the customary normalization uses 1
ψ
∂ψ
∂t

= 2r
3
, where r is the

average of the scalar curvature R, in which case, 1
eψ

∂ eψ

∂et
= 2er

3
. This normalization keeps

the volume constant under the flow. In the case of the locally homogeneous manifolds,
we can use this normalization even in the non-compact case since the scalar curvature
is constant. Hence, following [IJ92], we will study the flow

(1.1)
∂g

∂t
= −2Rc +

2

3
Rg, g(0) = g0.

1.2. The backward behavior of the Ricci flow. There are 9 types of locally ho-
mogeneous 3-manifolds and these are split into two families. The first family contains
the manifolds covered by the hyperbolic 3-space H3, and the product geometries of
type H2 × R and S2 × R. The second family corresponds to those geometries whose

universal cover is a group itself. They are: R3, SU(2,R); ˜SL(2,R); E(1, 1) = Sol, i.e.,

the group of isometries of a flat Lorentz plane; Ẽ(2), the universal cover of group of
isometries of the plane; the Heisenberg group. This second family is referred to as
the Bianchi case (see [IJ92]). In the Bianchi case, given a metric g0, Milnor [Mil76]
provides a frame (f1, f2, f3) in which both the metric and the Ricci tensors are diag-
onalized. As this property is preserved by the Ricci flow, writing

g = Af 1 ⊗ f 1 +Bf 2 ⊗ f 2 + Cf 3 ⊗ f 3,

the Ricci flow becomes an ODE system in (A,B,C). Furthermore, Milnor’s paper
[Mil76] provides the computation of the Ricci tensor in each case so that the ODE
system in question can be written down explicitly. The simplest non-trivial case is
the Heisenberg group. Given a metric g0 on the Heisenberg group (or on a 3-manifold
of Heisenberg type), we fix a Milnor frame {fi}3

1 such that [f2, f3] = 2f1, [f3, f1] =
0, [f1, f2] = 0. Using [Mil76], the ODE system for the normalized Ricci flow is given
by

(1.2)





dA

dt
= − 16

3

A3

A0B0C0

,

dB

dt
= +

8

3

A2B

A0B0C0

,

dC

dt
= +

8

3

A2C

A0B0C0

,

where we used the fact that, under (1.1), ABC = A0B0C0. Let R0 = − 2A0

B0C0
< 0 be

the initial scalar curvature. Then (1.2) admits a completely explicit maximal solution
defined on (3/(16R0),+∞) and given by





A(t) =A0(1 − (16/3)R0t)
−1/2,

B(t) =B0(1 − (16/3)R0t)
1/4,

C(t) =C0(1 − (16/3)R0t)
1/4.
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Observe that, when t tends to 3/(16R0) = −Tb, the metric g(t) = (C0)/C(t))g(t)
converges to

∞f 1 ⊗ f 1 +B0f
2 ⊗ f 2 + C0f

3 ⊗ f 3,

which can be interpreted as describing a sub-Riemannian geometry on the Heisenberg
group. The point of this paper is to show that this behavior in the backward direction
is typical for all locally homogeneous manifolds corresponding to the Bianchi cases
described above except for those corresponding to the trivial case R3.

Theorem 1.1. Let (M, g0) be a locally homogeneous 3-manifold with universal cover

SU(2,R), ˜SL(2,R), E(1, 1) = Sol, Ẽ(2), or the Heisenberg group. Let g(t), (−Tb, Tf)
be a maximal solution of the normalized Ricci flow (1.1). Let d(t) be the associated

distance function on M . Assume g0 is generic among all locally homogeneous metric

on M . Then Tb is finite and there exists a function r(t) : (−Tb, 0] → (0,∞) such

that, as t tends to −Tb, the metric spaces (M, r(t)d(t)) converge uniformly to a sub-

Riemannian space (M, db) whose tangent cone at any point is the Heisenberg group

equipped with its natural sub-Riemannian metric.

By definition, the uniform convergence of metric spaces (M, dt) to (M, d) means
the uniform convergence over compact sets of (x, y) → dt(x, y) to (x, y) → d(x, y).

The present paper proves this theorem in all cases except S̃L(2,R). For manifolds

covered by S̃L(2,R), we prove the result under the additional assumption that there
exists a time t0 such that either A(t0) ≥ max{B(t0), C(t0)} or A(t0) ≤ |B(t0)−C(t0)|.
In the paper [CGSC08], we show that this condition is always satisfied except for a
hypersurface of initial conditions.

The proof of this theorem proceeds by inspection of the different cases. It would be
more elegant to have an argument covering all cases at once. However, the existence
of exceptional sets of initial conditions for which the general result fails indicates
that it is unlikely that such treatment is possible. Indeed, the exceptional sets of
initial conditions are very much case-dependent, see the more precise statements in
the different sections below.

The results obtained in each of the different cases are more precise than stated in
Theorem 1.1. They describe the asymptotic behavior of each of the metric components
in a fixed Milnor frame. This is useful in exploring the Ricci flow on homogeneous
3-manifolds under more sophisticated scaling procedures. See [KM01, Lot07, Gli08].

Together, the study of the forward normalized Ricci flow (see [IJ92, Lot07, KM01])
and this paper, give a description of the asymptotic behaviors of the Ricci flow on
homogeneous 3-manifolds for both the forward and backward directions. For instance,
the solutions of the forward normalized Ricci flow always exist for all (positive) time
in the Bianchi classes ([IJ92]).

1.3. Sub-Riemannian geometries. Our main result, Theorem 1.1, refers to the no-
tion of sub-Riemannian geometry, a term that we now explain in the present context.
The typical behavior (possibly after some re-scaling) of the evolving metric

g = Af 1 ⊗ f 1 +Bf 2 ⊗ f 2 + Cf 3 ⊗ f 3,
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at the end points of a maximal existence interval is that some of the coefficients
A,B,C either vanish or tend to ∞. When a coefficient vanishes and the manifold is
compact, the phenomenon can be interpreted as a dimensional collapse. Naively, at
least one direction disappears. To interpret the situation when a coefficient tends to
infinity, it is useful to look at the dual tensor

Q = A−1f1 ⊗ f1 +B−1f2 ⊗ f2 + C−1f3 ⊗ f3

defined on the co-tangent bundle. Suppose that A tends to infinity whereas B,C
have finite limits B∗, C∗. Then the tensor Q tends to

Q∗ = B−1
∗ f2 ⊗ f2 + C−1

∗ f3 ⊗ f3.

If it turns out that [f2, f3] = 2ǫ1f1 with ǫ1 6= 0, then the tensor Q∗ induces a natural
distance function d∗ on the underlying manifold M . This distance can be computed
by minimizing the length of the so-called horizontal curves, i.e., those curves that
stay tangent to the linear span of f2, f3. The associated “geometry” is called a sub-
Riemannian geometry. See [Mon02] for a book length introduction to sub-Riemannian
geometry and [CSC08] for some details directly relevant to the present situation. Let
us note here that the convergence Q → Q∗ translates quite easily in the uniform
convergence over compact sets on M ×M of the associated distance functions. This
explains the conclusion of Theorem 1.1.

1.4. The normalized backward Ricci flow. In order to study the backward be-
havior of the Ricci flow, it is convenient to reverse time and consider the solution of
the positive normalized Ricci flow equation

(1.3)
∂g

∂t
= 2Rc− 2

3
Rg, g(0) = g0.

We let T+ ∈ [0,+∞] be the maximal existence time for this equation. The rest of
this paper is devoted to the asymptotic properties of this flow when t → T+ in the

case of SU(2), E(1, 1), Ẽ(2) and ˜SL(2,R). This includes determining whether T+ is
finite or infinite. The results are stated explicitly for the flow on each of these groups
but, in each case, it holds in the same form on any locally homogeneous 3-manifold
covered by the corresponding group. In each case, we write the solution of (1.3) in
the form

g = Af 1 ⊗ f 1 +Bf 2 ⊗ f 2 + Cf 3 ⊗ f 3

in a Milnor frame (f1, f2, f3) for g0. Under (1.3), ABC = A0B0C0 is a constant. In
the rest of this paper, we assume the normalization A0B0C0 = 4. This choice is made
so that the ODE systems are the same as in [IJ92], despite the fact that the frame
we use here have a different normalization than those used in [IJ92].

If A,B,C is the solution under A0B0C0 = 4 and Ã, B̃, C̃ is the solution with

Ã0 = λA0, B̃0 = λB0, C̃0 = λC0, then Ã(t) = λA(t/λ), B̃(t) = λB(t/λ) and C̃(t) =
λC(t/λ).
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2. The normalized positive Ricci flow on SU(2)

Given a metric g0 on SU(2), we fix a Milnor frame such that [fi, fj] = 2fk for
all cyclic permutations of the indices. This section is devoted to the proof of the
following result.

Theorem 2.1. Let g0 be an homogeneous metric on SU(2) with associated Milnor

frame (f1, f2, f3) and g0 = A0f
1 ⊗ f 1 + B0f

2 ⊗ f 2 + C0f
3 ⊗ f 3 with A0B0C0 = 4.

Let g(t) = A(t)f 1 ⊗ f 1 + B(t)f 2 ⊗ f 2 + C(t)f 3 ⊗ f 3, t ∈ [0, T+) be the maximal

forward solution of the positive normalized Ricci flow (1.3) with g(0) = g0. Assume

that A0 ≥ B0 ≥ C0.

(1) If A0 = B0 = C0 then T+ = ∞ and g(t) = g0, t ∈ [0,∞).
(2) If A0 = B0 > C0 then T+ = ∞, A = B > C and, as t tends to infinity,

A ∼ 8
3
t, C ∼ 9

16
t−2.

(3) If A0 > B0 ≥ C0 then T+ is finite, A > B ≥ C and there are constants

η1, η2 ∈ (0,∞) such that

A ∼
√

6

4
(T+ − t)−1/2, B ∼ η1(T+ − t)1/4, C ∼ η2(T+ − t)1/4

as t tends to T+.

Let d(t) be the distance function associated to (B0/B(t))g(t). In case (3), the metric

space (SU(2), d(t)) converges uniformly as t → T+ towards the sub-Riemanninan

metric space (SU(2), d∗) where d∗ is the sub-Riemannian distance associated with

Q∗ = B−1
0 f2 ⊗ f2 + η1η

−1
2 B−1

0 f3 ⊗ f3.

Remark 2.1. Consider a maximal solution

gf(t) = A(t)f 1 ⊗ f 1 +B(t)f 2 ⊗ f 2 + C(t)f 3 ⊗ f 3, t ∈ (−T+,∞)

of the forward normalized Ricci flow (1.1). Let g(t) = (B0/B(t))gf(t). Isenberg

and Jackson [IJ92] shows that A − C ≤ (A0 − C0)e
−2C2

0 t, ∀t ≥ 0, if A0 ≥ B0 ≥ C0

(this order is preserved by the flow). Hence, in the forward direction, g(t) converges
exponentially fast to the round metric whereas Theorem 2.1 describes the backward
behavior. In the generic case A0 > B0 ≥ C0, g(t) converges to a sub-Riemannian
metric as t→ −T+.

The sectional curvatures are (see, e.g., [CK04, pg. 12]

K(f2 ∧ f3) =
(B − C)2

ABC
− 3A

BC
+

2

B
+

2

C
,

K(f3 ∧ f1) =
(C − A)2

ABC
− 3B

CA
+

2

A
+

2

C
,

K(f1 ∧ f2) =
(A−B)2

ABC
− 3C

AB
+

2

A
+

2

B
.
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From the sectional curvatures given above, we easily obtain the ODEs correspond-
ing to the flow, under the normalization ABC = 4, namely,

(2.1)





dA

dt
= − 2

3
A[−A(2A−B − C) + (B − C)2],

dB

dt
= − 2

3
B[−B(2B −A− C) + (A− C)2],

dC

dt
= − 2

3
C[−C(2C − A− B) + (A− B)2].

Without loss of generality we may assume that A0 ≥ B0 ≥ C0. As

d

dt
(A− C) =

2

3
(A− C)[2A2 + 2AC + 2C2 − (A+B + C)B],(2.2)

d

dt
(A− B) =

2

3
(A−B)[2A2 + 2AB + 2B2 − (A+B + C)C],(2.3)

d

dt
(B − C) =

2

3
(B − C)[2B2 + 2BC + 2C2 − (A+B + C)A],(2.4)

it is easy to see that A ≥ B ≥ C is preserved along the flow. This yields the following
lemma.

Lemma 2.2. Assume that A0 ≥ B0 ≥ C0. Then A, A − B and A − C are all

nondecreasing along the flow and C is non-increasing.

We now consider three cases. The first case is when A0 = B0 = C0. Then
A(t) = B(t) = C(t) = A0 and the solution exists for all time.

The second case is when A0 = B0 > C0. Then A(t) = B(t) as long as the solution
exists and we have

(2.5)





dA

dt
=

2

3
AC(A− C),

dC

dt
= − 4

3
C2(A− C).

In this case, A is increasing, C is decreasing and A2C = A2
0C0 along the flow.

Lemma 2.3. If A0 = B0 > C0, then T+ = ∞, A ∼ 8
3
t, and C ∼ 9

16
t−2 as t tends to

infinity.

Proof. Since dA
dt

= 2
3
A2

0C0 − 2
3
AC2, if T+ < ∞, then limT+

A < ∞, and limT+
C > 0.

This contradicts the assumption that T+ is the maximal existence time. Hence T+ =
∞. As A is increasing, C decreasing and A2C constant, it follows from (2.5) that
lim∞A = ∞, and thus lim∞C = 0. Moreover, lim∞AC2 = 0. Now the asymptotic
for A and C follows from (2.5) which yields d

dt
A ∼ 2

3
A2

0C0, and A2C = A2
0C0 = 4. �

We now focus on the third case, the generic case.

Lemma 2.4. Assume that A0 > B0 ≥ C0. Then T+ <∞.
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Proof. Assume that T+ = ∞. We have

d

dt
A =

2

3
A[A(A− B) + A(A− C) − (B − C)2] ≥ 2

3
A2(A− B),

and
d

dt
C < −2

3
C(A−B)2.

Since, by Lemma 2.2, both A and A−B are nondecreasing, it follows that lim∞A =
∞, lim∞C = 0. Now, (2.3) implies that

d

dt
ln(A−B) ≥ 2

3
(2A2 +B2),

hence lim∞(A− B) = ∞. Since

(2.6)
d

dt
lnB = −2

3
[B(A−B) + (A−B)2 + 2(A− B)(B − C) − C(B − C)],

this shows that B is non-increasing for t large enough, hence bounded. So, we have

dA

dt
∼ 4

3
A3.

But this shows that there exists a finite time T0, such that limT0
A = ∞, this contra-

dicts our assumption that T+ = ∞. �

Lemma 2.5. Assume A0 > B0 ≥ C0. Then limT+
A = ∞, limT+

B = limT+
C = 0.

Proof. Assume that limT+
C > 0. As A > B ≥ C and that T+ is finite, we must have

limT+
A = ∞. We have

d

dt
lnA <

4

3
A2 ≤ d

dt
ln(A− B).

It follows that limT+
(A − B) = ∞. By (2.6), B is non-increasing for t close to

T+ and hence bounded from above. This shows that d
dt
A ∼ 4

3
A3 and thus that

A−2 ∼ 8
3
(T+ − t). Hence

d

dt
lnC ∼ −1

4
(T+ − t)−1.

This contradicts limT+
C > 0 and we conclude that limT+

C = 0.
Now by (2.6) we can see that B is bounded from above. So, if limT+

A < ∞ then
d
dt
C ∼ −ηC, for some constant η ∈ (0,∞). This contradicts limT+

C = 0. So we
conclude that limT+

A = ∞.
To show that limT+

B = 0, notice that (2.6) implies that B is non-increasing for t
close enough to T+. As

d

dt
ln(AB2) = 2(B − C)(B + C −A),

we obtain that AB2 is bounded from above on [0, T+), hence limT+
B = 0. �
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Lemma 2.6. Assume that A0 > B0 ≥ C0, then there exist η1, η2 ∈ (0,∞), such that

A ∼
√

6

4
(T+ − t)−1/2, B ∼ η1(T+ − t)1/4, C ∼ η2(T+ − t)1/4.

Proof. The first statement follows directly from

d

dt
A ∼ 4

3
A3.

To obtain the asymptotic behavior for B,C, notice that

d

dt
ln(AC2) = 2(B − C)(A− B − C),

d

dt
ln(AB2) = 2(B − C)(B + C − A).

Since limT+
A = ∞ and limT+

B = limT+
C = 0, we have limT+

(A − B − C) =
∞. Hence, the equations above imply that AB2 is non-increasing and AC2 is non-
decreasing for t close to T+. But B ≥ C, so

0 < lim
T+

AC2 ≤ lim
T+

AB2 <∞.

It follows that limT+
B ∼ η1(T+ − t)1/4 and limT+

C ∼ η2(T+ − t)1/4. �

This finishes the proof of Theorem 2.1.

3. The normalized positive Ricci flow on E(1, 1) (Sol geometry)

Given a metric g0 on E(1, 1), we fix a Milnor frame such that [f2, f3] = 2f1, [f3, f1] =
0, [f1, f2] = −2f3. This section is devoted to the proof of the following result.

Theorem 3.1. Let g0 be an homogeneous metric on E(1, 1) with associated Milnor

frame (f1, f2, f3) and g0 = A0f
1 ⊗ f 1 + B0f

2 ⊗ f 2 + C0f
3 ⊗ f 3 with A0B0C0 = 4.

Let g(t) = A(t)f 1 ⊗ f 1 + B(t)f 2 ⊗ f 2 + C(t)f 3 ⊗ f 3, t ∈ [0, T+) be the maximal

forward solution of the positive normalized Ricci flow (1.3) with g(0) = g0. Assume

that A0 ≥ C0.

(1) If A0 = C0 then T+ = 3
32
B0 and

A(t) = C(t) =

√
6

4
(T+ − t)−1/2, B(t) =

32

3
(T+ − t), t ∈ [0, T+).

(2) If A0 > C0 then T+ < ∞ and, as t tends to T+, there are constants η1, η2 ∈
(0,∞) such that

A ∼
√

6

4
(T+ − t)−1/2, B ∼ η1(T+ − t)1/4, C ∼ η2(T+ − t)1/4.

Let d(t) be the distance function associated to (B0/B(t))g(t). In case (2), the metric

space (E(1, 1), d(t)) converges uniformly as t → T+ towards the sub-Riemanninan

metric space (E(1, 1), d∗) where d∗ is the sub-Riemannian distance associated with

Q∗ = B−1
0 f2 ⊗ f2 + η1η

−1
2 B−1

0 f3 ⊗ f3.

Remark 3.1. For the forward normalized Ricci flow (1.1), Isenberg and Jackson [IJ92]
show that the solution exists for all time and presents a cigar degeneracy.
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The sectional curvatures of g(t) in the frame (fi)
3
1 are:

K(f2 ∧ f3) =
(A− C)2 − 4A2

ABC
,

K(f3 ∧ f1) =
(A+ C)2

ABC
,

K(f1 ∧ f2) =
(A− C)2 − 4C2

ABC
.

These yield the equations for the normalized positive Ricci flow on E(1, 1), under the
normalization ABC = 4, namely,

(3.1)





dA

dt
=

2

3
A(2A2 + AC − C2),

dB

dt
= − 2

3
B(A+ C)2,

dC

dt
=

2

3
C(2C2 + AC − A2).

Lemma 3.2. If A0 = C0, then T+ = 3
32
B0 < ∞. Moreover A(t) = C(t) =

√
6

4
(T+ −

t)−1/2 and B(t) = 32
3
(T+ − t), for t ∈ [0, T+).

Proof. It is easy to see that A = C as long as the solution exists. As d
dt
A−2 = −8

3
, we

have T+ <∞ and

A =

√
6

4
(T+ − t)−1/2, T+ =

3

8A2
0

=
3

32
B0.

Further, d
dt
B = −8

3
BA2, so B = 32

3
(T+ − t). �

Without loss of generality, we assume that A0 > C0. This implies that A is in-
creasing. Note that B is always decreasing.

Lemma 3.3. If A0 > C0, then T+ < ∞, limT+
A = ∞, and there exists a time t0

such that A(t0) ≥ 2C(t0).

Proof. The fact that T+ < ∞ follows from d
dt
A > 2

3
A3. Now assume that limT+

A =
A(T+) <∞. Then, since

d

dt
lnC = −2

3
(A + C)(A− 2C) > −4

3
A2 > −4

3
A(T+)2,

and
d

dt
lnB = −2

3
(A+ C)2 >

8

3
A2 > −8

3
A(T+)2,

we get that B ≥ limT+
B = B(T+) > 0. Similarly, there exists some constant η > 0

such that C ∈ [η, A(T+)]. This contradicts the fact that the maximal existence time
T+ is finite. Hence limT+

A = ∞.
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To prove the second statement, we assume that C < A < 2C for all t ∈ [0, T+). So
we have limT+

C = ∞. Since

d

dt
ln(A/C) = 2(A+ C)(A− C) > 0,

we see that A/C is increasing, so A/C > A0/C0 and A − C = A(1 − C/A) >
(1 − C0/A0)A. Moreover, we have

(1 − C0/A0)

∫ T+

0

(A+ C)A <

∫ T+

0

(A+ C)(A− C) <
1

2
ln 2.

Hence ∫ T+

0

(A+ C)(2C − A) <

∫ T+

0

(A+ C)C <

∫ T+

0

(A+ C)A <∞.

This contradicts the fact that

d

dt
lnC =

2

3
(A + C)(2C − A) and lim

T+

C = ∞.

So there exists a time t0 such that A(t0) ≥ 2C(t0). �

Lemma 3.4. Assume that A0 > C0. There exist η1, η2 ∈ (0,∞) such that, as t tends

to T+, we have

A ∼
√

6

4
(T+ − t)−1/2, B ∼ η1(T+ − t)1/4, C ∼ η2(T+ − t)1/4.

Proof. By Lemma 3.3, there is t0 such that A(t0) ≥ 2C(t0). As d
dt

ln(A/C) = 2(A +
C)(A − C) > 0, we conclude that A(t) ≥ 2C(t) for t ∈ [t0, T+). Hence C is non-
increasing on [t0, T+). As

d

dt
ln(AC3) =

2

3
(−A2 + 4AC + 5C2),

d

dt
ln(AB2) = −2C(A + C),

and limT+
A = ∞, it follows that both AC3 and AB2 are bounded from above, hence

limT+
B = limT+

C = 0.
Next, we show that limT+

AB2 = η1 and limT+
AC2 = η2. Note that

d

dt
ln(AC2) = 2C(A+ C) and

d

dt
ln(AB2) = −2C(A + C).

Hence, it is enough to prove that
∫ T+

0
AC < ∞. As d

dt
C ∼ −2

3
A2C, and C > 0, we

have ∫ T+

0

AC < A−1
0

∫ T+

0

A2C <∞.

Now, the lemma follows from d
dt
A ∼ 4

3
A3. �

This ends the proof of Theorem 3.1.
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4. The normalized positive Ricci flow on Ẽ(2)

Given a left-invariant metric g0 on Ẽ(2), we fix a Milnor frame {fi}3
1 such that

[f2, f3] = 2f1, [f3, f1] = 2f2, [f1, f2] = 0.

The result in this case reads as follows.

Theorem 4.1. Let g0 be an homogeneous metric on Ẽ(2) with associated Milnor

frame (f1, f2, f3) and g0 = A0f
1 ⊗ f 1 + B0f

2 ⊗ f 2 + C0f
3 ⊗ f 3 with A0B0C0 = 4.

Let g(t) = A(t)f 1 ⊗ f 1 + B(t)f 2 ⊗ f 2 + C(t)f 3 ⊗ f 3, t ∈ [0, T+) be the maximal

forward solution of the positive normalized Ricci flow (1.3) with g(0) = g0. Assume

that A0 ≥ B0.

(1) If A0 = B0 then T+ = ∞ and g(t) = g0 on [0,∞).
(2) If A0 > B0 then T+ < ∞ and, as t tends to T+, there are constants η1, η2 ∈

(0,∞) such that

A ∼
√

6

4
(T+ − t)−1/2, B ∼ η1(T+ − t)1/4, C ∼ η2(T+ − t)1/4.

Let d(t) be the distance function associated to (B0/B(t))g(t). In case (2), the metric

space (Ẽ(2), d(t)) converges uniformly as t→ T+ towards the sub-Riemanninan metric

space (Ẽ(2), d∗) where d∗ is the sub-Riemannian distance associated with

Q∗ = B−1
0 f2 ⊗ f2 + η1η

−1
2 B−1

0 f3 ⊗ f3.

Remark 4.1. Consider a maximal solution

gf(t) = A(t)f 1 ⊗ f 1 +B(t)f 2 ⊗ f 2 + C(t)f 3 ⊗ f 3, t ∈ (−T+,∞)

of the forward normalized Ricci flow (1.1). Let g(t) = (B0/B(t))gf(t). Isenberg and

Jackson [IJ92] shows that A−B ≤ (A0 −B0)e
−4B2

0
t, ∀t ≥ 0, if A0 ≥ B0 (this order is

preserved by the flow). Hence, in the forward direction, g(t) converges exponentially
fast to the flat metric whereas Theorem 4.1 describes the backward behavior. In the
generic case A0 > B0, g(t) converges to a sub-Riemannian metric as t→ −T+.

In this case, the sectional curvatures are:

K(f2 ∧ f3) =
1

ABC
(B − A)(B + 3A),

K(f3 ∧ f1) =
1

ABC
(A− B)(A+ 3B),

K(f1 ∧ f2) =
1

ABC
(A− B)2.
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Hence the solution g(t) = A(t)f 1 ⊗ f 1 +B(t)f 2 ⊗ f 2 +C(t)f 3 ⊗ f 3 of the normalized
positive Ricci flow satisfies

(4.1)





dA

dt
=

2

3
A(2A +B)(A−B),

dB

dt
= − 2

3
B(2B + A)(A−B),

dC

dt
= − 2

3
C(A− B)2,

under the normalization ABC = 4.
If A0 = B0 we clearly have g(t) = g0 for all t ≥ 0. Without loss of generality,

we assume that A0 > B0. Then A > B as long as the solution exists. Hence A is
increasing whereas B and C are decreasing.

Lemma 4.2. If A0 > B0, then T+ <∞, limT+
A = ∞, limT+

B = limT+
C = 0.

Proof. Since A− B > 0 is increasing and

d

dt
(A− B) =

4

3
(A− B)(A2 + AB +B2) >

4

3
(A−B)3,

we have d
dt

(A− B)−2 < −8
3
, so T+ <∞.

If limT+
A = A(T+) <∞, then

d

dt
lnB > −2A2 > −2A(T+)2,

and
d

dt
lnC > −2

3
A2 > −2

3
A(T+)2.

This leads to limT+
B = B(T+) > 0 and limT+

C = C(T+) > 0 and contradicts the
fact that the maximal existence time T+ is finite.

To prove that B tends to 0, note that

d

dt
ln(AB2) = −2(A−B)B < 0.

Hence AB2 is decreasing and limT+
B = 0. Similarly,

d

dt
ln(AC3) = −2

3
(A− B)(A− 2B)

implies that AC3 is bounded from above. Hence limT+
C = 0. �

Lemma 4.3. Assume that A0 > B0. Then there exist η1, η2 ∈ (0,∞) such that, as t
tends to T+,

A ∼
√

6

4
(T+ − t)−1/2, B ∼ η1(T+ − t)1/4, C ∼ η2(T+ − t)1/4.
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Proof. Since B > 0 and d
dt
B ∼ −2

3
A2B, we get

(4.2)

∫ T+

0

AB < A−1
0

∫ T+

0

A2B <∞.

Observe that

d

dt
ln(AB2) = −2(A− B)B;

d

dt
ln(AC2) = 2(A− B)B.

Hence (4.2) implies

lim
T+

AB2 > 0; lim
T+

AC2 <∞.

The asymptotic behaviors of A, B and C now follow from d
dt
A ∼ 4

3
A3. �

This finishes the proof of Theorem 4.1.

5. The normalized positive Ricci flow on SL(2,R)

Given a left-invariant metric g0 on SL(2,R), we fix a Milnor frame {fi}3
1 such that

[f2, f3] = −2f1, [f3, f1] = 2f2, [f1, f2] = 2f3

and
g0 = A0f

1 ⊗ f 1 +B0f
2 ⊗ f 2 + C0f

3 ⊗ f 3.

Theorem 5.1. Let g0 be an homogeneous metric on SL(2,R) with associated Milnor

frame (f1, f2, f3) and g0 = A0f
1 ⊗ f 1 +B0f

2 ⊗ f 2 +C0f
3 ⊗ f 3 with A0B0C0 = 4. Let

g(t) = A(t)f 1 ⊗ f 1 + B(t)f 2 ⊗ f 2 + C(t)f 3 ⊗ f 3, t ∈ [0, T+) be the maximal forward

solution of the positive normalized Ricci flow (1.3) with g(0) = g0. Then T+ < ∞.

Assume that B0 ≥ C0, and set

Q = {(a, b, c) ∈ R3 : a > 0, b ≥ c > 0}
and

ḡ(t) =
C0

C(t)
g(t).

There is a partition of Q into subsets S0, Q1, Q2 with Q1, Q2 connected such that, as

t tends to T+:

(1) If (A0, B0, C0) ∈ Q1 then there exist η1, η2 ∈ (0,∞) such that

A ∼
√

6

4
(T+ − t)−1/2, B ∼ η1(T+ − t)1/4, C ∼ η2(T+ − t)1/4.

Moreover, (M, g(t)) converges uniformly to the sub-Riemannian metric space

(M, bf2 ⊗ f2 + cf3 ⊗ f3) for some b, c ∈ (0,∞).
(2) If (A0, B0, C0) ∈ Q2 then there exist η1, η2 ∈ (0,∞) such that

A ∼ η1(T+ − t)1/4, B ∼
√

6

4
(T+ − t)−1/2, C ∼ η2(T+ − t)1/4.

Moreover, (M, g(t)) converges uniformly to the sub-Riemannian metric space

(M, af1 ⊗ f1 + cf3 ⊗ f3) for some a, c ∈ (0,∞).



14 Xiaodong Cao, Laurent Saloff-Coste

(3) If (A(t), B(t), C(t)) ∈ S0 for all t ∈ (T+, 0] then

A ∼
√

6

4
(T+ − t)−1/2, B ∼

√
6

4
(T+ − t)−1/2, C ∼ 32

3
(T+ − t).

Remark 5.1. The cases (1)-(2) of Theorem 5.1 are somewhat symmetric. As we shall
see, Q1 contains {(a, b, c) : a ≥ b ≥ c} and Q2 contains {(a, b, c) : a ≤ b − c}. Case
(3) is of a completely different nature and it is not even entirely clear, a priori, that
it occurs at all. In the forthcoming work [CGSC08], we show that Q1 ∪Q2 is a dense
open set in Q and that S0 is an hypersurface separating Q1 from Q2. This however
requires different techniques than those used in this paper.

Remark 5.2. In case (3), let d(t) be the metric on M = SL(2,R) induced by g(t).
Observe that there are no factors r(t) such that (M, r(t)d(t)) converges uniformly to
a metric structure on M . A meaningful scaling might be to consider (M, A0

A(t)
g(t)) for

which two components converge and the third goes to zero (potentially, a dimensional
collapse but curvatures blow up).

Remark 5.3. For the forward normalized Ricci flow (1.1), Isenberg and Jackson [IJ92]
show that the solution exists for all time and presents a pancake degeneracy.

For the proof of Theorem 5.1, we recall that the sectional curvatures are

K(f2 ∧ f3) =
1

ABC
(−3A2 +B2 + C2 − 2BC − 2AC − 2AB),

K(f3 ∧ f1) =
1

ABC
(−3B2 + A2 + C2 + 2BC + 2AC − 2AB),

K(f1 ∧ f2) =
1

ABC
(−3C2 + A2 +B2 + 2BC − 2AC + 2AB).

Therefore, writing

g = Af 1 ⊗ f 1 +Bf 2 ⊗ f 2 + Cf 3 ⊗ f 3

for the solution of the positive normalized Ricci flow with initial data g0, A,B,C
(with ABC = 4) satisfy the equations

(5.1)





dA

dt
= − 2

3
[−A2(2A+B + C) + A(B − C)2],

dB

dt
= − 2

3
[−B2(2B + A− C) +B(A+ C)2],

dC

dt
= − 2

3
[−C2(2C + A−B) + C(A+B)2].

Without loss of generality we may assume that B0 ≥ C0. Looking at the evolution
equation of B − C, it follows that B ≥ C as long as a solution exists.

Since that ABC = A0B0C0 = 4. We have

d

dt
C = −2

3
[BC2 +B2C − 2C3 + ABC −AC2 + ABC + A2C] ≤ −2

3
,

C is decreasing and the solution can only exist up to some finite time T+ <∞.
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Lemma 5.2. Assume that B0 ≥ C0, we have

lim
T+

C = 0.

Proof. Observe that AB is increasing because that

d

dt
ln(AB) = −2

3
[−B2 − A2 − 2AB − BC + AC + 2C2] > 0.

Assume that limT+
C(t) = η > 0. Then AB < 4

η
and B ≥ C > η. So A < 4

η2

and we must have limT+
A(t) = 0 and limT+

B(t) = ∞ (because AB is increasing and
bounded from above, it is easy to see those two conditions are equivalent). Hence we
have

dA

dt
∼ −2

3
AB2,

dB

dt
∼ 4

3
B3,

dC

dt
∼ −2

3
CB2.

So we have B(t)−2 ∼ 8
3
(T+ − t), but this contradicts limT+

C(t) = η > 0. �

Lemma 5.3. Assume B0 ≥ C0. If there exists a time t0 such that A(t0) ≥ B(t0) then

A ∼
√

6

4
(T+ − t)−1/2, B ∼ η1(T+ − t)1/4, C ∼ η2(T+ − t)1/4.

Proof. As ABC = 4, we have limT+
AB = ∞. Moreover,

(5.2)
d

dt
ln(A/B) = 2(A+B)(A + C −B).

If there exist a time t0 such that A(t0) ≥ B(t0), then A ≥ B on [t0, T+). Similarly,
the condition A > 2B is preserved by the flow. Assuming that A > 2B, we have

d

dt
B ∼ −2

3
B(A− 2B)(A+B) < 0,

hence limT+
B(t) = B(T+) <∞. So limT+

A(t) = ∞ and the system 5.1 yields

(5.3)





dA

dt
∼4

3
A3,

dB

dt
∼− 2

3
BA2,

dC

dt
∼− 2

3
CA2.

This give the desired asymptotics.
We now need to rule out the case when B ≤ A ≤ 2B for all t. In that case we have

4

3
A3 ≤ dA

dt
≤ 2A3,

this implies
∫ T+

0
A2 = ∞. Further, by (5.2),

∫ T+

0
(A2 − B2) < ∞. Since A/B is

nondecreasing, there exists a constant η, such that A− B > ηA. Thus
∫ T+

0
A2 <∞.

This is a contradiction. �
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Lemma 5.4. Assume B0 ≥ C0. If there exists a time t0 such that A(t0) ≤ B(t0) −
C(t0) then

A ∼ η1(T+ − t)1/4, B ∼
√

6

4
(T+ − t)−1/2, C ∼ η2(T+ − t)1/4.

Proof. We have

(5.4)
d

dt
(B − A− C) = −2

3
(2A3 + 2C3 − 2B3 + 2A2B + 2ABC − 2AB2 − 2A2C).

Hence the condition B − A ≥ C is preserved by the flow. It follows from the flow
equation (5.1) and (5.2) that both B and B/A are increasing. So we have limT+

B =
∞. If limT+

B/A < ∞ then, since there exist a η such that B − A − C > ηB, (5.2)

yields that
∫ T+

0
B2 < ∞. The evolution equation (5.1) shows that this contradicts

limT+
B(t) = ∞. Hence we must have limT+

B/A = ∞, and (5.1) gives

(5.5)





dA

dt
∼− 2

3
AB2,

dB

dt
∼4

3
B3,

dC

dt
∼− 2

3
CB2.

This proves the desired result. �

Now the only case left is when A < B < A+C for all t ∈ [0, T+). In this case since
limT+

C = 0, we have limT+
(B −A) = 0, and the flow equation (5.1) yields that

(5.6)





dA

dt
∼4

3
A3,

dB

dt
∼4

3
B3,

dC

dt
∼− 8

3
CB2.

So we arrive at

A ∼
√

6

4
(T+ − t)−1/2, B ∼

√
6

4
(T+ − t)−1/2, C ∼ 32

3
(T+ − t).

This together with the two previous lemmas concludes the proof of Theorem 5.1.
As noted in the remark following the theorem, it is not clear from the proof itself
that the third case does indeed occur. In [CGSC08], we show that there is a smooth
hypersurface of initial condition which is preserved by the flow, which exactly corre-
sponds to the asymptotic behavior described in the third case A < B < A+C for all
t ∈ [0, T+).
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