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DIFFERENTIAL HARNACK ESTIMATES FOR BACKWARD HEAT

EQUATIONS WITH POTENTIALS UNDER THE RICCI FLOW

XIAODONG CAO∗

Abstract. In this paper, we derive a general evolution formula for possible Har-
nack quantities. As a consequence, we prove several differential Harnack inequalities
for positive solutions of backward heat-type equations with potentials (including the
conjugate heat equation) under the Ricci flow. We shall also derive Perelman’s Har-
nack inequality for the fundamental solution of the conjugate heat equation under
the Ricci flow.

1. Introduction

In [LY86], P. Li and S.-T. Yau proved a differential Harnack inequality by develop-
ing a grading estimate for positive solutions of the heat equation (with fixed metric).
More precisely, they proved that, for any positive solution f of the heat equation

∂f

∂t
= △f

on Riemannian manifolds with nonnegative Ricci curvature, then

∂

∂t
ln f − |∇ ln f |2 +

n

2t
= △ ln f +

n

2t
≥ 0.

The idea was brought to study general geometric evolution equations by R. Hamilton.
The differential Harnack estimate has since become an important technique in the
studies of geometric evolution equations.

For the Ricci flow, R. Hamilton [Ham93a] proved a Harnack estimate on Riemann-
ian manifolds with weakly positive curvature operator. The Harnack quantities are
also know as curvatures of a degenerate metric in space-time thanks to the work of
B. Chow and S.-C. Chu [CC95]. In dimension two, R. Hamilton [Ham88] proved a
Harnack estimate for the scalar curvature when it is positive, the Harnack estimate
in the general case was proved by B. Chow in [Cho91b]. B. Chow and R. Hamilton
generalized their results for the heat equation and for the Ricci flow on surfaces in
[CH97].

For other geometric flows, R. Hamilton proved a Harnack estimate for the mean
curvature flow in [Ham95]. B. Chow proved Harnack estimates for Gaussian curvature
flow in [Cho91a] and for Yamabe flow in [Cho92]. H.-D. Cao [Cao92] proved a Harnack
estimate and L. Ni [Ni07] proved a matrix Harnack estimate (of the forward conjugate
heat equation) for the Kähler-Ricci flow.
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For the heat equation, besides the classical result of P. Li and S.-T. Yau, R. Hamil-
ton proved a matrix Harnack estimate for the heat equation in [Ham93b]. C. Guenther
[Gue02] studied the fundamental solution and Harnack inequality of time-dependent
heat equation. In [CN05], H.-D. Cao and L. Ni proved a matrix Harnack estimate for
the heat equation on Kähler manifolds. In an earlier paper [CH07], R. Hamilton and
the author proved several Harnack estimates for positive solutions of the heat-type
equation with potential when the metric is evolving by the Ricci flow (a more detailed
discussion about the literature of Harnack estimates can also be found in that paper).
In [Per02], G. Perelman proved a Harnack estimate for the fundamental solution of
the conjugate heat equation under the Ricci flow. Namely, let (M, g(t)), t ∈ [0, T ],
be a solution to the Ricci flow on a closed manifold, f be the positive fundamental
solution to the conjugate heat equation

∂

∂t
f = −△f + Rf,

τ = T − t, and u = − ln f − n
2

ln(4πτ). Then for t ∈ [0, T ), G. Perelman proved that

2△u − |∇u|2 + R +
u

τ
−

n

τ
≤ 0

(see [Ni06] or [CCG+07, Chapter 16] for a detailed proof).
In the present paper, we will first derive a general evolution equation for possible

Harnack quantities, we will then prove Harnack estimates for all positive solutions of
the backward heat-type equation with potentials when the metric is evolving under
the Ricci flow.

Suppose (M, g(t)), t ∈ [0, T ], is a solution to the Ricci flow on a closed manifold.
Let f be a positive solution of the backward heat equation with potential 2R, i.e.,

∂gij

∂t
= − 2Rij,(1.1)

∂f

∂t
= −△g(t)f + 2Rf.(1.2)

Our first main theorem is the following,

Theorem 1.1. Let (M, g(t)), t ∈ [0, T ], be a solution to the Ricci flow on a closed
manifold. Let f be a positive solution to the backward heat-type equation (1.2), u =
− ln f , τ = T − t and

H = 2△u − |∇u|2 + 2R −
2n

τ
.

Then for all time t ∈ [0, T ),
H ≤ 0.

If we further assume that our solution to the Ricci flow is of Type I, i.e.,

|Rm| ≤
d0

T − t

for some constant d0, here T is the blow-up time, then we shall prove the following
theorem.
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Theorem 1.2. Let (M, g(t)), t ∈ [0, T ), be a type I solution to the Ricci flow on
a closed manifold. Let f be a positive solution to the backward heat equation (1.2),
u = − ln f , τ = T − t and

H = 2△u − |∇u|2 + 2R − d
n

τ
,

here d = d(d0, n) ≥ 2 is some constant such that H(τ) < 0 for small τ . Then for all
time t ∈ [0, T ),

H ≤ 0.

We will consider the conjugate heat equation under the Ricci flow. In this case,
we also assume that our initial metric g(0) has nonnegative scalar curvature, it is
well-known that this property is preserved by the Ricci flow. We shall prove

Theorem 1.3. Let (M, g(t)), t ∈ [0, T ], be a solution to the Ricci flow (1.1) on a
closed manifold, and suppose that g(t) has nonnegative scalar curvature. Let f be a
positive solution to the conjugate heat equation

(1.3)
∂f

∂t
= −△g(t)f + Rf,

u = − ln f , τ = T − t and

H = 2△u − |∇u|2 + R − 2
n

τ
.

Then for all time t ∈ [0, T ),

H ≤ 0.

Remark 1.1. S. Kuang and Q. Zhang [KZ07] have also proved a similar estimate
as in Theorem 1.3 (see Remark 3.1). Our proof follows from a direct calculation of
more general evolution equation in Lemma 2.1.

The rest of this paper is organized as follows. In section 2, we will first derive a
general evolution equation of Harnack quantity H, for backward heat-type equation
with potentials, then we prove Theorem 1.1 and Theorem 1.2. We will also prove
an integral version of the Harnack inequality (Theorem 2.3). In section 3, we will
prove Theorem 1.3, then we will derive a general evolution formula for a Harnack
quantity similar to Perelman’s, as a consequence, we will prove Perelman’s Harnack
estimate. In section 4, we will define two entropy functionals and prove that they
are monotone. In section 5, we will prove a gradient estimate for the backward heat
equation (without the potential term). This is also a consequence of the general
evolution formula of our Harnack quantity.

Acknowledgement: The author would like to thank Laurent Saloff-Coste for
general discussion on Harnack inequalities. He would also like to thank Leonard
Gross and Richard Hamilton for helpful suggestions.
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2. General Evolution Equation and Proof of Theorem 1.1

Let us first consider positive solutions of general evolution equations

∂

∂t
f = −△f − cRf

for all constant c which we will fix later. Let f = e−u, then ln f = −u. We have

∂

∂t
ln f = −

∂

∂t
u,

and

∇ ln f = −∇u, △ ln f = −△u.

Hence u satisfies the following equation,

(2.1)
∂

∂t
u = −△u + |∇u|2 + cR.

Let τ = T − t, then we have

(2.2)
∂f

∂τ
= △f + cRf,

and u satisfies

(2.3)
∂u

∂τ
= △u − |∇u|2 − cR.

We can now define a general Harnack quantity and derive its evolution equation.

Lemma 2.1. Let (M, g(t)) be a solution to the Ricci flow, and u satisfies (2.3). Let

H = α△u − β|∇u|2 + aR + b
u

τ
+ d

n

τ
,

where α, β, a, b and d are constants that we will pick later. Then H satisfies the
following evolution equation,

∂H

∂τ
=△H − 2∇H · ∇u − (2α − 2β)|∇∇u +

α

2α − 2β
Rij −

λ

2τ
gij|

2 −
2α − 2β

α

λ

τ
H

− 2(α − 2β)Rijuiuj + 2(a + βc)∇R · ∇u + (2α − 2β)
nλ2

4τ 2

+ (b −
2α − 2β

α
λβ)

|∇u|2

τ
− (αc + 2a)△R + (

α2

2α − 2β
− 2a)|Rc|2

+ (
2α − 2β

α
λ − 1)b

u

τ 2
+ (

2α − 2β

α
λ − 1)d

n

τ 2
+ (

2α − 2β

α
aλ − αλ − bc)

R

τ
,

where λ is also a constant that we will pick later.

Proof. The proof follows from a direct computation. We first calculate the first two
terms in H ,

∂(△u)

∂τ
= △(△u) −△(|∇u|2) − c△R − 2Rijuij,
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and

∂(|∇u|2)

∂τ
=2∇u · ∇△u − 2Rc(∇u,∇u) − 2∇u · ∇(|∇u|2) − 2c∇u · ∇R

=△(|∇u|2) − 2|∇∇u|2 − 2∇u · ∇(|∇u|2) − 2c∇u · ∇R − 4Rijuiuj,

here we used

△(|∇u|2) = 2∇u · △∇u + 2|∇∇u|2,

and

△∇u = ∇△u + Rc(∇u, ·).

Using the evolution equation of R,

∂R

∂τ
= −△R − 2|Rc|2,

and (2.3), we have

∂

∂τ
H =△H − α△(|∇u|2) − αc△R − 2αRijuij + 2β|∇∇u|2 + 2β∇u · ∇(|∇u|2)

+ 2βc∇u · ∇R + 4βRijuiuj − 2a△R − 2a|Rc|2 − b
|∇u|2

τ
− b

cR

τ
− b

u

τ 2
− d

n

τ 2

=△H − 2∇H · ∇u − 2(α − 2β)Rijuiuj − (2α − 2β)|∇∇u|2 + 2(a + βc)∇R · ∇u

+ b
|∇u|2

τ
− (αc + 2a)△R − 2αRijuij − 2a|Rc|2 − b

u

τ 2
− d

n

τ 2
− b

cR

τ

=△H − 2∇H · ∇u − 2(α − 2β)Rijuiuj − (2α − 2β)|∇∇u +
α

2α − 2β
Rij −

λ

2τ
gij|

2

+ 2(a + βc)∇R · ∇u + (2α − 2β)
nλ2

4τ 2
− (2α − 2β)

λ

τ
△u −

αλ

τ
R

+ b
|∇u|2

τ
− (αc + 2a)△R + (

α2

2α − 2β
− 2a)|Rc|2 − b

u

τ 2
− d

n

τ 2
− b

cR

τ

=△H − 2∇H · ∇u − 2(α − 2β)Rijuiuj − (2α − 2β)|∇∇u +
α

2α − 2β
Rij −

λ

2τ
gij|

2

−
2α − 2β

α

λ

τ
H + 2(a + βc)∇R · ∇u + (2α − 2β)

nλ2

4τ 2

+ (b −
2α − 2β

α
λβ)

|∇u|2

τ
− (αc + 2a)△R + (

α2

2α − 2β
− 2a)|Rc|2

+ (
2α − 2β

α
λ − 1)b

u

τ 2
+ (

2α − 2β

α
λ − 1)d

n

τ 2
+ (

2α − 2β

α
aλ − αλ − bc)

R

τ
.

�

In the above lemma, let us take α = 2, β = 1, a = 2, c = −2, λ = 2, b = 0, d = −2,
as a consequence of the above lemma, we have
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Corollary 2.2. Let (M, g(t)) be a solution to the Ricci flow, f be a positive solution
of the following backward heat equation

∂

∂t
f = −△f + 2Rf,

let u = − ln f , τ = T − t and

H = 2△u − |∇u|2 + 2R − 2
n

τ
.

Then we have

∂

∂τ
H =△H − 2∇H · ∇u −

2

τ
H −

2

τ
|∇u|2 − 2|Rc|2 − 2|∇i∇ju + Rij −

1

τ
gij|

2.(2.4)

Now we can finish the proof of Theorems 1.1 and 1.2.

Proof. (Proof of Theorems 1.1 and 1.2) To prove Theorem 1.1, it is easy to see that
for τ small enough then H(τ) < 0. It follows from (2.4) and maximum principle that

H ≤ 0

for all time τ .
From the above proof, we can easily see that if the solution to the Ricci flow is of

type I and d ≥ 2 is large enough, such that H(τ) < 0 for τ small, then Theorem 1.2
is true for all time t < T . �

We now can integrate the inequality

2△u − |∇u|2 + 2R − 2
n

τ
≤ 0

along a space-time path and get a classical Harnack inequality.

Theorem 2.3. Let (M, g(t)), t ∈ [0, T ], be a solution to the Ricci flow on a closed
manifold. Let f be a positive solution to the equation

∂

∂t
f = −△f + 2Rf.

Assume that (x1, t1) and (x2, t2), 0 ≤ t1 < t2 < T , are two points in M × [0, T ). Let

Γ = inf
γ

∫ t2

t1

(
1

2
|γ̇|2 + R)dt,

where γ is any space-time path joining (x1, t1) and (x2, t2). Then we have

f(x2, t2) ≤ f(x1, t1)(
T − t1
T − t2

)n expΓ .

Proof. Since H ≤ 0, τ = T − t and u = − ln f satisfies

∂u

∂τ
= △u − |∇u|2 + 2R,

we have

2
∂u

∂τ
+ |∇u|2 − 2R −

2n

τ
≤ 0.
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If we pick a space-time path γ(x, t) joining (x1, τ1) and (x2, τ2) with τ1 > τ2 > 0.
Along γ, we have

du

dτ
=

∂u

∂τ
+ ∇u · γ̇

≤ −
1

2
|∇u|2 + R +

n

τ
+ ∇u · γ̇

≤
1

2
(|γ̇|2 + 2R) +

n

τ
.

Hence

u(x1, τ1) − u(x2, τ2) ≤
1

2
inf
γ

∫ τ1

τ2

(|γ̇|2 + 2R)dτ + n ln(
τ1

τ2

).

Or we can write this as

u(x1, t1) − u(x2, t2) ≤
1

2
inf
γ

∫ t2

t1

(|γ̇|2 + 2R)dt + n ln(
T − t1
T − t2

).

If we denote Γ = infγ

∫ t2
t1

(1
2
|γ̇|2 + R)dt, then we have

f(x2, t2) ≤ f(x1, t1)(
T − t1
T − t2

)n expΓ,

this finishes the proof. �

3. On the Conjugate Heat Equation

In this section, we consider positive solutions of general evolution equations

∂

∂t
f = −△f − cRf

on [0, T ], for the special case c = −1, which is the case of conjugate heat equation.
In Lemma 2.1, let us take α = 2, β = 1, a = 1, c = −1, λ = 2, b = 0, d = −2, and we
arrive at

Corollary 3.1. Let (M, g(t)), t ∈ [0, T ], be a solution to the Ricci flow, f be a positive
solution of the conjugate heat equation

(3.1)
∂

∂t
f = −△f + Rf,

let u = − ln f , τ = T − t and

H = 2△u − |∇u|2 + R − 2
n

τ
.

Then we have

∂

∂τ
H =△H − 2∇H · ∇u − 2|uij + Rij −

1

τ
gij|

2 −
2

τ
H −

2

τ
|∇u|2 − 2

R

τ
.(3.2)

Now we can finish the proof of Theorem 1.3.
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Proof. (Proof of Theorem 1.3) It is easy to see that for τ small enough then H(τ) < 0.
It follows from (3.2) and maximum principle that

H ≤ 0

for all time τ . �

As in section 2, we can see that if the solution to the Ricci flow is of type I, i.e.,

|Rm| ≤
d0

T − t
,

here T is the blow-up time, then the Harnack estimate is true for all time t < T .

Theorem 3.2. Let (M, g(t)), t ∈ [0, T ), be a type I solution to the Ricci flow on a
closed manifold with nonnegative scalar curvature. Let f be a positive solution to the
conjugate heat equation (3.1), u = − ln f , τ = T − t and

H = 2△u − |∇u|2 + R − d
n

τ
,

here d = d(d0, n) ≥ 2 is some constant such that H(τ) < 0 for small τ . Then for all
time t ∈ [0, T ),

H ≤ 0.

We can also derive a classical Harnack inequality by integrating along a space-time
path.

Theorem 3.3. Let (M, g(t)), t ∈ [0, T ], be a solution to the Ricci flow on a closed
manifold with nonnegative scalar curvature. Let f be a positive solution to the conju-
gate heat equation

∂

∂t
f = −△f + Rf.

Assume that (x1, t1) and (x2, t2), 0 ≤ t1 < t2 < T , are two points in M × [0, T ). Let

Γ = inf
γ

∫ t2

t1

(|γ̇|2 + R)dt,

where γ is any space-time path joining (x1, t1) and (x2, t2). Then we have

f(x2, t2) ≤ f(x1, t1)(
T − t1
T − t2

)n expΓ/2 .

In the rest of this section, we will derive Perelman’s Harnack inequality for the
conjugate heat equation (3.1). First let f = (4πτ)−n/2e−v, then ln f = −n

2
ln(4πτ)−v.

We have
∂

∂t
ln f = −

∂

∂t
v +

n

2τ
,

and
∇ ln f = −∇v, △ ln f = −△v.

Hence v satisfies the following equation,

(3.3)
∂

∂t
v = −△u + |∇u|2 + cR +

n

2τ
.
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Or if we write the equation in backward time τ , we have

(3.4)
∂f

∂τ
= △f + cRf,

and v satisfies

(3.5)
∂v

∂τ
= △v − |∇v|2 − cR −

n

2τ
.

We can now define a general Harnack quantity and derive its evolution equation.

Lemma 3.4. Let (M, g(t)), t ∈ [0, T ], be a solution to the Ricci flow, and v satisfies
(3.5). Let

P = α△v − β|∇v|2 + aR + b
v

τ
+ d

n

τ
,

where α, β, a, b and d are constants that we will pick later. Then P satisfies the
following evolution equation,

∂P

∂τ
=△P − 2∇P · ∇v − (2α − 2β)|∇∇v +

α

2α − 2β
Rij −

λ

2τ
gij|

2 −
2α − 2β

α

λ

τ
P

− 2(α − 2β)Rijvivj + 2(a + βc)∇R · ∇v + (2α − 2β)
nλ2

4τ 2

+ (b −
2α − 2β

α
λβ)

|∇v|2

τ
− (αc + 2a)△R + (

α2

2α − 2β
− 2a)|Rc|2

+ (
2α − 2β

α
λ − 1)b

v

τ 2
+ (

2α − 2β

α
λ − 1)d

n

τ 2
−

bn

2τ 2
+ (

2α − 2β

α
aλ − αλ − bc)

R

τ
,

here λ is also a constant that we will pick later.

Proof. The proof again follows from the same direct computation as in the proof of
Lemma 2.1. Notice that the only extra term − bn

2τ2 comes from the evolution of v. �

In the above lemma, let us take α = 2, β = 1, a = 1, c = −1, λ = 1, b = 1, d = −1,
as a consequence of Lemma 3.4, we have Perelman’s Harnack inequality.

Theorem 3.5. (Perelman) Let (M, g(t)), t ∈ [0, T ], be a solution to the Ricci flow,
f be the positive fundamental solution of the conjugate heat equation

∂

∂t
f = −△f + Rf,

let v = − ln f − n
2

ln(4πτ), τ = T − t and

P = 2△v − |∇v|2 + R +
v

τ
−

n

τ
.

Then we have
∂

∂τ
P =△P − 2∇P · ∇v − 2|vij + Rij −

1

2τ
gij|

2 −
1

τ
P.(3.6)

Moreover,
P ≤ 0

on [0, T ).
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In the same spirit of searching Perelman’s Harnack inequality, we shall also take
α = 2, β = 1, a = 1, c = −1, λ = 2, b = 0, d = −2 in the above Lemma 3.4. We have
a Harnack inequality for all positive solutions of the conjugate heat equation (3.1).

Theorem 3.6. Let (M, g(t)), t ∈ [0, T ], be a solution to the Ricci flow, suppose that
g(t) has nonnegative scalar curvature. Let f be a positive solution of the conjugate
heat equation

∂

∂t
f = −△f + Rf,

let v = − ln f − n
2

ln(4πτ), τ = T − t and

P = 2△v − |∇v|2 + R −
2n

τ
.

Then we have

∂

∂τ
P =△P − 2∇P · ∇v − 2|vij + Rij −

1

τ
gij|

2 −
2

τ
P − 2

|∇v|2

τ
− 2

R

τ
.(3.7)

Moreover, for all time t ∈ [0, T ),
P ≤ 0.

Proof. It is easy to see that for τ small enough then P (τ) < 0. It follows from (3.7)
and maximum principle that

P ≤ 0

for all time τ , hence for all t. �

Remark 3.1. Theorem 3.6 can be deduced from Theorem 1.3 directly since v =
u − n

2
ln(4πτ) and b = 0. But as we can see in the direct calculation, it will also lead

to Perelman’s Harnack inequality (by choosing different coefficients). S. Kuang and
Q. Zhang proved this estimate in [KZ07].

Remark 3.2. We can prove similar estimate for P if we have a Type I solution to
the Ricci flow. We can also prove a classical Harnack inequality by integrating along
a space-time path.

4. Entropy Formulas and Monotonicities

In this section, we will define two entropies which are similar to Perelman’s entropy
functionals as in [Per02], and we will show that both of them are monotone under
the Ricci flow. Let (M, g(t)) be a solution to the Ricci flow on a close manifold, we
shall also assume that g(t) has nonnegative scalar curvature, we first prove

Theorem 4.1. Assume that (M, g(t)), t ∈ [0, T ], is a solution to the Ricci flow on a
Riemannian manifold with nonnegative scalar curvature. Let f be a positive solution
of

∂

∂t
f = −△f + 2Rf,

u = − ln f and τ = T − t. Define

H = 2△u − |∇u|2 + 2R − 2
n

τ
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and

F =

∫

M

τ 2He−udµ,

then ∀t ∈ [0, T ), we have F ≤ 0 and

d

dt
F ≥ 0.

Proof. The fact that F ≤ 0 follows directly from H ≤ 0. We calculate its time
derivative, using (2.4) in Lemma 2.1 and ∂

∂t
dµ = −Rdµ, we have

d

dt
F = −

dF

dτ
= −

∫

M

(2τHe−u + τ 2e−u ∂

∂t
H + τ 2H

∂

∂τ
e−u + Rτ 2He−u)dµ

= −

∫

M

[△(τ 2He−u) − 2τ 2e−u|uij + Rij −
1

t
gij|

2 − 2τe−u|∇u|2

− τ 2e−u(R + 2|Rc|2)]dµ ≥ 0.

�

We now define an entropy associate with the conjugate heat equation.

Theorem 4.2. Assume that (M, g(t)), t ∈ [0, T ], is a solution to the Ricci flow on
a closed Riemannian manifold with nonnegative scalar curvature. Let f be a positive
solution of

∂

∂t
f = −△f + Rf,

u = − ln f and τ = T − t. Let

H = 2△u − |∇u|2 + R − 2
n

τ

and

W =

∫

M

τ 2He−udµ,

then ∀t ∈ [0, T ), we have W ≤ 0 and

d

dt
W ≥ 0.

Proof. The fact that W ≤ 0 follows directly from H ≤ 0. To calculate its time
derivative, using (3.2) and ∂

∂t
dµ = −Rdµ, we have

d

dt
W = −

dW

dτ
= −

∫

M

(2τHe−u + τ 2e−u ∂

∂τ
H + τ 2H

∂

∂τ
e−u + Rτ 2He−u)dµ

= −

∫

M

[△(τ 2He−u) − 2τ 2e−u|uij + Rij −
1

t
gij|

2 − 2τe−u|∇u|2

− 2τRe−u]dµ ≥ 0.

�
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Remark 4.1. As noted in [Per02], if we consider the system
{

∂
∂t

gij = −2(Rij + ∇i∇ju),
∂
∂t

u = −△u − R,

then the measure dm = e−udµ is fixed. This system differs from the original system
of the conjugate heat equation under the Ricci flow

{

∂
∂t

gij = −2Rij ,
∂
∂t

u = −△u + |∇u|2 − R

by a diffeomorphism.

5. Gradient Estimate for the Backward Heat Equation

In this section, we consider a gradient estimate for positive solutions f to the
backward heat equation

(5.1)
∂

∂t
f = −△f.

Since the equation is linear, without loss of generality, we may assume that 0 < f < 1.
Let f = e−u, then u satisfies

(5.2)
∂

∂t
u = −△u + |∇u|2,

and u > 0.
In the proof of Lemma 2.1, let take α = 0, β = −1, a = c = 0, b = −1 and d = 0,

then

H = |∇u|2 −
u

τ
,

and we have

∂

∂τ
H =△H − 2∇H · ∇u − 4Rc(∇u,∇u)−

1

τ
H − 2|∇∇u|2.(5.3)

This leads to the following theorem.

Theorem 5.1. Let (M, g(t)), t ∈ [0, T ], be a solution to the Ricci flow on a closed
manifold with nonnegative curvature operator. Let f(< 1) be a positive solution to
the backward heat equation (5.1), u = − ln f , τ = T − t and

H = |∇u|2 −
u

τ
.

Then for all time t ∈ [0, T ),

H ≤ 0,

i.e.,

|∇f |2 ≤
f 2 ln(1/f)

T − t
.

Proof. Notice that as τ small enough, H < 0, now the proof follows from (5.3) and
the maximum principle. �
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