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Abstract. In this paper I will show that it is relatively consis-
tent with the usual axioms of mathematics (ZFC) together with a
strong form of the axiom of infinity (the existence of a supercom-
pact cardinal) that the class of uncountable linear orders has a five
element basis. In fact such a basis follows from the Proper Forcing
Axiom, a strong form of the Baire Category Theorem. The ele-
ments are X, ω1, ω∗

1 , C, C∗ where X is any suborder of the reals
of cardinality ℵ1 and C is any Countryman line. This confirms a
longstanding conjecture of Shelah.

1. Introduction

Our focus in this paper will be to show that the Proper Forcing
Axiom (PFA) implies that any uncountable linear order must contain
an isomorphic copy of one of the following five orders: X, ω1, ω∗

1, C,
and C∗. Here X is any fixed set of reals of cardinality ℵ1 and C is any
fixed Countryman line. Such a list is called a basis.

The simplest example of an uncountable linear order is R, the real
line. This object serves as the prototype for the class of linear orders
and as the canonical example of an uncountable set. Early on in mod-
ern set theory, Baumgartner proved the following deep result which
suggested that it might be possible to prove more general classification
results for uncountable linear orders.

Theorem 1.1. [3] (PFA) If two sets of reals are ℵ1-dense,1 then they
are isomorphic. In particular if X is a set of reals of cardinality ℵ1,
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1I.e. every interval meets them at a set of cardinality ℵ1.
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then X serves as a single element basis for the class of uncountable
separable linear orders.

PFA is a strengthening of the Baire Category Theorem and is inde-
pendent of the usual axioms of set theory. Frequently — as in Baum-
gartner’s result above — this axiom can be used to find morphisms be-
tween certain structures or to make other combinatorial reductions (see
[1], [3], [7], [24], [25], [27]). Some additional assumption is necessary in
Baumgartner’s result because of the following classical construction of
Sierpiński.

Theorem 1.2. [19] There is a set of reals X of cardinality continuum
such that if f ⊆ X2 is a continuous injective function, then f differs
from the identity function on a set of cardinality less than continuum.

From this it is routine to prove that under the Continuum Hypoth-
esis there is no basis for the uncountable separable linear orders of
cardinality less than |P(R)|. This gives a complete contrast to the
conclusion of Baumgartner’s result.

The simplest example of a linear order which is separable only in the
trivial instances is a well order. The uncountable well orders have a
canonical minimal representative, the ordinal ω1.

2 Similarly, the con-
verse ω∗

1 of ω1 obtained by reversing the order relation forms a single
element basis for all of the uncountable converse well orders.

Those uncountable linear orders which do not contain uncountable
separable suborders or copies of ω1 or ω∗

1 are called Aronszajn lines.3

They are classical objects considered long ago by Aronszajn and Kurepa
who first proved their existence. Some time later Countryman made a
brief but important contribution to the subject by asking whether there
is an uncountable linear order C whose square is the union of countably
many chains.4 Such an order is necessarily Aronszajn. Furthermore,
it is easily seen that no uncountable linear order can embed into both
a Countryman line and its converse. Shelah proved that such orders
exist in ZFC [16] and made the following conjecture:

Shelah’s Conjecture. [16] (PFA) Every Aronszajn line contains a
Countryman suborder.

This soon developed into the following equivalent basis conjecture —
see [22].

2The canonical representation of well orders mentioned here is due to von
Neumann.

3Or Specker types.
4Here chain refers to the coordinate-wise partial order on C2.
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Conjecture. [4] (PFA) The orders X, ω1, ω∗
1, C and C∗ form a five

element basis for the uncountable linear orders any time X is a set of
reals of cardinality ℵ1 and C is a Countryman line.

Notice that by our observations such a basis is necessarily minimal.
This problem was exposited, along with some other basis problems

for uncountable structures, in Todorčević’s [21]. It also appears as
Question 5.1 in Shelah’s problem list [18]. A related and inspirational
analysis of Aronszajn trees was also carried out in [22].

In this paper I will prove Shelah’s conjecture. In doing so, I will
introduce some new methods for applying PFA which may be relevant
to solving other problems. I would like to thank Ilijas Farah, Jean
Larson, Paul Larson, Bill Mitchell, and Boban Veličković for carefully
reading the paper and offering their suggestions and comments. I would
also like to thank Jörg Brendle for supporting my visit to Japan where
I presented the results of this paper in a series of lectures at Kobe
University in December 2003.

This work is dedicated to Fennel Moore.

2. Background

This paper should be readily accessible to anyone who is well versed
in set theory and the major developments in the field in the 70s and 80s.
The reader is assumed to have proficiency in the areas of Aronszajn tree
combinatorics, forcing axioms, the combinatorics of [X]ℵ0 , and Skolem
hull arguments. Jech’s [12] and Kunen’s [14] serve as good references
on general set theory. They both contain some basic information on
Aronszajn trees; further reading on Aronszajn trees can be found in
[5], [20], and [26]. The reader is referred to [6], [16], [22], [23], or [26] for
information on Countryman lines. It should be noted, however, that
knowledge of the method of minimal walks will not be required.

The set theoretic assumption we will be working with is the Proper
Forcing Axiom. We will be heavily utilizing Todorcevic’s method of
building proper forcings using models as side conditions. Both [25]
and the section on PFA in [24] serve as good concise references on the
subject. See [15] for information on the Mapping Reflection Principle.
For basic forcing technology, the reader is referred to [11] and [14]. Part
III of Jech’s [11] gives a good exposition on the combinatorics of [X]ℵ0 ,
the corresponding closed unbounded (or club) filter, and related topics.

The notation in this paper is mostly standard. If X is an uncountable
set, then [X]ℵ0 will be used to denote the collection of all countable
subsets of X. All ordinals are von Neumann ordinals — they are the
set of their predecessors under the ∈ relation. The collections H(θ) for
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regular cardinals θ consist of those sets of hereditary cardinality less
than θ. Hence H(2θ+

) contains H(θ+) as an element and P(H(θ+))
as a subset. Often when I refer to H(θ) in this paper I will really
be referring to the structure (H(θ),∈, /) where / is some fixed well
ordering of H(θ) which can be used to generate the Skolem functions.

3. The axioms

The working assumption in this paper will be the Proper Forcing
Axiom introduced by Shelah and proved relatively consistent from a
supercompact cardinal. We will often appeal to the bounded form
of this axiom isolated by Goldstern and Shelah [9]. We will use an
equivalent formulation due to Bagaria [2]:

BPFA: If φ is a formula in language of H(ℵ+
1 ) with only bounded

quantifiers and there is a proper partial order which forces
∃Xφ(X), then H(ℵ+

1 ) already satisfies ∃Xφ(X).

At a crucial point in the proof we will also employ the Mapping Reflec-
tion Principle introduced recently in [15]. In order to state it we will
need the following definitions.

Definition 3.1. If X is an uncountable set, then there is a natural
topology — the Ellentuck topology — on [X]ℵ0 defined by declaring

[x, N ] = {Y ∈ [X]ℵ0 : x ⊆ Y ⊆ N}
to be open whenever N is in [X]ℵ0 and x is a finite subset of N .

This topology is regular and 0-dimensional. Moreover, the closed
and cofinal sets generate the club filter on [X]ℵ0 .

Definition 3.2. If M is an elementary submodel of some H(θ) and X
is in M , then we say a subset Σ ⊆ [X]ℵ0 is M-stationary if whenever
E ⊆ [X]ℵ0 is a club in M , the intersection Σ ∩ E ∩M is non-empty.

Definition 3.3. If Σ is a set mapping defined on a set of count-
able elementary submodels of some H(θ) and there is an X such that
Σ(M) ⊆ [X]ℵ0 is open and M -stationary for all M , then we say Σ is
an open stationary set mapping.

The Mapping Reflection Principle is the following statement:

MRP: If Σ is an open stationary set mapping defined on a club of
models, then there is a continuous ∈-chain 〈Nξ : ξ < ω1〉 in the
domain of Σ such that for every ν > 0 there is a ν0 < ν such
that Nξ ∩X is in Σ(Nν) whenever ν0 < ξ < ν.

The sequence 〈Nξ : ξ < ω1〉 postulated by this axiom will be called a
reflecting sequence for the set mapping Σ.
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4. A combinatorial reduction

Rather than prove Shelah’s basis conjecture directly, I will appeal to
the following reduction.

Theorem 4.1. (BPFA) The following are equivalent:

(1) The uncountable linear orders have a five element basis.
(2) There is an Aronszajn tree T such that for every K ⊆ T there

is an uncountable antichain X ⊆ T such that ∧(X)5 is either
contained in or disjoint from K.

Remark. This result seems to essentially be folklore; reader interested
in the historical aspects of this are referred to p 79 of [1], [4], [16]. A
detailed proof of this theorem can be found in the last section of [22].
I will sketch the proof for completeness.

The implication (1) implies (2) does not require BPFA and in fact
(1) implies that the conclusion of (2) holds for an arbitrary Aronszajn
tree T . To see why it is true, suppose that (T,≤) is an Aronszajn
tree equipped with a lexicographical order and suppose that K ⊆ T
witnesses a failure of (2). If (T,≤) doesn’t contains a Countryman
suborder, then (1) must fail. So without loss of generality, we may
assume that (T,≤) is Countryman.

Define s ≤′ t iff s ∧ t is in K and s ≤ t or s ∧ t is not in K and
t ≤ s. It is sufficient to check that neither (T,≤) nor its converse (T,≥)
embeds an uncountable suborder of (T,≤′). This is accomplished with
two observations. First, since (T,≤) and its converse are Countryman,
any such embedding can be assumed to be the identity map. Second, if
≤ and ≤′ agree on X ⊆ T , then ∧(X) ⊆ K; disagreement on X results
in ∧(X) ∩K = ∅.

For the implication (2) implies (1) we first observe that, by Baum-
gartner’s result mentioned above, it suffices to show that the Aronszajn
lines have a two element basis. Fix a Countryman line C which is a lex-
icographical order ≤ on an Aronszajn tree T . The club isomorphism of
Aronszajn trees under BPFA [1] together with some further appeal to
MAℵ1 implies that any Aronszajn line contains a suborder isomorphic
to some (X,≤′) where X ⊆ T is uncountable and binary and ≤′ is a —
possibly different — lexicographical order on T . Statement (2) is used
to compare ≤ and ≤′ and find an uncountable Y ⊆ X on which these
orders always agree or always disagree. Applying MAℵ1 , C embeds into
all its uncountable suborders, thus finishing the proof.

5This will be defined momentarily.
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5. The proof of the main result

In this section we will prove the basis conjecture of Shelah by proving
the following result and appealing to Theorem 4.1.

Theorem 5.1. (PFA) There is an Aronszajn tree T such that if K ⊆
T , then there is an uncountable antichain X ⊆ T such that ∧(X) is
either contained in or disjoint from K.

The proof will be given as a series of lemmas. In each case, I will
state any set theoretic hypothesis needed to prove a lemma. This is
not so much to split hairs but because I feel that it will help the reader
better understand the proof.

For the duration of the proof, we will let T be a fixed Aronszajn tree
which is contained in the complete binary tree, coherent, closed under
finite changes, and special.6 It will be convenient to first make some
definitions and fix some notation.

Definition 5.2. If s and t are two elements of T , then diff(s, t) is the
set of all ξ such that s(ξ) and t(ξ) are defined and not equal. If F ⊆ T ,
then diff(F ) is the union of all diff(s, t) such that s and t are in F . The
coherence of T is the assertion that diff(s, t) is a finite set for all s, t in
T .

Definition 5.3. If X is a subset of T and δ < ω1, then X � δ is the set
of all t � δ such that t is in X. Here t � δ is just functional restriction.

Definition 5.4. If s and t are in T , then ∆(s, t) is the least element
of diff(s, t). If s and t are comparable, we leave ∆(s, t) undefined.7 If
Z ⊆ T and t is in T , then ∆(Z, t) = {∆(s, t) : s ∈ Z}.

Definition 5.5. If X is a finite subset of T , then X(j) will denote the
jth least element of X in the lexicographical order inherited from T .

Definition 5.6. If s, t are incomparable in T , then the meet of s and
t — denoted s ∧ t — is the restriction s � ∆(s, t) = t � ∆(s, t). If X is
a subset of T , then ∧(X) = {s ∧ t : s, t ∈ X}.8

The following definition provides a useful means of measuring subsets
of an elementary submodel’s intersection with ω1.

6The tree T (ρ3) of [23] is such an example. Coherence is defined momentarily.
7This is somewhat non-standard but it will simplify the notation at some points.

For example, in the definition of ∆(Z, t) we only collect those values where ∆ is
defined.

8The domain of ∧ is the same as the domain of ∆; the set of all incomparable
pairs of elements of T .
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Definition 5.7. If P is a countable elementary submodel of H(ℵ+
1 )

containing T as an element, define IP (T ) to be the collection of all
I ⊆ ω1 such that for some uncountable Z ⊆ T in P and some t of
height P ∩ω1 which is in the downward closure of Z, the set ∆(Z, t) is
disjoint from I.

The following propositions are routine to verify using the coherence
of T and its closure under finite changes (compare to the proof that
U (T ) is a filter in [22] or [26]).

Proposition 5.8. If I is in IP (T ) and t is in T with height P ∩ ω1,
then there is a Z ⊆ T in P such that t is in the downward closure9 of
Z and ∆(Z, t) is disjoint from I.

Proposition 5.9. If I is in IP (T ), Z0 is a subset of T in P and t is
an element of the downward closure of Z0 of height P ∩ ω1, then there
is a Z ⊆ Z0 in P which also contains t in its downward closure and
satisfies ∆(Z, t) ∩ I is empty.

Proposition 5.10. IP (T ) is a proper ideal on ω1 which contains I ⊆
ω1 whenever I ∩ P is bounded in ω1 ∩ P .

Proposition 5.11. Suppose P is a countable elementary submodel of
H(ℵ+

1 ) such that Z ⊆ T is an element of P , and there is a t ∈ T of
height P ∩ ω1 in the downward closure of Z. Then Z is uncountable.

Let K ⊆ T be given. The following definitions will be central to
the proof. The first is the näıve approach to forcing an uncountable X
such that ∧(X) is contained in K.

Definition 5.12. H (K) is the collection of all finite X ⊆ T such that
∧(X) is contained in K.10

It is worth noting that H (K) is the correct forcing to work with if
K is union of levels of T ; this is demonstrated in [22]. This and other
successes in [22] emboldened me to attempt the more general case in
which K is an arbitrary subset of T .

The second is the notion of rejection which will be central in the
analysis of H (K). For convenience we will let E denote the collection
of all clubs E ⊆ [H(ℵ+

1 )]ℵ0 which consist of elementary submodels
which contain T and K as elements. Let E0 denote the element of E
which consists of all such submodels.

9The downward closure of Z is the collection of all s such that s ≤ s∗ for some
s∗ in Z

10A collection of finite sets such as this becomes a forcing notion when given the
order of reverse inclusion (q ≤ p means that q is stronger than p). A collection of
ordered pairs of finite sets becomes a forcing by coordinate-wise reverse inclusion.
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Definition 5.13. If X is a finite subset of T , then let K(X) denote
the set of all γ < ω1 such that for all t in X, if γ is less than the height
of t, then t � γ is in K.

Definition 5.14. If P is in E0 and X is a finite subset of T , then we
say that P rejects X if K(X) is in IP (T ).

The following trivial observations about P in E0 and finite X ⊆ T
are useful and will be used tacitly at times in the proofs which follow.

Proposition 5.15. If P does not reject X, then it does not reject any
of its restrictions X � γ.

Proposition 5.16. P rejects X iff it rejects X � (P ∩ ω1) iff it rejects
X \ P .

Proposition 5.17. If X is in P , then P does not reject X.

The forcing notion ∂(K) which we are about to define seeks to add
a subset of T in which rejection is rarely encountered.11

Definition 5.18. ∂(K) consists of all pairs p = (Xp, Np) such that:

(1) Np is a finite ∈-chain such that if N is in N , then T and K
are in N and N is the intersection of a countable elementary

submodel of H(22ℵ1 +
) with H(2ℵ1

+
).

(2) Xp ⊆ T is a finite set and if N is in Np, then there is an E in
E ∩N such that Xp is not rejected by any element of E ∩N .

We will also be interested in the suborder

∂H (K) = {p ∈ ∂(K) : Xp ∈ H (K)}
which seems to be the correct modification of H (K) from the point of
view of forcing the conclusion of the main theorem.

In order to aid in the presentation of the lemmas, I will make the
following definition.

Definition 5.19. ∂(K) is canonically proper if whenever M is a count-
able elementary submodel of H

(
|2∂(K)|+

)
and ∂(K) is in M , any con-

dition p which satisfies M ∩H(2ℵ1
+
) is in Np is (M, ∂(K))-generic. An

analogous definition is made for ∂H (K).

We will eventually prove that, assuming the Proper Forcing Axiom,
∂H (K) is canonically proper. The following lemma shows that this is
sufficient to finish the argument.

11The symbol ∂ is being used here because there is a connection to the notion
of a Cantor-Bendixon derivative. In a certain sense we are removing the parts of
the partial order H (K) which are causing it to be improper.
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Lemma 5.20. (BPFA) If ∂H (K) is canonically proper, then there is
an uncountable X ⊆ T such that ∧(X) is either contained in K or
disjoint from K.

Remark. This conclusion is sufficient since the properties of T imply
that X contains an uncountable antichain.

Proof. Let M be a countable elementary submodel of H
(
|2∂H (K)|+

)
containing ∂H (K) as an element. Let t be an element of T of height
M ∩ ω1. If

p =
(
{t}, {M ∩H(2ℵ1

+
)}

)
is a condition in ∂H (K), then it is (M, ∂H (K))-generic by assump-
tion. Consequently p forces that the interpretation of

Ẋ = {s ∈ T : ∃q ∈ Ġ(s ∈ Xq)}

is uncountable. Since Ẋ will then be forced to have the property that
∧(Ẋ) ⊆ Ǩ, we can apply BPFA to find such an X in V .

Now suppose that p is not a condition. It follows that there is a
countable elementary submodel P of H(ℵ+

1 ) in M such that T is in P
and K({t}) is in IP (T ). Therefore there is a Z ⊆ T in P such that
t � (P ∩ ω1) is in the downward closure of Z and for all s in Z, s ∧ t
is not in K. Let Y consist of all those w in ∧(Z) such that if u, v are
incomparable elements of Z and u ∧ v ≤ w, then u ∧ v is not in K.
Notice that Y is an element of P . Y is uncountable since it contains
s∧ t for every s in P ∩Z which is incomparable with t and the heights
of elements of this set are easily seen to be unbounded in P ∩ ω1. We
are therefore finished once we see that ∧(Y ) is disjoint from K. To
this end, suppose that w0 and w1 are incomparable elements of Y . Let
u0, u1, v0, v1 be elements of Z such that ui and vi are incomparable and
wi = ui ∧ vi. Since w0 and w1 are incomparable,

u0

(
∆(w0, w1)

)
= w0

(
∆(w0, w1)

)
6= w1

(
∆(w0, w1)

)
= v1

(
∆(w0, w1)

)
.

It follows that u0 ∧ v1 = w0 ∧w1. Since w0 extends u0 ∧ v1 and is in Y ,
it must be that u0 ∧ v1 is not in K. Hence w0 ∧ w1 is not in K. This
completes the proof that ∧(Y ) is disjoint from K. �

The following lemma is the reason for our definition of rejection. It
will be used at crucial points in the argument.

Lemma 5.21. Suppose that E is in E and 〈Xξ : ξ < ω1〉 is a sequence
of disjoint n-element subsets of T so that no element of E rejects any
Xξ for ξ < ω1. Then there are ξ 6= η < ω1 such that Xξ(j) ∧ Xη(j) is
in K for all j < n.
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Proof. By the pressing down lemma we can find a ζ < ω1 and a sta-
tionary set Ξ ⊆ ω1 such that:

(1) For all ξ in Ξ, Xξ contains only elements of height at least ξ.
(2) Xξ(j) � ζ = Xη(j) � ζ for all j < n and ξ, η ∈ Ξ.
(3) For all ξ in Ξ the set diff(Xξ � ξ) is contained in ζ.

Now let P be an element of E which contains 〈Xξ : ξ ∈ Ξ〉. Let η be
an element of Ξ outside of P and pick a ξ in Ξ∩P such that Xξ(0) � ξ
and Xη(0) � η are incomparable and for all j < n

Xη(j) � ∆
(
Xη(0), Xξ(0)

)
is in K. This is possible since otherwise Z = {Xξ(0) � ξ : ξ ∈ Ξ} and
t = Xη(0) � (P ∩ ω1) would witness K(Xη) is in IP (T ) and therefore
that P rejects Xη.

Notice that if j < n, then

∆
(
Xη(j), Xξ(j)

)
= ∆

(
Xη(0), Xξ(0)

)
since

diff(Xξ � ξ) ∪ diff(Xη � η) ⊆ ζ,

Xη(j) � ζ = Xξ(j) � ζ.

Hence the meets

Xξ(j) ∧Xη(j) = Xη(j) � ∆
(
Xξ(0), Xη(0)

)
are in K for all j < n. �

The next lemma draws the connection between ∂H (K) and the
forcing ∂(K). We will then spend the remainder of the paper analyzing
∂(K).

Lemma 5.22. (BPFA) If ∂(K) is canonically proper, so is ∂H (K).

Proof. We will show that otherwise the forcing ∂(K) introduces a coun-
terexample to Lemma 5.21 which would then exist in V by an ap-
plication of BPFA. Let M be a countable elementary submodel of
H

(
|2∂(K)|+

)
which contains K as an element and let r ∈ ∂H (K) be

such that M ∩H(2ℵ1
+
) is in Nr and yet r is not (M, ∂H (K))-generic.

By extending r if necessary, we may assume that there is a dense open
set D ⊆ ∂H (K) in M which contains r such that if q is in D ∩ M ,
then q is ∂H (K)-incompatible with r.

Let E ∈ E ∩M be such that no element of E ∩M rejects Xr and let
E ′ be the elements of E which are the union of their intersection with
E. Put Yr = (Xr \M) � (M ∩ ω1).

Claim 5.23. No element of E ′ rejects Yr.
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Proof. First observe that no element of E ′ ∩ M rejects Yr; the point
is to generalize this to arbitrary elements of E ′. Let P be an element
of E ′. We need to verify that K(Yr) is not in IP (T ). If P ∩ ω1 is
greater than M ∩ ω1, then Yr ⊆ P and this is trivial. Now suppose
that Z ⊆ T is in P and t is an element of T of height P ∩ ω1 which is
in the downward closure of Z. Let P0 be an element of E ∩ P which
contains Z as a member. Such a P0 will satisfy

P0 ∩ ω1 < P ∩ ω1 ≤ M ∩ ω1.

Let ν = P0 ∩ ω1. If ∆
(
Z, t � (P ∩ ω1)

)
is disjoint from K(Yr), then it

witnesses K(Yr � ν) is in IP0(T ). But then we could use the elemen-
tarity of M to find such a P0 in M ∩E, which is contrary to our choice
of E. Hence no element of E ′ rejects Yr. �

Let ζ ∈ M ∩ ω1 be an upper bound for diff(Yr) and let n = |Yr|. If
j < n, let Aj ⊆ T be an antichain in M which contains Yr(j).

12 Put
D∗ to be the collection of all q in D such that:

(4) Xr ∩ M = Xq ∩ N(q) where N(q) is the least element of Nq

which is not in Nr ∩M .
(5) Yq � ζ = Yr � ζ where Yq =

(
Xq \N(q)

)
�

(
N(q) ∩ ω1

)
.

(6) No element of E ′ rejects Yq.
(7) Yq(j) is in Aj whenever j < n.

Note that D∗ is in M .
Let G be a ∂(K)-generic filter which contains r. Notice that r is

(M, ∂(K))-generic. Working in V [G], let F be the collection of all Yq

where q is in D∗ ∩ G. Now M [G ∩ M ] is an elementary submodel of
H

(
|2∂(K)|+

)
[G]13 which contains F as an element but not as a subset

(since Yr is in F ). Therefore F is uncountable. Notice that every
element of F has the property that it is in H (K) but that for every
countable F0 ⊆ F there is a Yq in F \ F0 such that Yq ∪ Yq0 is not
in H (K) for any Yq0 in F0. This follows from the elementarity of
M [G∩M ] and from the fact that Yr ∪Yq is not in H (K) for any Yq in
F ∩ M [G ∩ M ]. Now it is possible to build an uncountable sequence
〈Xξ : ξ ∈ Ξ〉 of elements of F such that:

(8) Xξ has size n for all ξ ∈ Ξ and is a subset of the ξth level of T .
(9) Xξ ∪Xη is not in H (K) whenever ξ 6= η are in Ξ.

(10) There is a ζ < ω1 such that Xξ � ζ = Xη � ζ has size n for all
ξ, η < ω1.

12Here we are using that T is special.
13By Theorem 2.11 of [17].
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It follows from item 9 that if ξ < η < ω1, then there are j, j′ < n such
that Xξ(j) ∧Xη(j

′) is not in K. By item 10, it must be the case that
j = j′ since this condition ensures that

Xξ(j) ∧Xη(j
′) = Xξ(j) ∧Xξ(j

′)

whenever j 6= j′ < n and hence this meet would be in K by virtue of Xξ

being in H (K). Applying BPFA we get a sequence of sets satisfying
1–3 in V and therefore a contradiction to Lemma 5.21 since no elements
of F are rejected by any member of E ′. Hence ∂H (K) must also be
canonically proper. �

Next we have a typical “models as side conditions” lemma.

Lemma 5.24. If ∂(K) is not canonically proper, then there are disjoint
sets A , B and a function Y : A ∪B → [T ]<ℵ0 such that:

(1) A ⊆ [H(2ℵ1
+
)]ℵ0 and {N ∩H(ℵ+

1 ) : N ∈ A } is stationary.

(2) B ⊆ [H(22ℵ1 +
)]ℵ0 is stationary.

(3) If M is in A ∪B, then
(
Y (M), {M ∩H(2ℵ1

+
)}

)
is in ∂(K).

(4) For every M in B and N in A ∩M ,
(
Y (N) ∪ Y (M), {N}

)
is

not a condition in ∂(K).

Proof. Let M be a countable elementary submodel of H
(
|2∂(K)|+

)
and

r in ∂(K) be a condition which is not (M, ∂(K))-generic such that

M ∩H(2ℵ1
+
) is in Nr. By extending r if necessary, we can find dense

open D ⊆ ∂(K) in M which contains r such that no element of D ∩M
is compatible with r. Furthermore we may assume that if q is in D , N
is in Nq, and t is in Xq, then t � (N ∩ ω1) is also in Xq.

Define r0 = (Xr ∩M, Nr ∩M). If q is in D , let N(q) be the ∈-least
element of Nq \Nr0 . Let k = |Nr \Nr0| and ζ be the maximum of all
ordinals of the forms ht(s) + 1 for s ∈ Xr0 and N ∩ ω1 for N ∈ Nr0 .
Let Tk be the set of all q ≤ r0 in D such that:

(11) Xq ∩N(q) = Xr0 and Nq ∩N(q) = Nr0 .
(12) Xq � ζ = Xr � ζ.
(13) |Xq| = |Xr| = m and |Nq \Nr0| = k.

Let Ni(q) denote the ith ∈-least element of Nq \ N(q) and define Ti

recursively for i ≤ k. Given Ti+1, define Ti to be the collection of all
q such that

{Ni+1(q
∗) ∩H(ℵ+

1 ) : q∗ ∈ Ti+1 and q = q∗ � Ni+1(q
∗)}

is stationary where

q∗ � Ni+1(q
∗) =

(
Xq∗ ∩Ni+1(q

∗), Nq∗ ∩Ni+1(q
∗)

)
.



UNCOUNTABLE LINEAR ORDERS 13

Let T be the collection of all q in
⋃
i≤k

Ti such that if q is in Ti, then

q � Ni′+1(q) is in Ti′ for all i′ < i.

Claim 5.25. r is in T .

Proof. If q is in ∂(K), define

q̃ =
(
Xq, {N ∩H(ℵ+

1 ) : N ∈ Nq}
)
.

While elements of Nr\M need not contain Ti as an element for a given

i ≤ k, they do contain T̃i = {q̃ ∈ Ti} as an element for each i ≤ k.
Define rk = r and ri = ri+1 � Ni+1(r). Suppose that ri+1 is in Ti+1.

Since T̃i+1 and ri are in Ni+1(r) = Ni+1(ri+1) and since Ni+1(r)∩H(ℵ+
1 )

is in every club in E ∩ Ni+1(r), it follows by elementarity of Ni+1(r)
that the set

{Ni+1(q
∗) ∩H(ℵ+

1 ) : q∗ ∈ Ti+1 and ri = q∗ � Ni+1(q
∗)} =

{Ni+1(q̃
∗) : q̃∗ ∈ T̃i+1 and r̃i = q̃∗ � Ni+1(q̃

∗)}
is stationary. Hence ri is in Ti. �

Notice that T is in M . T has a natural tree order associated with it
induced by restriction. Since no element of Tk ∩M is compatible with
r and since r0 is in T ∩M , there is a q in T ∩M which is maximal in
the tree order such that q is compatible with r but such that none of
q’s immediate successors in T ∩M are compatible with r. Let l denote
the height of q in T and put A to be equal to the set of all Nl+1(q

∗)
such that q∗ is an immediate successor of q in T . Notice that if q∗ is
in Tl+1 and q is a restriction of q∗, then q∗ is in T . Hence we have
arranged that {N ∩H(ℵ+

1 ) : N ∈ A } is stationary. For each N in A ,
select a fixed q∗ which is an immediate successor of q in T such that
Nl+1(q

∗) = N and put

Y (N) = Xq∗ \Xq.

Claim 5.26. For all N in A ∩M the pair
(
Xr ∪ Y (N), {N}

)
is not a

condition in ∂(K).

Proof. Let N be in A ∩ M and fix an immediate successor q∗ of q in
T such that Nl+1(q

∗) = N and Y (N) = Xq∗ \Xq. Observe that

(Xr ∪Xq∗ , Nq∗ ∪Nr)

is not a condition in ∂(K) but that

(Xr ∪Xq, Nq ∪Nr)

is a condition. Furthermore, (Xr∪Xq∗ , Nq∗∪Nr) fails to be a condition
only because it violates item 2 in the definition of ∂(K). Observe that
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Nq∗ \ Nq = {N}. If N ′ is an element of Nr ∪ Nq, then the sets of
restrictions

{t � (N ′ ∩ ω1) : t ∈ Xr ∪Xq∗},
{t � (N ′ ∩ ω1) : t ∈ Xr ∪Xq}

are equal by definitions of Tl and q and by our initial assumptions about
the closure of Xq for q in D under taking certain restrictions. Since
(Xr∪Xq, Nr∪Nq) is a condition, such an N ′ cannot witness the failure
of 2. Therefore it must be the case that the reason (Xr∪Xq∗ , Nq∗∪Nr)
is not in ∂(K) is that N witnesses a failure of item 2. Now, the elements
of Xq∗ which have height at least N ∩ ω1 are exactly those in Y (N) =
Xq∗ \Xq. This finishes the claim. �

Notice that by elementarity of M , Y � A can be chosen to be
in M . Now M satisfies “There is a stationary set of countable el-

ementary submodels M∗ of H(22ℵ1 +
) such that for some Y (M∗) with(

Y (M∗), {M∗∩H(2ℵ1
+
)}

)
in ∂(K) we have that for every N in A ∩M∗

the pair
(
Y (N) ∪ Y (M∗), {N}

)
is not a condition in ∂(K).” By ele-

mentarity of M , we are finished. �

The following definition will be useful.

Definition 5.27. A function h is a level map if its domain is a subset
of ω1 and h(δ) is a finite subset of the δth level of T whenever it is
defined.

The next proposition is useful and follows easily from the fact that
all levels of T are countable.

Proposition 5.28. If N ∩ H(ℵ+
1 ) is in E0, δ = N ∩ ω1, and X is a

finite subset of the δth level of T , then there is a level map h in N such
that h(δ) = X.

The next lemma will represent the only use of MRP in the proof.

Lemma 5.29. (MRP) Suppose that M is a countable elementary sub-

model of H(22ℵ1 +
) which contains T and K as members. If X is a

finite subset of T , then there is an E in E ∩M such that either every
element of E ∩M rejects X or no element of E ∩M rejects X.

Remark. Notice that the latter conclusion is just a reformulation of the
statement that

(
X, {M ∩H(2ℵ1

+
)}

)
is a condition in ∂(K).

Proof. Let δ = M∩ω1. Without loss of generality, we may assume that
X = X � δ. Applying Proposition 5.28, select a level map g in M such
that g(δ) = X. If N is a countable elementary submodel of H(2ℵ1

+
)
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with T and K as members, define Σ(N) as follows. If the set of all
P in E0 which reject g(N ∩ ω1) is N -stationary, then put Σ(N) to be
equal to this set unioned with the complement of E0. If Σ(N) is defined
in this way, it will be said to be defined non-trivially. Otherwise put
Σ(N) to be the interval [∅, N ∩H(ℵ+

1 )].
Observe that Σ is an open stationary set mapping which is moreover

an element of M . Applying MRP and the elementarity of M , it is
possible to find a reflecting sequence 〈Nξ : ξ < ω1〉 for Σ which is an
element of M . Let E be the collection of all P in E0 which contain

(14) the sequence 〈Nξ ∩H(ℵ+
1 ) : ξ < ω1〉 and

(15) some δ0 < N ∩ ω1 such that Nξ ∩H(ℵ+
1 ) is in Σ(Nδ) whenever

ξ is in (δ0, δ).

Notice that E is in M ∩ E .
To finish the proof, suppose that the set of all P in M ∩ E0 which

reject X is M -stationary (i.e. the second conclusion does not hold).

Claim 5.30. Σ(Nδ) is defined non-trivially.

Proof. Suppose that E ′ ⊆ E0 is a club in Nδ. Since the reflecting
sequence is continuous, Nδ is a subset of M and therefore E ′ is also
in M . By assumption, there is a P in E ′ ∩ M such that P rejects X.
Let ν = P ∩ ω1 and note that ν < δ. Applying elementarity of Nδ,
Proposition 5.16, and the fact that X � ν is in Nδ, it is possible to find
such a P in E ′ ∩ Nδ which rejects X � ν — and hence X. It follows
that Σ(Nδ) is defined non-trivially. �

Now suppose that P is in E ∩M . We are finished once we see that
P rejects X. Let ν = P ∩ ω1. Since δ0 < ν < δ, Pν = Nν ∩ H(ℵ+

1 ) is
in Σ(Nδ). So Pν rejects X or — equivalently — K(X) is in IPν (T ).
Observe that Pν ∩ ω1 = P ∩ ω1 and Pν ⊆ P by continuity of the
reflecting sequence. Hence IP (T ) ⊆ IP (T ). It follows that P rejects
X. �

The next lemma finishes the proof of the main theorem.

Lemma 5.31. (MRP + MAℵ1) There are no A , B, and Y which sat-
isfy the conclusion of Lemma 5.24. In particular, ∂(K) is canonically
proper.

Proof. We will assume that there are such A , B, and Y and derive
a contradiction by violating Lemma 5.21. Without loss of generality
we may suppose that elements of B contain A as a member. By
modifying Y we may assume that all elements of Y (M) have height
M ∩ω1 whenever M is in A ∪B. Further, we may assume that Y (M)
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has the same fixed size n for all M in B and that there is a ζ0 and
E∗ ∈ E such that:

(16) If M is in B, then diff(Y (M)) ⊆ ζ0.
(17) If M, M ′ are in B, then Y (M) � ζ0 = Y (M ′) � ζ0.
(18) If M is in B, then E∗ is in M and no element of E∗ rejects

Y (M).

This is achieved by the pressing down lemma and the proof of Claim
5.23.14 Let F be the collection of all finite X ⊆ T such that all elements
of X have the same height γ > ζ0 and the set

{M ∈ B : Y (M) � γ = X}

is stationary. Notice that, for a fixed γ, we can define B to be a union
over the finite subsets X of Tγ of the collection

B[X] = {M ∈ B : Y (M) � γ = X}

and hence at least one such B[X] must be stationary. Consequently
F must be uncountable. Also, no element of E∗ rejects any element
of F . Now define Q to be the collection of all finite F ⊆ F such
that if X 6= X ′ are in F , then the heights of elements of X and X ′ are
different and there is a j < n such that X(j) ∧X ′(j) is not in K.

Claim 5.32. (MRP) Q satisfies the countable chain condition.

Proof. Suppose that 〈Fξ : ξ < ω1〉 is a sequence of distinct elements
of Q. We will show that {Fξ : ξ < ω1} is not an antichain in Q. By
a ∆-system argument, we may assume that the sequence consists of
disjoint sets of the same cardinality m. Let Fξ(i) denote the ith-least
element of Fξ in the order induced by T ’s height function. If j < n, let
Fξ(i, j) denote the jth element of Fξ(i) in the lexicographical order on
Fξ(i) (i.e. Fξ(i, j) = Fξ(i)(j)).

Let N be an element of A which contains ζ0 and 〈Fξ : ξ < ω1〉 as
members. Put δ = N ∩ω1 and fix a β in ω1 \N . Let E be a club in N
such that Y (N) is not rejected by any element of E ∩N .

For each i < m, pick an Mi in B such that N ∈ Mi and Fβ(i) is a
restriction of Y (Mi). Let M be a countable elementary submodel of

H(22ℵ1 +
) such that N = M ∩ H(2ℵ1

+
). Applying Lemma 5.29 to M

for each i < m and intersecting clubs,15 it is possible to find a P in

14To get the last item, find an E1 in E such that no element of E1 ∩ M rejects
Y (M) for stationary many M in B, put E∗ to be the elements P of E1 which are
equal to the union of their intersection with E1.

15This is the only place where Lemma 5.29 and hence MRP is applied.
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E ∩N such that

I =
⋃
i<m

K
(
Y (N) ∪ Y (Mi)

)
∈ IP (T ).

Put ν = P ∩ ω1. Pick a ζ < ν such that diff(∪Fβ � ν) is contained in
ζ and if u, v are distinct elements of ∪Fβ � ν, then u � ζ and v � ζ are
distinct.

Subclaim 5.33. There is a sequence 〈αξ : ξ < ω1〉 in P such that for
each ξ < ω1 we have the following conditions:

(1) ξ ≤ αξ,
(2) ∪Fαξ

� ζ = ∪Fβ � ζ,
(3) diff(∪Fαξ

� ξ) = diff(∪Fβ � ν), and
(4) ∪Fαν � ν = ∪Fβ � ν.

Proof. The only part which is non-trivial is to get the sequence to be
a member of P and to satisfy item 4. By Proposition 5.28, there is a
level map g in P such that g(ν) = ∪Fβ � ν. Now working in P , we can
define αξ to be an ordinal such that ∪Fαξ

� ξ = g(ξ) if g(ξ) is defined,
is a restriction of this form, and satisfies diff(g(ξ)) = diff(∪Fβ � ν) and
g(ξ) � ζ = ∪Fβ � ζ. If αξ is left undefined, then simply select a αξ with
the necessary properties. Notice that αν is defined using g. �

Subclaim 5.34. There is an uncountable Ξ ⊆ ω1 in P such that if

Z = {Fαξ
(0, 0) � ξ : ξ ∈ Ξ}

and t = Fβ(0, 0) � ν, then t is in the downwards closure of Z and
∆(Z, t) is disjoint from

I =
⋃
i<m

K
(
Y (N) ∪ Y (Mi)

)
.

Proof. By Proposition 5.9 there is a Ξ0 ⊆ ω1 such that for some t0 in T
of height ν in the downward closure of Z0 = {Fαξ

(0, 0) � ξ : ξ ∈ Ξ0} the
set ∆(Z0, t0) is disjoint from I. Let Z1 be all elements s in T obtained
from some Fαξ

(0, 0) � ξ by changing its values on the finite set

diff
(
Fαν (0, 0) � ν, t0

)
∩ ξ.

Let Ξ be the collection of all ξ such that Fαξ
(0, 0) � ξ is an initial part

of some element of Z1. Notice that Ξ is in P and is uncountable since
it contains ν. Furthermore, if t = Fαν (0, 0) � ν = Fβ(0, 0) � ν, then
∆(Z, t) is contained in

∆(Z1, t) = ∆(Z0, t0)

and hence is disjoint from I. �
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The key observation — and the reason why the main theorem goes
through — is the following. Since P is in E ∩ N , it does not reject
Y (N) and therefore it is the case that there is a ξ in Ξ ∩ P such that
for all j < |Y (N)| the restriction

Y (N)(j) � ∆
(
Fαξ

(0, 0), t
)

is in K where t = Fβ(0, 0) � ν. By the choice of Ξ this means that for
all i < m there is a j < n such that

Fβ(i, j) � ∆
(
Fαξ

(0, 0), t
)

= Fβ(i, j) ∧ Fαξ
(i, j)

is not in K. Let α = αξ.
Now we claim that Fα∪Fβ is in Q. To see this, suppose that i, i′ < m.

If Fβ(i) � ν 6= Fβ(i′) � ν, then pick a j < n such that Fα(i, j)∧Fα(i′, j)
is not in K. Since

∆
(
Fα(i′, j), Fβ(i′, j)

)
≥ ζ > ∆

(
Fα(i, j), Fα(i′, j)

)
it must be the case that

∆
(
Fα(i, j), Fβ(i′, j)

)
= ∆

(
Fα(i, j), Fα(i′, j)

)
and so

Fα(i, j) ∧ Fβ(i′, j) = Fα(i, j) ∧ Fα(i′, j)

is not in K.
If Fβ(i) � ν = Fβ(i′) � ν, then we have that for all j < n that

∆
(
Fα(i, j), Fβ(i′, j)

)
= ∆

(
Fα(i, j), Fβ(i, j)

)
= ∆

(
Fα(0, 0), Fβ(0, 0)

)
.

By arrangement there is a j such that

Fα(i, j) ∧ Fβ(i, j) = Fβ(i, j) � ∆
(
Fα(0, 0), Fβ(0, 0)

)
is not in K. Hence for all i, i′ < m there is a j < n such that

Fα(i, j) ∧ Fβ(i′, j)

is not in K and therefore we have that Fα ∪ Fβ is in Q. �

Applying MAℵ1 to the forcing Q it is possible to find an uncountable
F0 ⊆ F such that whenever X 6= X ′ are in F0, there is a j < n such
that X(j) ∧X ′(j) is not in K. This contradicts Lemma 5.21 since no
element of E∗ rejects any element of F . �
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6. Closing remarks

The use of MRP in the argument above is restricted to proving
Lemma 5.29. Working from a stronger assumption, the following ab-
stract form of the lemma can be deduced. The interested reader is
encouraged to supply a proof and see why a stronger assumption is ap-
parently needed for the abstract statement while MRP suffices in the
proof of Lemma 5.29.

0-1 law for open set mappings. (SMRP16) Suppose that Σ is an
open set mapping defined on a club and that Σ has the following prop-
erties:

(1) If N is in the domain of Σ, then Σ(N) is closed under end
extensions.17

(2) If N and N are in the domain of Σ and N is an end extension
of N , then Σ(N) = Σ(N) ∩N .

Then for a closed unbounded set of N in the domain of Σ, there is a
club E ⊆ [XΣ]ℵ0 in N such that E∩N is either contained in or disjoint
from Σ(N).

It seems quite possible that this 0-1 law will be useful in analyzing
related problems such as Fremlin’s problem on perfectly normal com-
pacta (see [10], [21]).

The conventional wisdom had been that if it were possible to prove
the consistent existence of a five element basis for the uncountable
linear orders, then such a basis would follow from BPFA. MRP has
considerable consistency strength [15], while BPFA can be forced if
there is a reflecting cardinal [9]. The following is left open.

Question 6.1. Does BPFA imply Shelah’s conjecture?

Recently König, Larson, Veličković, and I have shown that a certain
saturation property of Aronszajn trees taken together with BPFA im-
plies Shelah’s conjecture [13]. This saturation property can be forced if
there is a Mahlo cardinal. This considerably reduces the upper bound
on the consistency strength of Shelah’s conjecture to that of a reflecting
Mahlo cardinal. It is possible, however, that Shelah’s conjecture can-
not follow from BPFA simply on grounds of its consistency strength.
It should be remarked though that Shelah’s conjecture is not known to
have any large cardinal strength.

16SMRP is the Strong Mapping Reflection Principle obtained by replacing “club”
in the statement of MRP with “projective stationary” (see [8]). This axiom follows
from Martin’s Maximum via the same proof that MRP follows from PFA (see [15]).

17Here we define N end extends N as meaning that N∩ω1 = N∩ω1 and N ⊆ N .
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[22] Stevo Todorčević. Lipszhitz maps on trees. report 2000/01 number 13, Institut
Mittag-Leffler.
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[25] Stevo Todorčević. A classification of transitive relations on ω1. Proc. London

Math. Soc. (3), 73(3):501–533, 1996.
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