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Abstract

The purpose of this article is to analyze the cardinality of the
continuum using Ramsey theoretic statements about open colorings or
“open coloring axioms.” In particular I will show that the conjunction
of two well known axioms, OCA[ARS] and OCA[T], implies that the
size of the continuum is ℵ2.

Our focus in this paper will be the following two open coloring axioms 1

and their influence on the size of the continuum.

OCA[ARS] If X is a separable metric space of size ℵ1 and c : [X]2 →
{1, . . . , n} is a continuous map then there is a decomposition of X into
countably many pieces Xi (i ∈ N) such that c is constant on [Xi]

2 for
all i ∈ N.

OCA[T] If X is a separable metric space and G ⊆ [X]2 is open then either
G is countably chromatic (there is a decomposition of X into countably
many pieces Xi such that [Xi]

2 ∩ G is empty for all i) or there is an
uncountable H ⊆ X such that [H]2 ⊆ G.

∗The research for this paper was supported by EPSRC grant GR/M71121 during my
stay at the University of East Anglia. I would also like to acknowledge the support I
received from the Institut Mittag-Leffler during my visit there.

1The subscripts [ARS] and [T] refer to [1] and [11] where these axioms originally ap-
peared. In the current literature OCA has come to mean OCA[T].
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Here [X]2 is the set of unordered pairs of distinct elements of X. A set G ⊆
[X]2 is open if for every {x, y} in G there are disjoint neighborhoods U 3 x
and V 3 y such that {{x′, y′} : x′ ∈ U, y′ ∈ V } is contained in G. One defines
continuity in a similar way for functions of the form c : [X]2 → {1, . . . , n}.

What I will demonstrate through the course of this note is that the con-
junction of these two axioms implies that there are exactly ℵ2 real numbers.
The proof is divided into four parts, each contributing a section to the paper
along with some review and concluding remarks. The first section recalls
some of the basic properties of the partial order (NN, <∗) of eventual domi-
nance. Section 2 gives some of the flavor of the proof from [11] that OCA[T]

implies that the minimum size of an unbounded subset of (NN, <∗) is equal
to ℵ2. Section 3 introduces the alternation map and its properties. This map
is then used in Section 4 to code reals inside of certain unbounded subsets
of (NN, <∗) in the presence of OCA[T]. Section 5 shows that OCA[ARS] pre-
vents too many reals from being coded inside of any subset of NN of size ℵ1.
The final section closes with some questions and comments.

None of the mathematics in this paper should be beyond the understand-
ing of someone able to make sense of the statement of the main theorem.
Those familiar with the order (NN, <∗) should feel free to skip the first sec-
tion. Those familiar with OCA[T] may wish to skip directly to Section 3.
Readers interested in further reading on 2ℵ0 and ℵ2 are referred to [3],[8],[9],
[12], and [13].

I would like to thank Stevo Todorčević for giving me Theorem 2.1 as an
exercise back in 1997 during our first evening in a coffee shop. He also offered
some useful suggestions on the presentation of the material in Section 2.

1 The partial order (NN, <∗)

Our discussion in this paper will frequently focus around the topological
space NN of all sequences of natural numbers. This is a complete separable
metric space when equipped with the product topology. Basic open sets in
this context take the form

[u] = {x ∈ NN : x extends u}

where u is a finite sequence of natural numbers. The complete metric is given
by d(x, y) = 2−∆(x,y) where

∆(x, y) = min{n : x(n) 6= y(n)}.

2



We will also be interested in NN as a partially ordered set under the order
<∗ of eventual dominance:

x <∗ y iff x(n) < y(n) for all but finitely many n.

The partial order (NN, <∗) has a rich structure and frequently shows up
in mathematical problems, particularly those close to analysis, set theory,
and general topology. The following observations are well known and easily
proven.

Fact 1.1. (NN, <∗) is countably directed (every countable subset has an upper
bound).

Fact 1.2. If X is an unbounded and countably directed subset of (NN, <∗)
then whenever X is decomposed into countably many sets Xn (n ∈ N), there
is an n such that Xn is unbounded and countably directed.

In light of Fact 1.1 and the trivial observation that NN is unbounded in
(NN, <∗) it makes sense to define the following cardinal.

Definition 1.3. The unbounding number b is the minimum size of an un-
bounded subset of (NN, <∗).

This cardinal is therefore somewhere between ℵ1 and 2ℵ0 . It turns out
to have some rather surprising combinatorial properties (see [11, §1]). The
following fact is well known and easily verified.

Fact 1.4. There is an unbounded chain in (NN, <∗) of order type b. In par-
ticular there is an unbounded and countably directed subset of (NN, <∗) of
size b.

The next observation is behind much of the combinatorics associated with
unboundedness in (NN, <∗).

Fact 1.5. Suppose X ⊆ N
N is nonempty and has the property that every

neighborhood of X is unbounded. For every basic open set [u], if [u] ∩ X is
nonempty, then there is a v extending u such that [vˆi] ∩X is nonempty for
infinitely many i.

Notice that since the union of countably many bounded sets is bounded
(by Fact 1.1), if X is an unbounded subset of (NN, <∗) then it contains a
nonempty set X ′ such that every neighborhood of X ′ is unbounded.
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2 ℵ2 and the unbounding number

This section will review the following result and give a sketch of its proof.

Theorem 2.1. [11] OCA[T] implies that b is ℵ2.

This result breaks into two parts, one showing b is at least ℵ2 and the later
showing that it is at most ℵ2. Proving that b is at least ℵ2 under OCA[T] was
done originally via the oscillation map (see [11]). It was this proof that lead
me to the discovery of the alternation map (which is essentially a continuous
version of the oscillation map) and to the coding technique which will be
presented in the later sections. An interested reader is encouraged to deduce
this portion of the Theorem 2.1 from the properties of the alternation map
given below.

The half of Theorem 2.1 which deals with the inequality b ≤ ℵ2 makes
crucial use of the following well studied notion.

Definition 2.2. If κ and λ are cardinals then a (κ, λ∗) gap in (NN, <∗) is a
pair of sequences aξ (ξ < κ) and bη (η < λ) in NN such that

aξ <
∗ aξ′ <

∗ bη′ <
∗ bη

for all ξ < ξ′ < κ and η < η′ < λ but for which there is no single c in NN

such that aξ <
∗ c <∗ bη for all ξ < κ and η < λ.

Long ago Hausdorff made the following important connection between
gaps and unbounded chains in (NN, <∗).

Theorem 2.3. [4] If κ is a regular cardinal, then there is an unbounded
chain in (NN, <∗) of order type κ iff there is a (κ, ω∗) gap in (NN, <∗).

Hausdorff also discovered another type of gap — the (ω1, ω
∗
1) gap. Rather

remarkably, this is the best that one can do without using extra assumptions.

Theorem 2.4. [11] Under OCA[T] all gaps in (NN, <∗) are of the form
(ω1, ω

∗
1), (κ, ω∗), or (ω∗, κ) for some cardinal κ.

Also quite striking is the following fact which now completes the proof
of Theorem 2.1. An interested reader is encouraged to supply its proof via
Theorem 2.3.

Lemma 2.5. [11] If every subset of NN of size at most ℵ2 is bounded, then
there is an (ω2, κ

∗) gap in (NN, <∗) for some regular uncountable cardinal κ.
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3 The alternation map

For technical reasons we will now restrict our discussion to the suborder
(N↑N, <∗) of strictly increasing sequences of natural numbers. Since N↑N is
both cofinal in and order isomorphic to (NN, <∗) this is really not a loss
of generality. The following notion will be central to our discussion in this
section.

Definition 3.1. Suppose that S is a subset of N. Two sequences x and y
in N↑N are said to alternate on S if x(n) 6= y(n) for all n in S and for every
pair of consecutive elements m and n of S, x(m) < y(m) iff x(n) > y(n).

Notice that this notion also makes sense if x and y are only partial func-
tions whose domains include S.

Now suppose that x and y are two distinct elements of N↑N and that x
is lexicographically less than y. Define a set S(x, y) ⊆ N by recursion. The
first element of S(x, y) is ∆(x, y). Given the 2nth element k of S(x, y) define
the next two elements to be y(k) and x(y(k)). So the elements of S(x, y) are

∆(x, y), y(∆(x, y)), x(y(∆(x, y))), y(x(y(∆(x, y)))), . . .

If x and y are only partial functions, repeat this procedure so long as the
elements generated remain in the domains of both x and y. Since x and y are
strictly increasing, the elements of S being defined are getting successively
larger and larger. If i is an integer and S(x, y) has an ith element (starting
with i = 0), then we will occasionally find it convenient to denote it as
S(x, y)(i).

Notice that the map S : [N↑N]2 → P(N) is continuous since to determine
a finite amount of information about S(x, y) one needs only a finite amount
of information about x and y. Given S(x, y), alt(x, y) is defined to be the
cardinality of the largest initial segment of S(x, y) on which x and y alternate
minus one. Thus alt : [N↑N]2 → N ∪ {∞} is also a continuous map, where
N ∪ {∞} is the one point compactification of N. Notice that the alternation
map is finite on all pairs which are comparable in (N↑N, <∗).

The following theorem shows that the alternation map exhibits a behavior
similar to that of the more well known oscillation map of Todorčević (see,
e.g., [11]). It has essentially appeared in [5] and chapter 4 of [6]. A proof has
been included for completeness.
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Theorem 3.2. If X is an unbounded and countably directed in (N↑N, <∗)
then there is an n such that for every k there is a pair x, y in X with ∆(x, y) =
n and alt(x, y) = k.

Proof. Let X be given and choose a countable dense subset D of X. Since
(X,<∗) is countably directed, there is an a in X which is an upper bound
for D. Now consider the set of all {y ∈ X : a <∗ y}. Since X is directed and
unbounded, this set is also unbounded. It is therefore possible by Fact 1.2
to find an n and a subcollection Y of this set such that every neighborhood
of Y is unbounded and a(i) < y(i) for every y in Y and i ≥ m.

Now choose a sequence uk (i ∈ N) such that for all k

1. uk is a finite sequence of natural numbers such that [ukˆi] ∩ Y is
nonempty for infinitely many i,

2. uk is an initial segment of uk+2,

3. ∆(uk, uk+1) = |u0| > m,

4. |uk| < S(uk+1, uk+2)(k) < |uk+1|, and

5. uk+2(nk) < uk+1(nk) where nk = S(uk+1, uk+2)(k).

The recursion is easily carried out using Fact 1.5. Notice that u2k+1 <lex u2k+2

follows from 2, 3, and 5. Also, by 2 and 3, S(uk+1, uk+2)(i) is a fixed integer
ni which does not depend on k provided that i ≤ k. By 5 uk and uk+1

alternate on S(uk, uk+1) = {n0, . . . , nk−1} (S(u0, u1) is empty).
Now let dk be in [uk+1] ∩D and fix an mk such that dk(i) < a(i) for all

i > mk. Choose yk in [uk] ∩ Y such that yk(|uk|) > a(mk). Note that yk
dominates dk on the interval [|uk|,mk] by monotonicity and yk dominates dk
[mk,∞) since mk > m. It follows that ∆(dk, yk) = n0 and that {n0, . . . , nk}
are the first k + 1 elements of S(dk, yk). Note that yk(nk) > dk(nk) and that
the next element of S(dk, yk) is greater than |uk| and hence yk dominates dk
at this place as well. Hence by our observations above {n0, . . . , nk} is exactly
the largest initial segment of S(dk, yk) on which dk and yk alternate, making
alt(dk, yk) = k.

4 Continuously coding a real number

In this section we will see how to code countable binary sequences into subsets
of NN. Since the real numbers have the same size as {0, 1}N this can be
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considered as a means for coding reals. To facilitate the coding that we are
about to define, it is useful if we change the map alt to a map t which takes
values which are finite binary sequences rather than natural numbers. To
this end let ϕ(k, n) be the unique binary sequence t of length n such that

k ≡
n−1∑
i=0

t(i)2i mod 2n.

It is easily seen that ϕ(·, n) maps onto the binary sequences of length n.
If x, y are in N↑N and alt(x, y) is finite, define

t(x, y) = ϕ(alt(x, y),∆(x, y)).

Notice that, since it is a composition of continuous functions, t is continuous
on its domain. Its domain is the preimage of N under the alternation map
and is therefore an open set. Similarly t is defined on all pairs x and y which
are comparable in (N↑N, <∗). Theorem 3.2 immediately gives the following
result.

Theorem 4.1. If X is unbounded and countably directed in (N↑N, <∗) and r
is in {0, 1}N then there is a pair x, y in X such that t(x, y) is defined and is
an initial segment of r.

Now we are ready to define what it means for a set H ⊆ N↑N to code an
element r of {0, 1}N.

Definition 4.2. If H ⊆ N↑N is uncountable, t is defined on [H]2, and the
image of [H]2 under t contains no two incompatible elements then H is said
to be a code. If r is the unique element of {0, 1}N such that t(x, y) is an
initial segment of r for all x, y in H then we will say that r is coded by H.

Remark 4.3. Notice that the map ∆ is unbounded on the pairs of any un-
countable set X. This implies that no set can be a code for two distinct r
and r′ in {0, 1}N.

Theorem 4.4. (OCA[T]) If X ⊆ N↑N is unbounded and countably directed
then for every r in {0, 1}N there is an H ⊆ X which codes it.

Proof. Define Gr ⊆ [X]2 by putting {x, y} in Gr iff t(x, y) is defined and is
an initial segment of r. Since t is continuous and has an open domain, Gr is
open. By Fact 1.2 and Theorem 4.1, Gr isn’t countably chromatic. Applying
OCA[T], there is an uncountable H ⊆ X such that [H]2 ⊆ Gr which, by
definition, is a code for r.
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5 Sealing codes

In this section we finish the proof of the main result by showing that under
OCA[ARS] any chain in (N↑N, <∗) of size ℵ2 can contain codes for at most ℵ2

reals.

Theorem 5.1. (OCA[ARS]) Suppose that X0 ⊆ N
↑N has size ℵ1 and t is

defined on [X0]2. There is a disjoint family Ar (r ∈ {0, 1}N) of (possibly
empty) subsets of X0 such that if H ⊆ X0 is a code for r then H \ Ar is at
most countable. In particular at most ℵ1 many different elements of {0, 1}N
have codes contained in X0.

Proof. Define tn : [X0]2 → {0, 1}≤n for each n by setting tn(x, y) to be the
restriction of t(x, y) to its first n entries (set tn(x, y) = t(x, y) if ∆(x, y) ≤ n).
Note that tn is also continuous for each n and has finite range. Construct a
family {As} indexed by the finite binary sequences with the following prop-
erties:

1. For each n the collection {As : s ∈ {0, 1}n} is a partition of X0 into
disjoint sets.

2. Each As can be decomposed into countably many sets As,i such that
t|s| is constantly s on [As,i]

2 for all i.

Let n be fixed and apply OCA[ARS] to tn : [X0]2 → {0, 1}≤n to get countably
many sets Yi such that tn is constant on [Yi]

2 for all i. Notice we may assume
that, for each i, if x 6= y are in Yi then ∆(x, y) > n. It follows that for every
i there is an s in {0, 1}n such that t is constantly s on [Yi]

2 (possibly for
trivial reasons). The sets As (s ∈ {0, 1}n) are now constructed so that they
are pairwise disjoint and each As is contained in union of all Yi such that tn
is constantly s on [Yi]

2. It should be clear that these sets satisfy properties
1 and 2 above.

If r is in {0, 1}N set Ar =
⋂∞
n=0 Ar�n. By property 1 Ar and Ar′ are disjoint

for distinct r and r′ in {0, 1}N. Now observe that, by property 2, if s ∈ {0, 1}n
is different than r � n then H∩As is countable since t′′n[H]2 ⊆ {〈〉, . . . , r � n}.
Applying property 1 again, H \Ar�n is countable for all n and hence H \Ar
is countable.
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6 Closing remarks

I will now close this paper by mentioning the following two open problems.

Question 6.1. Does OCA[ARS] imply 2ℵ0 is ℵ2?

Question 6.2. Does OCA[T] imply 2ℵ0 is ℵ2?

Both of these questions are interesting for different reasons and, in spite
of their similar appearance, seem to be quite different in nature. Question
6.1 is a special case of the more well known open problem of whether the
Bounded Proper Forcing Axiom implies 2ℵ0 = ℵ2 (see [10] for more infor-
mation on bounded forcing axioms). Question 6.2 has been pursued since
OCA[T] was introduced. Interest in it stems both from the wide variety of
applications which this axiom has seen (see, e.g., [2], [11, §8]) and from the
fact that it is consistent with an effective form of the Continuum Hypothesis
in the absence of the Axiom of Choice (see [7]). I. Farah has shown in an
unpublished note that it is consistent that OCA[T] holds for graphs of size
ℵ1 and 2ℵ0 > ℵ2 but it is known that this restricted form of the axiom is
much weaker than OCA[T] (see [10]). Both questions are also interesting if
they are supplemented with MAℵ1 , an axiom often used in conjunction with
these axioms.

Any complete resolution to these questions would be of great interest. If
either question has a positive answer (particularly in the case of Question
6.1) this would seem to require a new method for proving that 2ℵ0 is ℵ2. On
the other hand, if both questions have a negative answer, this would give two
Ramsey theoretic statements which are individually consistent with 2ℵ0 > ℵ2

but which jointly imply 2ℵ0 = ℵ2. Situations of this kind (and lack thereof)
have recently received a great deal of attention — see [13].
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[10] S. Todorčević. Localized reflection and fragments of PFA. DIMACS Ser.
Discrete Math. Theoret. Comput. Sci. (to appear).
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