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Abstract

We present some new methods for constructing a Michael space, a regular Lindelöf
space which has a non-Lindelöf product with the space of irrationals. The central result is a
combinatorial statement about the irrationals which is a necessary and sufficient condition
for the existence of a certain class of Michael spaces. We also show that there are Michael
spaces assuming d = cov(M) and that it is consistent with cov(M) < b < d that there
is a Michael space. The influence of Cohen reals on Michael’s Problem is discussed as
well. Finally we present an example of a Michael space of weight less than b under the
assumption that b = d = cov(M) = ℵω+1 (whose product with the irrationals is necessarily
linearly Lindelöf).

0. Introduction

Our goal in this paper is to provide some necessary and sufficient conditions for the
existence of a Michael space, a regular Lindelöf space whose product with the irrationals
is not Lindelöf. The (almost) necessary condition is the focus of Section 1. In Section 2
we will present two constructions of Michael spaces: one from the combinatorial statement
d = cov(M) and the other from the addition of many Cohen reals. Section 3 will attempt
to show how these constructions can be generalized and where problems can arise. The
final section will be devoted to a discussion of Michael spaces whose product with the
irrationals is linearly Lindelöf.

Before we begin, we will fix some notation and review some definitions. The space of
irrationals will be denoted P and we will sometimes use their representation as functions
from N to N , denoted NN , equipped with the product topology. Through out this paper
we will view the Cantor set C as being a compactification of P by adding a countable
set QC . Ordinals will be taken to be the set of their predecessors and cardinals will be
viewed as the first ordinal of a given size. If A is any set, we will denote its cardinality by
#(A) and its power set by P (A). Ordinals will be given the order topology when viewed
as topological spaces and products will always be given the standard product topology.

The relation ≤ refers to the coordinate-wise order whenever it is used to compare
two elements of a countable product of ordered sets: f ≤ g iff f(n) ≤ g(n) for every n.
Similarly f ≤∗ g refers to the statement that for all but finitely many n f(n) ≤ g(n).
The cardinals b and d refer to the smallest sizes of unbounded and dominating families in
(NN,≤∗) respectively. The number of meager sets it takes to cover the irrationals will be
denoted by cov(M). If V is a model of ZFC, we say that a real number is Cohen (random)
over V if it is not in any meager (measure 0) set coded in V. For more information on the
combinatorics of P and Cohen and random reals the reader is referred to [BaJ].

If X is a non-Lindelöf topological space, we will let L(X) denote the minimum car-
dinality of an uncountable open cover of X with no countable subcover. Note that L(X)
is either regular or of countable cofinality. A space is linearly Lindelöf if every increasing
open cover has a countable subcover. The weight of a space X will be denoted by w(X).
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1. Toward A Standard Form

In this section we will show that if there is a Michael space M , then there is one which
is a subspace of (d + 1)× C, provided that L(M × P ) is a regular cardinal.

First it will be helpful to make a definition.

1.1. Definition. A sequence of distinct subsets {Xξ}ξ≤θ of C is said to be a θ-Michael
sequence if the following conditions hold:
(i). C ⊇ Xη ⊇ Xξ ⊇ Xθ = QC for every η < ξ < θ.
(ii). For every compact subset K of P the ordinal δ = min{ξ ≤ θ : Xξ ∩K = ∅} does not

have uncountable cofinality.

A θ-Michael sequence is said to be reduced if it also satisfies the following condition:
(iii). For every subset A of P which analytic (a continuous image of P ) the ordinal δ =

min{ξ ≤ θ : Xξ ∩A = ∅} is either θ or does not have uncountable cofinality.

What is somewhat surprising is that very little information about a Michael space is
actually necessary to construct a Michael space inside of (d+1)×C. This is evident in the
proof of the next theorem (see Corollaries 1.3 and 1.4). Note that no separation axioms
need to be assumed of the space X.

1.2. Theorem. The following are equivalent for any regular cardinal θ:
a). There is a Lindelöf space X such that X × P is not Lindelöf and L(X × P ) = θ.
b). There is a reduced θ-Michael sequence {Xξ}ξ≤θ.
c). There is a subspace M of (θ + 1) × C which is a Michael space and w(M × P ) =

L(M × P ) = θ.

Proof. (a⇒b) Fix an enumeration {Uξ}ξ<θ of an open cover U of X × P witnessing
L(X × P ). If ξ ≤ θ let Xξ = QC ∪ {p ∈ P : X × {p} 6⊆

⋃
η<ξ Uη}. We may assume, by

going to a subsequence if necessary, that Xη 6= Xξ. Suppose that K is a compact subset
of P . Note that if δ = min{ξ ≤ θ : Xξ ∩ K = ∅} has uncountable cofinality, {Uη}η<ξ
is an uncountable open cover of X × K with no countable subcover. This is impossible
since the product of a Lindelöf spaces and a compact space is Lindelöf. Thus {Xξ}ξ≤θ is
a θ-Michael sequence.

To see that {Xξ}ξ≤θ is reduced, let A ⊆ P be analytic. We may find a closed subset
E of P ×P such that A is equal to π1[E] and E is homeomorphic to P . Note that {Uη}η<ξ
covers X×A iff {Uη×P}η<ξ covers X×E. Since L(X×E) = L(X×P ) = θ, we can deduce
using methods from an earlier portion of this proof that δ = min{ξ ≤ θ : Xξ ∩ A = ∅} is
either θ or does not have uncountable cofinality.
(b⇒c) For any ξ ≤ θ, define Mξ =

⋃
η≤ξ{η} ×Xη. We will now show that Mξ is Lindelöf

by induction on ξ. The only non-trivial stages of the induction are if the cofinality of ξ
is uncountable. In this case fix an open cover U of Mξ. We may choose a rectangular
open set V = (ξ + 1)×H which contains (ξ + 1)×Xξ and is covered by countably many
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elements U0 of U . Note that K = C \H is disjoint from Xξ and E = Mξ \ V is contained
in (ξ + 1)×K. Since the cofinality of ξ is uncountable, there is a δ < ξ such K ∩Xδ = ∅.
It follows that E is contained in Mδ. By our induction hypothesis we can find countably
many elements U1 of U which cover Mδ. We now have that U0 ∪ U1 is countable subcover
of Mξ and therefore Mξ is Lindelöf for all ξ ≤ θ.

Now let M = Mθ. We leave it to the reader to check that w(M ×P ) = θ. To see that
M × P is not Lindelöf note that ∆ = {(ξ, p, p) : (ξ, p) ∈M} is closed in M × P . It is easy
to verify that {Mξ × P}ξ<θ is an increasing open cover of ∆ with no countable subcover.

To finish the proof we need to show that L(M × P ) = θ. Fix an open cover U of
M × P of cardinality less than θ. It can be assumed without loss of generality that U is a
cover of M×P by open subsets of (θ+1)×C×P and that U is closed under the operation
of taking finite unions. We must show that U has a countable subcover of M × P .

Before we proceed, we will first show that Mξ ×P is Lindelöf for all ξ < θ. The proof
is done by induction on ξ. Again the only non-trivial stages of the induction are when ξ
is an ordinal of uncountable cofinality. Let V be an open cover of Mξ × P . First pick a
rectangular open set V = (ξ+1)×H about (ξ+1)×Xξ×P which is covered by countably
many elements V0 of V. Now let A = πC [C × P \ H] be the projection of H onto C.
Since A is analytic and Xξ ∩ A = ∅, it follows from condition (iii) in the definition of a
reduced Michael sequence that there is a δ < ξ such that Xδ ∩A = ∅. Thus (Mξ × P ) \ V
is contained in Mδ × P which is Lindelöf by our inductive assumption. Pick V1 to be a
countable collection of elements of V which cover Mδ × P . Then V0 ∪ V1 is a countable
subcover of Mξ × P and hence Mξ is Lindelöf for all ξ < θ.

Let {Bn}n<ω be an enumeration of a countable base for C × P . For every U in U ,
define U [Bn] to be the union of all rectangular open subsets of U of the form α×Bn, for
some ordinal α. We now wish to show that for every x = (α, p1, p2) in M × P there is a
U in U and a n < ω such that x is in U [Bn]. Since Ax = (α+ 1)× {(p1, p2)} is compact,
there is a U in U such that Ax ⊆ U . Applying a standard theorem of topology (the Tube
Lemma) there is a n < ω such that Ax ⊆ (α+ 1)×Bn ⊆ U . It follows that x is in U [Bn].

Observe that for each n we can pick a ξn ≤ θ+1 such that ξn×Bn = ∪{U [Bn] : U ∈ U}.
If ξn < θ, then Mξn ×P is a Lindelöf space by previous observation and we may choose Un
to be a countable subcover of (ξn × Bn) ∩ (M × P ) ⊆ Mξn × P . If ξn ≥ θ then note that
since #(U) < θ, there is a U in U such that U [Bn] = ξn ×Bn. In this case let Un = {U}.
Since M × P ⊆

⋃
n<ω ξn × Bn, the collection

⋃
n<ω Un is a countable subcover of U and

L(M × P ) must be θ.

(c⇒a) Trivial.

Observe that if M is a Michael space, then any open cover U of M ×P has a subcover
U0 of cardinality at most d. The reason for this is that P can be covered by a collection K
of d many compact subsets. For every K in K, there is countable subcollection UK of U
which covers M ×K. If we let U0 =

⋃
K∈K UK then U0 has the desired properties.

Note that the following corollaries were essentially proved in Theorem 1.2.

1.3. Corollary. If X is a Lindelöf space and U is an open cover of X × P with no
subcover of smaller cardinality, then there is a #(U)-Michael sequence.
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1.4. Corollary. If there is a θ-Michael sequence and the cofinality of θ is uncountable,
then there is a Michael space.

It is perhaps worth remarking here that most of the Michael spaces which have been
constructed in the history of the problem “live” inside of the product of an ordinal and
C. For instance if A = {aξ}ξ<ω1 is a set which is concentrated about QC , the “standard”
construction of a Michael Space by isolating A (see [M1] and [M2]) is the same as the
space [{ω1} ×QC ] ∪ {(ξ + 1, aξ) : ξ < ω1} ⊆ (ω1 + 1)×C. K. Alster’s example [A] can be
embedded in a similar way inside of (c + 1)×Y , where Y is the metric compactification of
P used in his construction.

2. Building A New Michael Space

W. Fleissner noted that the only portion of Martin’s Axiom which K. Alster used in
his construction could be summarized by the statement b = d = cov(M) 1. We will begin
this section by showing that d = cov(M) is enough to imply the existence of a Michael
space. The following lemma will prove useful in this as well as later constructions. A proof
can be found in [S].

2.1. Lemma. If A is an analytic subset of P and F is a cover of A by closed sets then
either F has a countable subcover or there is a nonempty Gδ set G contained in A such
that F ∩G is nowhere dense in G for every F in F and G is homeomorphic to P .

Here is our first construction.

2.2. Theorem. (d = cov(M)) There is a Michael space.

Proof. First note that there is a sequence of compact sets {Dξ}ξ<d in P such that for
every compact subset K of P , there is a ξ < d such that K is contained in Dξ. Let
Xξ = C \ ∪η<ξDη. To see that {Xξ}ξ≤d is a d-Michael sequence, fix a compact subset K
of P . Suppose that K ∩Xξ is empty and ξ < d has uncountable cofinality. Then {Dη}η<ξ
is a cover of K by fewer than cov(M) many closed sets and thus must have a countable
subcover. It follows that there is a δ < ξ such that Xδ ∩ K is empty. By Corollary 1.4
there is a Michael space.

Since Cohen reals are very closely connected to questions about Baire category and
the cardinal cov(M), it is natural to ask if Michael spaces can be constructed from Cohen
reals. The naive answer is “yes, of course,” since b = ℵ1 holds in any model obtained by
adding uncountably many Cohen reals. Not only is this true, but if θ = dV many Cohen
reals are added to a model V, we also get the equality d = cov(M) in the extension VCθ .

As it turns out though, we get much more than just an arbitrary Michael space from
adding many Cohen reals. The following Lemma plays a crucial role in the proofs of
Theorems 2.4 and 3.2. A proof can be found in [BaJ; ch. 3, §1].

1 W. Fleissner actually claimed that all that was needed in K. Alster’s line of proof was
the statement b ≤ cov(M) [V, p. 206], though he has since retracted this claim. The
author will also note here that B. Lawrence has also withdrawn his assertion that b = d
implies the existence of a Michael space.
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2.3. Lemma. Suppose {rα}α<θ is a collection of reals which are either Cohen or random
over a model V and r is a real in V[rα : α < θ]. Then there is a countable subset B of θ
such that r is in V[rα : α ∈ B].

2.4. Theorem. If V is a model of ZFC and {cξ}ξ<θ is a collection of θ reals which are
Cohen over V for some regular uncountable cardinal θ, then in V[cα : α < θ] there is a
Michael space M such that L(M × P ) is θ.

Proof. Define Xξ to be the the union of QC and all of the elements of (NN,≤∗) not
bounded in V[cα : α < ξ] ∩ (NN,≤∗). It now suffices to show that {Xξ}ξ<θ is a reduced
θ-Michael sequence. Let A be an analytic subset of P = NN and δ ≤ θ be the first ordinal
such that Xδ ∩ A is empty. We now need to show that if δ < θ then the cofinality of δ is
not uncountable.

Since δ < θ, every element of A is bounded in V[cα : α < δ]∩ (NN,≤). For every p in
V[cα : α < δ]∩ (NN,≤), let Ep be the elements of NN bounded by p under the relation ≤.
Each Ep is closed and we may apply Lemma 2.1 to F = {Ep : p ∈ V[cα : α < δ]∩NN} and
A. If there is a Gδ subset G of A as described in Lemma 2.1, we may pick a real c which is
Cohen over V[cα : α < ξ][G] and construct an element in G which is not in any Ep. Thus
there must be a countable collection of reals S such that K is covered by {Ep : p ∈ S}. It
follows from Lemma 2.3 that δ can not have uncountable cofinality.

3. Some Subtleties

This section is intended to shed light on just how far we might hope to expand on the
construction in Theorem 2.2. It is not initially clear that cov(M) can be witnessed in a
way which would cause difficulty in this line of proof. After a great deal of unsuccessful
thought on the part of the author, S. Todorčević came up with the following example over
a cup of coffee.

3.1. Theorem. There is a compact set K ⊆ NN and a collection {pξ}ξ<cov(M) of
elements of NN such that each pξ bounds only a nowhere dense subset of K under ≤ and
for every p in K, there is a ξ < cov(M) such that p ≤ pξ.

Proof. Fix an enumeration {tn}n∈N of 2<ω and a cover {Eξ}ξ<cov(M) of 2ω by closed
nowhere dense sets. Let A denote the collection of all subsets A of N such that there is
a single element r in 2ω which has tn as an initial segment for every n in A. It is easy
to verify that A is closed and compact as a subspace of P (N) with the product topology.
Similarly let Bξ be the set of all n in N such that there a r ∈ Eξ which contains tn as
an initial segment. Now define Φ : P (N) → NN by [Φ(A)](n) =

∑
i∈A∩n 2i. It is easy to

check that Φ is continuous and has the property that if A ⊆ B then Φ(A) ≤ Φ(B). Let
K be the image of A under Φ and let pξ = Φ(Bξ). It is now routine to verify that K and
{pξ}ξ<cov(M) have the desired properties.

What the previous theorem tells us is that we can get into trouble mimicking the proof
of Theorem 2.2 if cov(M) < d, provided we take no further care in choosing our compact
sets Dξ. In some instances, however, we can still survive.

3.2. Theorem. There is a model of ZFC + cov(M) < b < d in which there is a Michael
space.
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Proof. Start with a ground model V satisfying ℵ1 < b < d = cov(M). Let M be the
Michael space constructed in Theorem 2.2 and let {Dξ}ξ<d be the collection of compact sets
used in the construction of M . Now add ℵ1 random reals to V to obtain V[rα : α < ω1].
The statement ℵ1 = cov(M) < b = bV < d = dV 2 now holds in V[rα : α < ω1] and
we need only to show that M remains a Michael space in this extension. Suppose that
K is a compact subset of P in V[rα : α < ω1]. Since K is coded by a real, by Lemma
2.3 there is a β < ω1 such that K is in V[rα : α < β]. In V[rα : α < β], the cardinal
cov(M) is still equal to d (see [BaJ; ch. 3, §2.E]) and we can use Lemma 2.1 to show that,
in V[rα : α ∈ A], there is a countable set of ordinals B ⊆ d such that K is contained
in ∪ξ∈BDξ. Thus the first ordinal δ for which K ∩Xδ is empty has countable cofinality.
Since B is countable, we can pick an enumeration {ξn}n<ω of B. The statement that K
is covered by {Dξn}n<ω can be written ∀x ∈ K∃n < ω(x ∈ Dξn). This is a Π1

1 statement
and is therefore absolute (see [K; ch. 13]). It follows that in V [rα : α < ω1], δ is still the
least ordinal such that Xδ ∩K is empty.

Another approach one can take in improving upon Theorem 2.2 is as follows. Suppose
that {Xξ}ξ≤d is as given in the construction in Theorem 2.2 under the possible assumption
cov(M) < d. A natural question to ask is whether there is a club A ⊆ d such that
{Xξ}ξ∈A∪{d} is a Michael sequence. It is unknown to the author whether such a club can
be found just on the basis of ZFC.

4. Countable Limit Cardinals And Michael Spaces

The linearly Lindelöf non-Lindelöf pathology has been around for some time in the
study of topological spaces (see [Ru; p. 190] and [Mi]). Until now it was uncertain
whether this pathology could appear in the context of Michael’s problem (see [AG]). It
is the intention of this section to show how to build Michael spaces who’s product with
the irrationals is linearly Lindelöf from a reduced Michael sequence of regular length. A
byproduct of this construction is the consistency of the statement “there is a Michael space
of weight less than b” which answers a few open questions.

The following theorem of Shelah (essentially proved in [BuMa; §§2-3]) is at the heart
of our proofs in this section.

4.1. Theorem. If θ is a cardinal of countable cofinality then there is an increas-
ing sequence {θn}n<ω of regular cardinals which is cofinal in θ and a scale {fξ}ξ<θ+ on
(
∏
n<ω θn,≤∗).

The following theorem shows us how to “step down” to cardinals of countable co-
finality. Note that if X is a non-Lindelöf space and w(X) = L(X) then X is linearly
Lindelöf.

4.2. Theorem. If θ is a cardinal of countable cofinality and there is a reduced θ+-Michael
sequence, then there is a Michael space M such that w(M × P ) = L(M × P ) = θ.

Proof. Let θn and {fξ}ξ<θ+ be the cardinals and scales as guaranteed by Theorem 4.1.
Fix a θ+-Michael sequence {Xξ}ξ<θ+ . Let Z denote the space

∏
n<ω θn + 1 and Z0 =

2 In [BaJ; ch. 3, §2.E] it is actually proved that after adding ℵ1 random reals, the
statement non(N ) = ℵ1 holds. Since cov(M) ≤ non(N ), the we also have cov(M) = ℵ1.
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{f ∈ Z : ∃m∀n > m(f(n) < θn)} (see [Mi]). We will now define Mξ for ξ ≤ θ+ to be
the set {(f, p) : ∃η ≤ ξ[(f ≤∗ fη)&(p ∈ Xη)]} ⊆ Z × C with the subspace topology (for
convenience we define fθ+(n) = θn).

We will now prove that Mξ is Lindelöf by induction on ξ. Define Zf = {g ∈ Z :
g ≤∗ f}. Note that Mξ = [Zfξ × Xξ] ∪ [

⋃
η<ξMη]. Since Zfξ is σ-compact, it is easy to

see that the only case in the induction where troubles arise is when the cofinality of ξ is
uncountable. Suppose that this is so and pick an open cover U of Mξ. We may choose a
Gδ set H ⊆ C such that there is a countable subcollection U0 of U which covers Zfξ ×H
and Xξ is contained in H. Since K = C \H is σ-compact there is a δ < ξ such that K is
disjoint from Xδ. Thus Mξ \∪U0 is contained in Mδ and our induction hypothesis applies.
If U1 is a countable cover for Mδ, then U0 ∪ U1 is a countable subcover of Mξ.

Let M = Mθ+ . It is again left to the reader to check that w(M × P ) = θ. We need
to show that L(M × P ) is θ. It is easy to check that ∆ = {(f, p, p) : (f, p) ∈M} is closed
in M × P . Also, if we define Vn,α to be the set {f ∈ Z : f(n) < α} for α < θn, then the
collection {Vn,α×C×P : α < θn} is an open cover of ∆ of cardinality θ with no countable
subcover.

To finish the proof of our theorem, we need to show that any open cover U of M × P
of cardinality less than θ has a countable subcover. For convenience we assume that the
elements of U are actually open sets in Z×C×P and that U is closed under the operation
of taking finite unions. Pick a countable base {Bn}n<ω for C ×P . Define U [Bn] to be the
union of all rectangular open subsets W ×Bn of U which have the following properties:

(a). If f is in W and g ≤ f then g is in W .

(b). W does not depend on coordinates greater than n.

Suppose that x = (f, p1, p2) is a point in M × P . We wish to find a U in U and an
n < ω such that x is in U [Bn]. Since Ax = {(g, p1, p2) ∈ Z×C×P : g ≤ f} is compact and
contained in M × P , there is a U in U which contains it. It follows from a basic theorem
of topology (the Tube Lemma) that there is a rectangular open set W ×Bn satisfying (a)
and (b) such that Ax ⊆W ×Bn ⊆ U and thus x is in U [Bn].

Since (
∏
i≤n θi + 2,≤) has only finite antichains, we can partition U [Bn] into finitely

many open sets {Uj [Bn]}j<k with the following property: for every j < k there is a tj in∏
i≤n θi + 2 such that f ∈ Uj [Bn] iff f(i) < tj(i) for all i ≤ n. Define Ur be the collection

of all Uj [Bn] such that U is in U . We have already verified that Ur is a cover for M × P .
Since Ur refines U , it suffices to show that Ur has a countable subcover.

Let U0 be the collection of all Uj [Bn] such that for the corresponding tj we have
tj(i) ≥ θi for all i ≤ n. Note that U0 is countable. Also, if U is in Ur \ U0, there is a
(kU , αU ) such that U ⊆ VkU ,αU ×Bn and αU < θkU . Since Ur has cardinality less than θ,
there is a f in Z0 such that for every U in Ur, αU < f(kU ).

Now pick a ξ < θ+ such that f ≤∗ fξ and let E = {p1 ∈ C : ∃g ∈ Z∃p2 ∈
P ((g, p1, p2) ∈ M × P \ ∪U0)}. We will show that Xξ ∩ E is empty. If this is not the
case, choose a (g, p1, p2) ∈M×P \∪U0 such that p1 is in Xξ. It follows from the definition
of M that there is a h in Z such that f, g ≤ h ≤∗ fξ and thus (h, p1, p2) is in M ×P . Note
that (h, p1, p2) is not in ∪U0 because g ≤ h and therefore is also not in ∪Ur by definition
of f , a contradiction. Thus Xξ ∩ E is empty and M × P \ ∪U0 is contained in Mξ × P .
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It can be seen that Mξ × P is Lindelöf for all ξ < θ+ using the same techniques
used to prove that Mξ is Lindelöf (as in the proof of Theorem 1.2, we are essentially
substituting the use of condition (iii) in the definition of a reduced Michael sequence for
the use of condition (ii)). Therefore there are countably many elements U1 of Ur which
cover Mξ × P . We now have that U0 ∪ U1 is a countable subcover of M × P and we are
done.

The following corollary answers questions posed in [AG], [L], and [A].

4.3. Corollary. Under b = d = cov(M) = ℵω+1 there is a Michael space M such that
w(M) = L(M × P ) = ℵω < b.

From Theorem 4.2 we can also prove a characterization of the statement that c > ℵω.

4.4. Corollary. The cardinality of the continuum is greater than ℵω iff there is a regular
Lindelöf space X and a separable metric space Y such that X × Y is linearly Lindelöf but
not Lindelöf.

Proof. (⇒) Since c > ℵω, there is a subset A of P of cardinality ℵω+1 such that A
contains no uncountable compact subsets. Let {aξ}ξ<ωω+1 be an enumeration of A and
define Xξ = C \ {aη : η < ξ} for all ξ ≤ ωω+1. Let Z, Z0, and {fξ}ξ≤ωω+1 be as defined in
Theorem 4.2 for θ = ℵω. Then define M = {(f, p) ∈ Z × C : ∃ξ ≤ ωω+1[(f ≤∗ fξ)&(p ∈
Xξ)]} and note that it follows from the proof of Theorem 4.2 that M is Lindelöf and
w(M) = L(M ×A) = ℵω as desired.

(⇐) Assume that c < ℵω (c can never be equal ℵω by König’s Lemma). It is well known
that if Y is a separable metric space then #(Y ) ≤ c. Also note that if X × Y is linearly
Lindelöf but not Lindelöf then L(X ×Y ) ≥ ℵω. Since L(X ×Y ) ≤ min{#(X),#(Y )} (see
the remark at the end of Theorem 1.2), the product of a Lindelöf space and a separable
metric space is Lindelöf iff it is linearly Lindelöf.

We leave the reader with some open questions.

Question 1. If {Dξ}ξ<d is a collection of compact sets as described in Theorem 3.2, is
there a club (in ZFC) A ⊆ d such that {C \ ∪η<ξ}ξ∈A∪{d} is a Michael sequence?
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[BaJ] T. Bartoszyński, H. Judah, Set Theory: On The Structure Of The Real Line, A. K.
Peters (1995).

[BuMa] M. Burke, M. Magidor, Shelah’s pcf Theory And It’s Applications, Ann. Pure. Appl.
Logic, 50 (1990), pp. 207-254.

[K] A. Kanamori, The Higher Infinite. Large Cardinals In Set Theory From Their Begin-
nings, Springer-Verlag (1994).

[L] B. Lawrence, The Influence Of A Small Cardinal On The Product Of A Lindelöf Space
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