CONTINUOUS COLORINGS ASSOCIATED WITH CERTAIN
CHARACTERISTICS OF THE CONTINUUM

J. TATCH MOORE

ABSTRACT. A coloring ¢ : [X]® — Z is said to be irreducible if for every
Y C X of equal cardinality ¢”’[Y]® = Z. The focus of this note will be to
show that there are continuous irreducible colorings on sets of reals associated
with various cardinal invariants of the continuum. It is interesting that some
of the colorings make crucial use of exponential lower bounds which have been
proven for a certain class of finite Ramsey numbers.

1. INTRODUCTION

When presented with a coloring ¢ : [X]™ — Z one would frequently like to know
whether it is possible to find a set Y C X of substantial size such that the image
of [Y]™ under c is as small as possible and in particular not equal to the whole set
of colors Z (here [X]™ is the collection of all n element subsets of X). It is often
the case that “substantial size” means “having the same cardinality as X.” If a
coloring ¢ : [X]" — Z does not admit to such a Y that would have the same size
as X then c is said to be irreducible. The general problem is to find irreducible
colorings when X and n are small, Z is large, and c is of low complexity. Since
Ramsey’s theorem trivializes the case when X is countable, this notion will only be
considered when X is an uncountable set.

If no restrictions are placed on the type of coloring which is allowed, then we
have the following optimal result due to S. Todorcevi¢ [8]: there is a coloring
¢ : [w1]? — w; which is irreducible. In light of this, it is natural to ask what
happens when some restrictions are placed on the complexity of the coloring ¢. A
natural such restriction is to require that ¢ be continuous (another is the countable
chain condition — see the appendix of this note). Here X and Z are typically
subspaces of w* and [X]" is given the natural topology by identifying it with an
appropriate subspace of X". Thus requiring that ¢ is continuous is the same as
saying that to determine a finite initial segment of ¢(z,y) one only needs to know
finite initial segments of x and y. Again, in dimension 3 there is an optimal result
due to S. Todoréevié¢ [12]: there is a continuous irreducible coloring ¢ : [X]? — X,
where X is a subset of w* of size Ny.

The situation n = 2 is much different for continuous colorings. As we will see
in a moment, it seems to be most natural to ask which cardinal invariants of the
continuum have continuous irreducible colorings associated with them. Each of
these invariants reflect a different aspect of the continuum and have values which
can change in different models of set theory. Some examples of these cardinal
invariants are the size of the smallest family of measure 0 sets whose union is
not measure 0 (denoted add(N)), the size of the smallest cover of the real line
by nowhere dense sets (denoted cov(M)), and the size of the smallest subset of
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(w*, <*) which is cofinal in the order (the dominating number ?). These so called
“small cardinals” all have values that lie somewhere between Ny and ¢ and can be
used to gauge which effects of the Continuum Hypothesis remain when ¢ is greater
than N;. Both the relationships of these cardinals to one another and their values
in specific models of ZFC have been the subject of extensive research (see [2], [13],
and [3] for an introduction to this subject).

It is known to be consistent with ZFC that for every uncountable set of reals X
and every continuous coloring ¢ : [X]? — 2 there is an uncountable Y C X such that
¢ | [Y]? is constant [1] (this is in fact a trivial consequence of the formulation of OCA
given below). As the existence of continuous irreducible colorings in two dimensions
seems to be most interesting (and approachable) when Z = w, our discussion will
be restricted to this case for the duration of this note. What remains is the question
of which cardinal invariants of the continuum have continuous irreducible colorings
associated with them.

In the 1980’s it was shown that the cardinality of the continuum has such a color-
ing associated with it (see [10] for a proof and also [6] for an earlier, noncontinuous
version of this result). The focus of this note will be to add two new cardinals char-
acteristics of the continuum to this list. One is the well known unbounding number
b of the structure w* under the ordering of eventual dominance. The second is
the additivity of a certain family N, of measure 0 sets. In particular add(N) is
at most non(N'), the cardinality of the smallest sets of reals which does not have
measure 0.

I will close the introduction with a definition of OCA and a few remarks on how
the results of this note can be interpreted. The currently quoted formulation of OCA
! is the statement that every open graph G on a set of reals is either countably
chromatic or else contains an uncountable complete subgraph (the simplest reason
why a graph can’t be countably chromatic). Here open means that the edge set E
of G is an open subset of [V]?, where V is the vertex set of G. For an introduction
to OCA and the fact that is implies b = Ny, the reader is referred to [9, §8].

One way to interpret the results which follow is that they are statements about
what OCA can prove and how much of the full power of OCA is needed when
proving a given statement. I prefer to think of the results as ZFC theorems instead
and simply note that these implications are corollaries, as this approach sheds much
more light on the situation. For instance, while the results of this note show that
OCA implies non(N) > add(N,) > Ny, there seems to be no reason to believe that
there is a continuous irreducible coloring associated with non(N'). We only know
that there is a such a coloring on a possibly smaller set of reals of size add(N).

2. NOTATION

Before beginning I will first introduce some notation, most of which has become
standard. The ordinal w is the set {0,1,...} of all nonnegative integers with the
discrete topology. Each nonnegative integer n is viewed as the set {0,1,... ,n—1}
of its predecessors (0 = (}). If A and B are sets, AP is the set of all functions from
B to A. The collections w<% and 2<% are the sets of all finite sequences of elements
of w and 2 respectively. If A is a set then #(A) refers to its cardinality and if ¢ is

1Several versions of OCA first appeared in [1]. The above definition of OCA is due to S.
Todorcevi¢ and is the one which is generally quoted in current literature.
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a sequence, |t| refers to its length. To avoid confusion and to improve the esthetics
of the notation I will write ¢”’S to denote the image of a set S under a map c.

The spaces 2“ and w* are equipped with the product topology which is also com-
patible with the metric topology induced by d(z,y) = 1/A(x,y), where A(z,y) =
min{n : z(n) # y(n)}. If ¢t is in W™ for some n then ¢ defines the basic open set
[t] = {zr € w¥ : 2 [ n = t}. Similarly if F C 2<% is finite then it determines the
basic open set [F] ={x € 2* : In(z | n € F)}. Thus if X Cw* and ¢: [X]? s w
is a coloring, ¢ is continuous iff the value of ¢ at a pair {x,y} can be determined
by only knowing a finite amount of information about x and y. Furthermore if
F C 2<% is finite and no two elements of F' are comparable in the ordering of end
extension, the measure p([F]) of this open set is equal to >, 27/t

If X Cw¥ and t € w™ then ¢ is said to be a node of X if [t} N X is nonempty.
A splitting node t of a set X is a node of X such that for infinitely many i the
concatenation t¢ is also a node of X. If f,g € w* then I will write f <* ¢ iff
for all but finitely many n f(n) < g(n). The cardinal b is the size of the smallest
unbounded family in the ordering (w®, <*).

The null ideal A is the collection of all measure 0 subsets of 2¥. Suppose
that Z,J C N are closed under subsets and finite unions. The cardinals add(7),
add(Z,J), and non(Z) are defined in the usual way:

add(Z) = min{#(A): ACIANUAEZTI}
add(Z,J) = min{#(A): ACIANUAZ T}
non(Z) = min{#(S): SC2¥AS €T}

The reader is referred to [2] for more information on real line combinatorics.

The main result of Section 3 relies heavily on some lower bounds which have
been proven for a certain class of finite Ramsey numbers. These numbers make
the notion of “substantially large” mentioned earlier precise in the context of finite

colorings. If m, k, [ and r are integers, then (m)j}, s is the smallest integer n such

that for any coloring ¢ : [n]” — k, there is a set S C n of size m such that ¢”'[S]?

has size at most {. I will use the notation [m]}, to abbreviate (m)z/kfl. For more
information on partition calculus, the reader is referred to [5].

3. AN IRREDUCIBLE COLORING ASSOCIATED WITH MEASURE

In this section I will introduce an ideal N, C N such that there is a continuous
irreducible coloring associated with add(N).

It is well known that a set G C 2* has measure 0 iff there is a sequence Fg =
(Fe(n) : n € w) such that

1. Fg(n) C 2,

2. G C My UnZy[Fa(n)], and

3. Y ooey #(Fa(n)) /2" < .
Such a sequence will be called a cover of G. If r € (0,1), cover F of G is said to

be r nice if
lim #(F,)n*"" /2" = 0.

Thus nice covers are those for which the sum mentioned above converges for a
specific reason. Define N,. to be the collection of all subsets of 2 which have a r nice
cover. Notice that if 7 < s then N, C Ny C N. Tt is easy to see that add(N,., N) <
non(Ns) < non(N). Also, if r < a < b < s then add(N,, V) < add(N,., N). Thus
using a well foundedness argument on the ordinals, it is possible to find a pair
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r < s in (0,1) such that for all @ < b in [r, s], add(N,.,, Ny) = add(N,, N}). Define
N* = mb>r Nb‘

Lemma 3.1. The invariants add(N,) and add(N,.,N) are equal. Moreover there
are a < b in (r,s) and A C N, of size add(N,) which is well ordered by C and
unbounded in Ny.

Proof. Tt is easy to see that N, C N, C N and therefore that add(N,., N5) >
add(N,). Now let A be an unbounded subset of N, of size add(N,). It can be
assumed without loss of generality that A is well ordered by C. Since A is un-
bounded, there is a b > r such that UA is not in N,. Let a be any element of
(r,b). Now clearly A C N, and is unbounded in N,. Thus A must have size
add(Ng, Np) = add(N;, Ny). O

From this point on ¢ and b will remain fixed and d will be any number such that
a<d<b.

Theorem 3.2. There is a subset X of w* of size add(N,) and a continuous irre-
ducible coloring c : [X]? — w.

The existence the desired irreducible partition for the cardinal add(N,) is a
consequence of the following sequence of results. It is rather interesting that this
coloring makes crucial use of exponential lower bounds for a certain class of finite
Ramsey numbers.

The following fact for £ = 2 and [ = 1 is essentially a well known result of P.
Erdos [4] (see also [5, §26]) 2 and the methods presented in the proof can readily be
adapted to give us the following result. While this theorem was almost certainly
known to P. Erdés (and others), I have included the proof for completeness and
because it is not to my knowledge in print elsewhere in this generality.

Theorem 3.3. If (’;) < m/! then (m)i/l > (k/1)m=D/2 In particular there is a
constant a > 0 such that [m]? > 20™/*.

Proof. First note that for a fixed integer n, the number of colorings ¢ : [n]? — k
is N = k(;) If S is a fixed subset of n of size m and L C k is a collection of [

colors, then there are 1(5) g (3)-(3) many colorings ¢ : [n]?> — k which also satisfy
c’[S)? C L. Since there are (:@) ways to choose S and (7;) ways to choose L, there

are at most
Nyt = @ (’;)l(m@)—(m

many colorings ¢ of [n]? such that there is a subset of n of size m which realizes at
most [ colors. It now suffices to show that if n < (k/1)(™~1/2 then N,,; < N. 1
will use the approximation (::l) <n™/ml.

(™) (k)l(rs)k(z)f ;

AN AN N INIA
=
=

2Erdss actually showed (m)g/1 > om/2,
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To see that the constant « exists, note that

k
1 k
1/k§/ —dx = In(
k—1 T k—1

).
O

Suppose that T is a subset of w* and f € w* is a function. I will say that T is f
thin if for all but finitely many n in w and every ¢ in w™ the concatenation ¢"7 is a
node of T for at most f(n) many ¢ (i.e. the splitting of the nodes of T' is bounded
by f). Similarly I will call T' f splitting if T does not contain a f thin subset of the
same size. Define h(n) = 2V™ and let hy be the k fold composition of h with itself.

Lemma 3.4. Suppose T is any subset of w* which is h(f) = 2VT thin for some
f with lim,, f(n) = oo. It follows that there is a continuous coloring c : [T]? — w

such that ¢'[Ty)? = w for any To C T which is not f thin.

Proof. Notice first that for any h(f) thin subset T of w*“ there is an isometry
which embeds T into [[ 2, h(f(n)) (this is in fact an equivalent formulation of
“thinness”). Thus I will work in [[ 2, h(f(n)) for convenience. Let G(n) be the
greatest integer k such that 2¢7(")/k < h(f(n)). Note that G is both well defined
and satisfies lim,, G(n) = oo. For each n pick a coloring ¢, : [h(f(n))]> — G(n)
such that for every subset S of h(f(n)) having size f(n), c/[S]*> = G(n) (this is
precisely what the definition of G(n) and Theorem 3.3 guaranteed). Now define
c: [T)? = w by c(x,y) = cu(z(n),y(n)) where n = A(x,y). To see that ¢ has the
desired properties, let k € w be arbitrary and Ty C T be as in the statement of the
theorem. Pick a m such that G(m) > k. Now find an > m and a ¢ in w” such that
the set S = {i € h(f(n)) : 3z € S(¢t"¢ C x)} has at least f(n) elements in it. Then

c’[S]? = G(n) contains k and is contained in ¢’ [Ty]? by definition. O

Notice that if T C w* is a hx(f) thin set which is f splitting then Lemma 3.4
tells us that there is a continuous irreducible coloring ¢ : [Tp)? — w for some Ty C T
of the same size. To see this, set Sy = T. If Sy is hr_1(f) splitting then this is a
consequence of the lemma. If not let S,_; be a hy—1(f) thin subset of Si having the
same cardinality as Sx. Now try to apply Lemma 3.4 to Si_; and so on. For some
i > 1, S; has the same size as T and is h;(f) thin but h;_;(f) splitting (otherwise
this would contradict the fact that T"is f = ho(f) splitting).

Lemma 3.5. Suppose that T C w® is 22" thin but there is not a Ty C T of the
same size such that #(Ty | n) < n?® for all n. Then there is a subset X of w®
with the same cardinality as T and a continuous irreducible coloring of [X]?.

Proof. For each x in T define z,(n) to be the finite sequence
ze(n) = (x(n+1),...,2((n+1)?)).

n n 2
Notice that since T is 22" thin, Z = {z, : x € T} is (22( Y )(”“)2 thin. It is easy

to verify that for some k, hy,(n?=%) > (22(n+1)2 )(”“)2 for all n. It therefore suffices
to show that Z is n?® splitting.

Suppose that Zy is a n?~® thin subset of Z of the same size. By refining Z; if
necessary it may be assumes that n=% controls the splitting at all nodes of Z. Let
To={x €T : 2z, € Zp} and note that Ty has the same size as T. I will now prove
by induction that #(Ty [ n) < n9=% for all n. Notice that, if necessary, I can go
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to an appropriate neighborhood of T to ensure that the base case of the induction
is satisfied. Now suppose that #(Tp [ m) < m9=® for all m less than n. Fix a m
such that m? < n < (m + 1)2. Then #(Ty | m) < m?~® and for each ¢ in Ty [ m
there are at most m9=% many ¢’ in Ty | (m + 1)? which extend ¢. This latter fact
follows from our assumption that Zy is n?~2 thin. Thus Ty | n can have at most
md—a . mid—a = ;p2ld—a) < pd-a many members, a contradiction. O

The following result is the last lemma which is needed to show that there is an
irreducible coloring associated with add(N).

Lemma 3.6. There is a 22" thin subset T of w* of cardinality add(N,) which has
no subset Ty of the same size satisfying #(Ty [ n) < né=* for all n.

Proof. Fix a family A C N, of size add(N,) which is well ordered by C and un-
bounded in N. For each A in A choose an a nice cover F'y of A which also satisfies
Fa(n)n?/2" < n® for all n. Let T = {F4 : A € A} and notice that T is 22" thin.

Suppose for contradiction that there is a Ty C T with the same size as T and
which satisfies # (T | n) < n9=¢ for all n. Define Fg(n) = U{Fa(n) : Fa € Ty}
and notice that

#(Fg(n))n?/2" < nd=n = nd,

Thus #(Fg(n))n?~4/2" < 1 for all n. Since lim, n?/n® = 0, Fg is a b nice cover
for U{A € A: Fs € To}. If Tj has the same size as T, then

UA=U{A € A: Fy € Ty} € Ny,

a contradiction. O

4. A NEW COLORING ASSOCIATED WITH UNBOUNDEDNESS IN (w®, <*)

In this section I will modify the oscillation map of S. Todorcevié (see [9, §1]) to
produce a version which is continuous. Let PP denote the collection of all strictly
increasing functions from w to w. Suppose that x and y are two members of P
such that either z <* y or y <* z. Define the sequence s(z,y) € w<“ inductively
as follows. Set s(x,y)(0) = A(z,y) and define M(z,y,n) = max{z(n),y(n)}. If
s(z,y)(n) is defined and either

z(s(z,y)(n)) > y(s(z, y)(n)) and (M (z,y, s(z,y)(n))) < y(M(z,y, s(z,y)(n)))

z(s(z,y)(n)) <y(s(z,y)(n)) and (M (z,y, s(z,y)(n))) > y(M(z,y, s(z,y)(n)))
then set s(z,y)(n + 1) = M(z,y,s(z,y)(n)). If neither of these conditions are
satisfied then stop the procedure and set the length of s(x,y) to be n 4+ 1. De-
fine ¢(x,y) = |s(x,y)| — 1. Notice that the procedure must stop at or before the
last oscillation between z and y. Also note that the procedure only uses a finite
amount of information about x and y — if 2’ and 3y’ have the same restriction to
M(z,y,s(z,y)(c(z,y))) + 1 then they will yield the same finite sequence.

Theorem 4.1. If X C P is unbounded and well ordered by <* then ¢"[X]? = w.

Proof. Fix a countable dense set D C X and pick an a in X such that d <, a
for all d in D. Also fix an unbounded subset Y of X and a kg in w such that
every neighborhood of Y is unbounded and for every m > k¢ and every y in Y the
inequality a(m) < y(m) holds. I will now proceed by induction on n to show that
for all n there are x and y in X such that
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L c(z,y) = |s(z,y)| =

2. a(s(z,y)(n)) <y(s ( B,

3. yeY, and

4. x |1 is a splitting node of Y for some i between s(x,y)(n) and M (s(z,y)(n))
exclusively.

Suppose that x and y satisfy the induction hypothesis for n. Let i be fixed between
s(z,y)(n) and M(z,y, s(x,y)(n)) such that z | i is a splitting node of Y. Pick a
j greater than M (z,y, s(x,y)(n)) such that y | j is a splitting node of Y. Choose
a d in the dense set D such that d [ j =y [ j and let ky > ko be fixed such that
d(m) < a(m) for all m > k1. Now choose a z in Y such that z(¢) > max{a(k1),j}.

I will now verify that d, z satisfy the role of x,y in the induction hypothesis for
c(z,y) = n+ 1. Tt is easy to see that by choice of z and d that s(z,y) [ n+ 1 =
s(z,d) [ n+ 1. By monotonicity of z and definition of k; it follows that

2(M(z,d, 5(z,d)(n))) > d(M(z,d, s(z,d)(n)))
and thus
s(z,d)(n+1) = M(z,d, s(z,d)(n)).
Also, since z(m) > a(m) > d(m) for all m > s(z,d)(n + 1) it follows that c(z,d) =
n + 1 satisfying part (1) of the induction hypothesis. Since

j<z(s(z,d)(n+1)) = M(z,d,s(z,d)(n+ 1)),

part (4) of the induction hypothesis is satisfied. Finally z is in Y, satisfying part
(3). O

5. QUESTIONS

I will now leave the reader with a few open questions. It would be interesting if
some application of finite Ramsey theory is necessary to obtain the main result in
Section 3. A negative answer to the following question would seem to indicate that
this is so.

Question 1. Suppose that hy, <. f for all k for some f € w* and that there is a
set X C w* which is f thin but not n splitting. Is there a continuous irreducible
coloring c : [Y)? — w for some Y with the same cardinality as X ?

The next question was raised by Zapletal in [14] and seems natural to include
after the results of Section 3.

Question 2. Does OCA imply that the additivity of Lebesque measure is larger
than Ny ?

It is also unclear whether or not add(N.) has some deeper relation to the other
cardinal invariants of the continuum than just the inequality add(N,) < non(N). I
don’t know, for instance, the relation between b and add(N.) or whether add(N)
is in fact equal to add(N).

6. APPENDIX

In the process of obtaining the above results, I noticed that the methods which
had been developed could also be used to extend existing results in c.c.c. partition
calculus. These two results have been left until the end since they don’t really fit
the feel of the rest of the paper. The reader is referred to [11] for the definitions of
all new terms which follow (see also [7] and [9]). The following result, which is at
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the heart of the new theorems of this appendix, is due to S. Todorc¢evié. It can be
found in [11] in the proof that ¥ implies that there is an wq-scale.

Theorem. There is a c.c.c. partition of [w*]? such that every homogeneous set is
2 thin.

cce

Theorem 6.1. If w; — (w1)? then add(N) is greater than ;.

Proof. If G is any measure 0 set, it is possible to find a sequence Ff(n) C 2<% of
codes for basic open sets such that u([Fg(n)]) < 272" and

ac () U Fem)

M=1n=M

(see [2, p. 52]). Let T be the collection of all F such that G isin V. Since there is a
bijection between w<* and w, T may be thought of as a subset of w*. Combining the

above result of S. Todorcevié with the partition relation w; — (w;)? it is possible
to find an uncountable Ty C T which is 2 thin. Define F};(n) = U{F&(n) : F& € Ty}
and notice that

p((Fg(n)]) < 272027 = 27n,
Thus U{G € N : F}, € Ty} is contained in the measure 0 set

H=( U IFErm)

M=1n=M

A similar argument can be used to show the following.

Theorem 6.2. 33 implies cof (N) = ;.
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