Random forcing and (S) and (L) *

J. Tatch Moore
September 26, 2002

Abstract

In this article I will analyze the impact of forcing with a measure
algebra on various topological statements. In particular our interest
will focus on the study of hereditary separability and the hereditary
Lindel6f property in the classes of compact, extremally disconnected,
and cometrizable spaces.

1 Introduction

For a given class of regular topological spaces, consider the following two
questions:

(S) Is every hereditarily separable space hereditarily Lindel6f?
(L) Is every hereditarily Lindel6f space hereditarily separable?

These questions have long been at the center of active research in set theoretic
topology in such classes as compact spaces, extremally disconnected spaces,
cometrizable spaces, and arbitrary regular spaces. In the 1980’s it was shown
under the assumption of M Ay, that both questions have positive answers in
all but the last class of spaces ([17], [18], [5] respectively).

*The results of this paper were obtained while working on my Ph.D. thesis and are a
reproduction of what appears there in chapters 6 and 7. This paper was prepared in part
while T was supported by EPSRC grant GR/M71121 during my stay at the University of
East Anglia.



On another front, set theorists have been working towards understanding
which consequences of M Ay, are preserved by forcing with a measure alge-
bra. Probably the most influential result of this sort is the following theorem
due to Laver.

Theorem 1.1. [10] After forcing with a measure algebra over a model of
MAy, there are no Souslin continua.

The focus of this note will be to examine the impact of forcing with a
measure algebra on (S) and (L) in the class of compact, cometrizable, and
extremally disconnected spaces.

2 Measure algebras and random reals

Before we begin, let us first review some basic notions and fix some termi-
nology.

Definition 2.1. A measure algebra is a pair (R, ) such that
1. R is a complete Boolean algebra,

2. 1 : R — [0,1] is positive on positive elements of R and satisfies p(1) =
1, and

3. u(aVb) = pu(a) + u(b) whenever a A b= 0.

Sometimes I will abuse notion and write R when I really mean (R, u).
While this definition seems quite general, the class of all measure algebras
is actually rather small as the following remarkable theorem of Maharam
shows.

Theorem 2.2. [11] There is exactly one homogeneous measure algebra up
to measure preserving isomorphism of each infinite character k.

Here the character of a measure algebra refers to the smallest number
of elements required to completely generate it. We, moreover, know what
these examples look like. If I is any infinite index set then we can define the
product measure g on the clopen subsets of 2/. Extending this to the Baire
subsets of 27 and taking the quotient by the measure 0 sets gives us R;, the
unique homogeneous measure algebra of character #(1).



As we will be interested in considering measure algebras as forcing no-
tions, this tells us that forcing with a measure algebra is equivalent to adding
some number of random reals. I have chosen to treat measure algebras in an
abstract setting since this often highlights what is important in the proofs
and, at times, makes the presentation more transparent. Occasionally, how-
ever, it will be more convenient to think of the generic object as a sequence of
reals (or elements of 2, w*, etc.). I will not hesitate to switch back and forth
between these two methods of presentation when it benefits the discussion.

The following theorem is at the heart of many of the arguments concerning
the impact of MAy, on forcing extensions of the form V® where R is a
measure algebra.

Theorem 2.3. (MAy,) If R is a measure algebra and G - [w1]> — R is a
R-name for a graph on wy then either

1. There is a sequence R-names X, : w1 — R indezed by w such that for

all o < wy .
\ X(a) =1
n<w

and for alln and o, § < wq
X (@) N Xn(B) A G, ) = 0
(i.e. G is forced to be countably chromatic) or else

2. there is a sequence F¢ (£ < wy) of disjoint finite subsets of wy and a
0 > 0 such that for all £ #n

V V Gp

O(EFg BEF»,]
has measure at least §.

The proof of this theorem is carried out explicitly in [14]. The techniques
of the proof already appear in [10] and the argument can readily be extracted
from section 2 of [22]. It should be emphasized that for the questions which
we are considering this is often the only use of M Ay, and that the bulk of
the work lies in analyzing the implications of the second alternative of this
theorem in a specific context.



3 Cometrizable spaces

A topological space X is cometrizable if there is a weaker metric topology
on X such that every point of X has a neighborhood base of sets which are
closed in the metric topology. In this section we will consider the influence
of forcing with a measure algebra on (S) and (L) in the class of cometrizable
spaces. It turns out that whether these objects are introduced by this forcing
depends on the character of the algebra.

Theorem 3.1. (MAy, ) After forcing with a separable measure algebra (S)
and (L) have a positive answer in the class of cometrizable spaces.

Proof. 1 will only present the proof for (S) as the proof for (L) is symmetric.
Let R be a separable measure algebra and (X , d) be a R-name for a metric
space which supports a non-Lindelof cometrizable topology 7. Since 7 is a
refinement of the metric topology on X we may assume that X is forced to
be separable. Select a sequences i, E, (ov < wy) such that

1. &, is a R-name for an element of X

2. E, is a R-name for a 7 neighborhood of 4, which is closed in the metric
topology.

3. if o < 3 then it is forced that @3 is not in E,.

Define G : [wi]? — R by G(a, B) is the event “i,, is in F3” where o < § < wy.

Now apply Theorem 2.3 to G. It is easy to see that the first alternative
gives a decomposition of {Z, : @ < w;} into countably many discrete sets. It
therefore suffices to show that the second alternative cannot hold. Suppose
that such a sequence Fy (£ < w;) and a § > 0 are given. For each &, pick a
rational ¢ > 0 such that

A¢ = [min min d(ig, E,) > ¢
¢ [[ang Snin (25, Ea) > ]
has measure greater than 1 — §/2. Fix an uncountable I' C w; and € > 0

such that e, = € for all £ in I'. By the separability of R it is possible to find
£ <&+ 1<nsuchthat foralli=0,... ,n—1

Bey = [d(@re 1) TR 00) < €]



has measure greater than 1 —¢/2. It follows that A, A Be, has measure
greater than 1 — § and forces that d(&,, Eg) > 0 whenever « is in Fg; and
B is in F;, and hence is disjoint from

\V 'V Gla,5).

aEly BEF,

For nonseparable measure algebras, the picture is quite different.

Theorem 3.2. After forcing with any homogeneous nonseparable measure
algebra, there are counterexamples to (S) and (L) in the class of cometrizable
spaces.

Proof. By modifying our ground model if necessary, we may assume that
the forcing extension is of the form V[re : & < wy] where 7¢(§ < wy) is a
sequence of random reals in [0, 1]. The set {r¢ : £ < wy} is a Sierpinski set
and therefore is a counterexample to (L) when viewed as a subspace of the
density topology [19]. Since the density topology is cometrizable (see the
proof of Theorem 22.9 of [15]), this gives a cometrizable counterexample to
(L).
Also, the set {r¢ : & < wy} is, in fact, hereditarily Lindelof in all of its
finite powers. For each ¢ < w; pick a compact set Eg of positive measure
which misses 7, for all n < £ but which contains 7¢ as a point of density 1.
Now the sets Ug = {En (Te € En} are closed in the Vietoris topology on the
closed subsets of [0, 1] and, by duality, generate a hereditarily separable, non
Lindeldf topology on {E, : @ < wy}. This gives a counterexample to (S) in
the class of cometrizable spaces. O

It is perhaps worth noting at this point that the cometrizable spaces
just mentioned are built on somewhat generic sets of reals. One might ask
whether an w;-sequence of random reals could be used to construct cometriz-
able counterexamples to (S) or (L) on any set of reals of size ;. This is a
reasonable question since Todorcevi¢ has shown in Chapter 2 of [21] that

= wy implies that any set of reals of size N; supports a cometrizable locally
compact topology which is a counterexample to (S). A closer inspection of
the proof of Theorem 3.1, however, reveals that the use of the separability
of R only requires that the underlying set of reals be added by a separable
subalgebra.



4 Extremally Disconnected Spaces

A topological space X is extremally disconnected if the closure of every open
set is open. Counterexamples to (S) which are subspaces of extremally dis-
connected spaces were constructed by Ginsburg [4], Szymariski [18], and
Wage [24] using a variety of set theoretic assumptions. In the last of the
three papers written on extremally disconnected and (S), Szymaiiski shows
that Wage’s Lemma, a known consequence of M Ay, (see [23]), implies that
(S) has a positive answer in the class of all subspaces of extremally disconnect
spaces. In this section I will extended Wage’s result, showing that if M Ay,
holds then Wage’s Lemma remains true after forcing with any measure al-
gebra. Combined with Szymanski’s result, this establishes the consistency
of “(S) has a positive answer for all subspaces of extremally disconnected
spaces” with statements such as “there is a Sierpinski set” (which yields
an extremally disconnected L space when identified with a subspace of the
Stone space of the Lebesgue measure algebra ') and “there is an Ostaszewski
space” (see section 5). The latter is perhaps surprising since historically ex-
tremally disconnect S spaces and Ostaszewski spaces have been constructed
from similar axioms (see, e.g., [16], [18]).

Consider the following combinatorial statement for a regular cardinal 6:

W(0) If Ais a family of countable subsets of § such that A has size at most
6 and every pair has a finite intersection, then there is a cofinal subset
of € which has finite intersection with every element of A.

This statement is known as Wage’s Lemma and was considered by Wage in
23] through the course of working on topological problems related to (S) and
(L). It also has uses in combinatorics — the interested reader is referred to
[23]. T will now prove that W(#) is a consequence of MLAy which can hold
after forcing with an arbitrary measure algebra.

Theorem 4.1 (MAy). W(0) holds after forcing with any measure algebra.

Proof. Let {Aa : a < 0} be a sequence of R-names for almost disjoint
countable subsets of . For each a < # let R, be the separable complete
subalgebra of R generated by {[¢ € A,] : € < 0} (note that [¢ € A,] is O
for all but countably many &). Let (Q, <) be the forcing notion of all pairs
(X, D, ]3) which satisfy the following properties:

Tt is unclear even today whether (L) can consistently be true in the class of extremally
disconnected spaces (i.e. this is apparently an open problem).
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1. X, D are finite subsets of 6.

—

2. P=(P° ..., Pf1)is a finite sequence of maps from D into R™.
3. If ais in D then Pi(a) is in R, for each P' in P.
4. If ais in D then P’(a) forces X N A, has size at most i.

The ordering on elements of Q is defined by ¢ < r if the following hold:
1. X, contains X, and D, contains D,.

2. For every a in D, and every i less than the length of P., §(Pi(a)) =
0(Pj()). Here if B is in R*, §(B) is the largest number of the form
1/n which is less than u(B).

For each condition (X, D, ]3), there is a rational ¢ = (X, D, 13) > 0 such
that for all @ in D and P in P, u(P'(a)) > §(P'(a)) + ¢.
Claim 4.2. (Q, <) satisfies the countable chain condition.

Proof. Let {(X¢, D, 135) : £ < w} be a sequence of conditions in Q. Select
an uncountable I' C w; and an ¢ > 0 such that the following conditions hold:

1. S(Xg, Dg, ﬁg) =£.
2. There is a k such that all the sequences }35 have length k.

3. The families {X¢ : &€ < wi} and {D¢ : £ < w;} form A-systems with
roots X and D respectively.

4. Ifaisin D, §,1 < w; then for all i <k P{(a) and P}(«) differ by a set
of measure at most £/2.

5. If £ <narein I' then X C 7 and it is forced that A, is contained in
n for all o in De.

Let m denote the cardinality of X¢\ X and I be the first w elements of I". For
n > sup l and ¢ < m, define fé : I — R so that f;(f‘) is the event that the
i™™ element of X\ X is in A, for some o in the domain of P,. Notice that if
n # ¢ are in T\ I then u(f}(§) - fi(€)) vanishes for all i as £ — sup I. So if U
is a nonprinciple ultrafilter on I, for each i there are only countably many n



in '\  such that the limit of u(f}(£)) as € — U is nonzero. In particular, this
means that for some 7 in T'\ I and some & in I u(f;(&)) < /m for all i. It

is now easy to verify that (X¢, D, 155) and (X, D,, ﬁn) are compatible. [J
Now let D, . be the collection of all (X, D, 15) in Q such that
1. aisin D.
2. X'\ «a is nonempty.
3. The measure of | J; P;(«a) is at least 1 — /2.
4. The sum of u(P(a)) — 0(P(w)) as is less than €/2

It is routine to verify that D, . is dense for all & < § and € > 0. Also, if X
is the union of the first coordinates of a filter meeting all of these dense sets
then X is forced to have finite intersection with each A,. O

5 Compact S Spaces

One of the primary reasons for studying (S) and (L) after forcing with a mea-
sure algebra is that this may yield a solution to an old problem of Katétov.
While Katétov’s problem has recently been resolved using techniques dif-
ferent than those developed in this paper (see [9]), the status of Katétov’s
problem after forcing with a measure algebra still seems to be of interest.
In particular a resolution of Katétov’s problem in the models which we are
studying may require or lead to a better understanding of perfectly normal
compacta than we presently have.

In [7] Katétov proved that if X is a compact space and X? is hereditarily
normal then X must be metrizable. He then asked whether dimension 3
could be lowered to dimension 2. Gruenhage and Nyikos have shown in [6]
that under CH and also under M Ay, this question has a negative answer.
Moreover they show that if X is a counterexample, one of the following must

hold:
1. There is a Q) set.
2. X is a compact counterexample to (L).

3. X? is a compact counterexample to (S).
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4. X? contains counterexamples to both (S) and (L).

After forcing with a measure algebra of character at least Ny, there are
no Q sets. Also, Todoréevié¢ has shown the following. 2

Theorem 5.1. [22] (MAy, ) After forcing with any measure algebra every
compact space containing a counterexample to (L) also contains an uncount-
able free sequence.

Thus any counterexample to Katétov’s problem in this model would have
to be a perfectly normal compactum X whose square is a counterexample
to (S). For some time it was unclear whether Todorcevié’s theorem could be
dualized by replacing (L) with (S). The following theorem gives a negative
answer to this question.

Theorem 5.2. In any forcing extension by a homogeneous nonseparable mea-
sure algebra there is a perfectly normal countably compact non compact topol-
ogy on wy. In particular, after such a forcing there is a compact counterex-
ample to (S).

Remark 5.3. Eisworth and Roitman [2] have shown that such spaces can
not be constructed from CH alone. Thus it is not reasonable to hope to
weaken the parameter in the construction to the existence of a Sierpinski
set. It turns out that there is indeed a guessing principle which the above
construction factors through. Interested readers are referred to [12] where a
general discussion is given of guessing principles of this sort.

Proof. By modifying our ground model if necessary, we may assume that
VR = Vi, : a < wi] for some sequence of random reals 7, (o < wy). It will
be convenient to view r, as a random real in w* where w is given the atomic
measure determined by p({n}) = 2771, In V fix, for each limit ordinal 4,
a strictly increasing sequence d,, cofinal in §. Define a sequence of topologies
T, on the limit ordinals « by recursion so that 7, is locally compact, non
compact topology in V[re : £ < a] and 73 | o is 7, for o < 3. 7, is the
discrete topology. Suppose now that 7, has been defined (limit stages are
trivial). Define a topology 7,1, on a + w as follows. In V[re : £ < af, let
{U4(k) - k < w} be a partition of (a,7,) into disjoint compact open pieces.

2While this result is certainly of independent interest — there is no mention of Katétov’s
problem in [22] — it should be noted that it is open whether one can prove in ZFC that
if X2 is compact and hereditarily normal then X is separable.
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Neighborhoods of o+ n in 7., are of the form {a +n} U|JV where V is a
cofinite subset of

{U (k) : 7o (k) = n}.

The space we are interested in is, of course, (wq,7,,). The topology is
clearly locally compact and locally countable. It should also be clear that
the genericity of the 7,’s ensure that, for a fixed @ < w;, the closure of
{a+n:n < w}is the set of all 5 > a. I will now show that (wy,7,,) has
the property that the closure of any set is either compact or cocountable.
Suppose that E is a name for an infinite subset of w; and assume without
loss of generality that E is forced to be either countable or uncountable. Let
a be a limit ordinal such that £'Na is infinite and is in V[i¢ : € < a]. If Fis
forced to be uncountable, then also arrange that ENa is forced to be cofinal
in a. Now we will work in V[re : £ < af. If E N a has compact closure in
(v, 7o) then we are done (note that this is impossible if £ Na is cofinal in o).
If £ N a does not have compact closure in 7, then there are infinitely many
k such that Ua(k‘) N E is nonempty. Moreover, an easy genericity argument
shows that, for each n there are infinitely many k such that U, (k) N E is
non empty and 74(k) = n. It follows that £ N a accumulates to each of the
a +n’s which are in turn dense the set of all 3 > «. O

It is unclear whether the above example above can be made hereditarily
separable in all finite powers. In particular, the following question is open.

Question 1. (MAy, ) After forcing with an arbitrary measure algebra, does
X? always contain an uncountable discrete subspace whenever X is non-
metrizable and compact?

Also the following question remains open, serving as a reminder that this
example is actually quite irrelevant to Katétov’s problem.

Question 2. (MAy, ) After forcing with an arbitrary measure algebra, does
(S) hold for the class of first countable compact spaces?
6 Small Compactifications of L Spaces

By a result of Fremlin [3, 44A] (see also section 6 of [20]), M Ay, implies that
every compact space containing a counterexample to (L) must map onto
[0,1]“r. By a theorem of Todorc¢evi¢, M Ay, implies that after forcing with
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an arbitrary measure algebra, compact countably tight spaces can’t contain
counterexamples to (L). It is reasonable to ask whether these two results
can be combined to obtain Fremlin’s conclusion even after forcing with an
arbitrary measure algebra. The following result indicates that this is not so.

Theorem 6.1. If there is a Sierpinski set then there is a compact space K
which contains a counterezample to (L) and which also maps continuously
into 2% with linear fibers (and hence does not map onto [0, 1]“* ).

Proof. Let {x, : @ < wy} be a Sierpinski subset of 2 and let ¢, : @ — w
(v < wy) be a coherent sequence of injections. Suppose further that for all
a < A(za,z) < eg(a) (the sequence e, can always be modified to have
this property — see Chapter 4 and in particular page 96 of [1]). Define

Es =2\ (J[ra I ¢s(a)].

a<f

Then Ej3 is a compact set of positive measure all of whose elements are of
Lebesgue density 1 and which contains zz. Hence if a topology on 2 is
generated by the clopen sets and the Eg’s, X = {z, : @ <w;} is an L space
when given the subspace topology. Let B be the Boolean algebra generated
by the clopen subsets of 2 and the Ejg’s.

Claim 6.2. The map from the Stone space of B to 2¥ given by restricting
ultrafilters to the algebra of clopen sets has linear fibers.

Proof. Suppose that = is in 2¢. Let I', be the collection of all 3 such that
x € Eg. We must show that if « < 3 are in I'; then, for some neighborhood
Uofz, EgNU C E,NU. To this end, it suffices to show that Es \ E, is
closed. Let F' C « be a finite set such that e, and ez agree on a \ F. Then

Eg\ E, = U{x € Eg: Az, z,) < ea(7)}

YEF

is clearly closed.
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