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Abstract—In this paper, we provide an improved lower bound
on the rate achieved by noisy network coding in arbitrary
Gaussian relay networks, whose gap to the cutset upper bound
depends on the network not only through the total number
of nodes but also through the degrees of freedom of the min
cut of the network. We illustrate that for many networks this
refined lower bound can lead to a better approximation of the
capacity. The improvement is based on a judicious choice of the
quantization resolutions at the relays.

I. INTRODUCTION

Characterizing the capacity of Gaussian relay networks has
been of interest for long time. Recently, significant progress
has been made in [1], [2], [3], [4] which show that compress-
forward based strategies (such as noisy network coding) can
achieve the capacity of any Gaussian relay network within a
gap that is independent of the topology of the network, the
SNR and the channel coefficients. However, the gap depends
linearly on the number of nodes in the network. This limits the
applicability of these results to small networks with few relays.

A natural question is whether the gap to capacity can be
made smaller than linear in the number of nodes. In this paper,
we provide an improved lower bound on the rate achieved by
noisy network coding in arbitrary Gaussian relay networks,
which for many networks can lead to an approximation
gap which is significantly better than the linear gap in [1],
[2], [3], [4]. The improvement is based on the observation
that in the compress-and-forward based strategies (such as
quantize-map-and-forward in [1] and noisy network coding in
[2]) there is a fundamental trade-off involved in the choice of
the quantization (or compression) resolutions at the relays. If
relays quantize their received signals finely, they introduce less
quantization noise to the communication. If they quantize more
coarsely however, there is a smaller number of quantization
indices that need to be communicated to the destination on
top of the desired message. This trade-off is not immediately
evident from the development of these strategies in [1] and [2],
since the employed decoder does not require the quantization
indices of the relays to be uniquely decoded. Therefore it is not
clear if the quantization indices are indeed decoded at, and thus
communicated to the destination, and therefore whether there
is a penalty involved in communicating these indices. Based
on the work of [5], we argue that in the optimal distribution
for the quantization indices, the quantization indices of all
relays can be uniquely decoded at the destination. Moreover,
an optimal choice of the quantization indices requires much
coarser quantization than the noise level. We then apply the

new lower bound to a class of layered networks with fixed
channel coefficients of unit magnitude and arbitrary phases
(i.e. each channel coefficient is of the form ej✓ for some
arbitrary ✓ 2 [0, 2⇡]) and show that it leads to a capacity gap
that is logarithmic in the number of nodes rather than linear.

A similar insight was used earlier in [6], [7] and [8] to
obtain improved capacity approximations for other classes of
Gaussian relay networks. [6] and [7] provide an approximation
for the capacity of the diamond network which is logarithmic
in the number of nodes, while [8] considers a layered
network with i.i.d. fast-fading links and shows that the gap to
capacity increases logarithmically in the depth of the network.
However, in both settings there are other strategies which
can yield similar performance. For the diamond network,
[6] shows that a partial-decode-and-forward strategy also
achieves the logarithmic dependence on the number of nodes,
and for the fast fading layered network, ergodic computation-
alignment over independent realizations of the fading
distribution [9] achieves a gap that does not increase with the
number of layers. (Note that both these alternative schemes
require increased CSI at the relays and the source nodes.)
However, for the layered network with fixed channel gains
considered in this paper, these schemes are not applicable
and we know of no scheme other than compress-forward that
can give a constant gap capacity approximation.

II. GAP TO CAPACITY WITH NOISY NETWORK CODING

In this section, we discuss the elements of the gap between
the rate achieved by noisy network coding (NNC) and the
cutset-upper bound and identify a trade-off between different
elements of the gap. Our main result in the next section builds
on the understanding of this trade-off.

Consider an arbitrary discrete memoryless network with a
set of nodes N where a source node s wants to communicate
to a destination node d with the help of the remaining nodes
acting as relays. NNC can achieve a communication rate [2,
Theorem 1]:1

min
⌦✓N

I(X⌦; Ŷ⌦c |X⌦c) � I(Y⌦; Ŷ⌦|XN , Ŷ⌦c) (1)

for any distribution of the form
Q

k2N p(xk)p(ŷk|yk, xk);
where for brevity of expressions of, Ŷ⌦c is assumed to
include Yd. Comparing this with the information-theoretic

1In this paper, we need to consider only s � d cuts, which means s 2

⌦, d 2 ⌦

c. Hence we do not state this explicitly.
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cutset upper bound on the capacity of the network given by
[10, Theorem 15.10.1]

C = sup
XN

min
⌦✓N

I(X⌦; Y⌦c | X⌦c) (2)

we observe the following differences. First, while the
maximization in (2) is over all possible input distributions,
only independent input distributions are admissible in (1).
The gap corresponds to a potential beamforming gain that
is allowed in the upper bound but not exploited by NNC.
Second, the first term in (1) is similar to (2) but with Y⌦c

in (2) replaced by Ŷ⌦c in (1). The difference corresponds
to a rate loss due to the quantization noise introduced by
the relays. Third, there is the extra term I(Y⌦; Ŷ⌦|XN , Ŷ⌦c)
reducing the rate in (1). One way to potentially interpret this
term would be as the rate penalty for communicating the
quantized (compressed) observations Ŷ⌦ to the destination on
top of the desired message. Note that this is the rate required
to describe the observations Y⌦ at the resolution of Ŷ⌦ to a
decoder that already knows (or has decoded) XN , Ŷ⌦c .

However, it is not completely clear if this interpretation is
precise because the non-unique decoder employed by NNC
does not require the quantization indices to be explicitly
decoded. The non-unique decoder of NNC searches for the
unique source codeword that is jointly typical with a (not
necessarily unique) set of quantization indices at the relays and
the received signal at the destination. The following example
in Figure (1) illustrates that in certain cases the decoder can
indeed recover the transmitted message even if it can not
uniquely recover the quantization index of the relay.2

s

r

d

h1 ⇡ 0

h2

Fig. 1: Example
Consider the classical relay channel with a very weak link

from the relay to the destination. Clearly, as long as the source
uses a codebook of rate less than the capacity of the direct link,
no matter what the operation at the relay is, the destination
can always decode the source message by performing a joint
typicality test between its received signal and the source
codebook (which is subsumed by the non-unique typicality
test of NNC). In particular, if the relay quantizes too finely,
then there is no way for the destination to recover the relay’s
quantization index, even though the source message can still
be recovered.

On the other hand, this example reveals the following
strange property of the expression in (1). While the above
discussion reveals that in the setup of Fig. 1, the rate achieved
by NNC is equal to the capacity of the direct link independent
of the relay’s operation (i.e. what Ŷr is), the rate in (1) is
decreasing with increasing resolution for the quantization at
the relay (due to the subtractive term I(Y⌦; Ŷ⌦|XN , Ŷ⌦c)).

2Even though we focus on the extremal case where the r � d link is zero,
the discussion extends to the case where this link is sufficiently weak.

This suggests a more careful analysis of the rate achieved by
NNC which leads to the following improved rate:

max
M✓N

min
⌦✓M

I(X⌦; Ŷ⌦c |X⌦c) � I(Y⌦; Ŷ⌦|XM, Ŷ⌦c). (3)

Here only a subset M ✓ N of the relays is considered
in the non-unique typicality decoding, while the other relay
transmissions are treated as noise.

It has been shown in [5] that if M⇤ is the subset that
maximizes (3) for a given

Q

i2N p(xi)p(ŷi|yi, xi), then the
quantization indices of the relays in M⇤ can be uniquely
decoded at the destination, while the quantization indices of
the relays in N \ M⇤ cannot be decoded and in fact, it is
optimal to treat the transmissions from these relays as noise.
Since the transmissions from N \ M⇤ are treated as noise in
(3), the rate can be further improved if these relays are shut
down. Hence, we can conclude that in the optimal distribution
Q

i2N p(xi)p(ŷi|yi, xi), some relays can be off (not utilized
or equivalently always quantizing their received signals to
zero) and some relays can be active, but the quantization
indices of all relays can be uniquely decoded at the destination.
Thus, I(Y⌦; Ŷ⌦|XM, Ŷ⌦c) can indeed be interpreted as the
associated rate penalty for communicating these indices.

The above discussion reveals that NNC communicates not
only the source message but also the quantization indices to the
destination; and while making quantizations finer introduces
less quantization noise in the communication, it leads to a
larger rate penalty for communicating the quantization indices.
This tradeoff is made explicit in the following section.

III. MAIN RESULT

Consider a Gaussian relay network where a source node s
communicates to a destination node d with the help of a set
of relay nodes. The signal received by node i is given by

Yi =
X

j 6=i

HijXj + Zi

where Hij is the Ni ⇥ Mj channel matrix from node j
equipped with Mj transmit antennas to node i equipped with
Ni receive antennas. We assume that each node is subject to an
average power constraint P per antenna and Zi ⇠ CN (0, �2I),
independent across time and across different receive antennas.
Let N be the total number of receive antennas and M be the
total number of transmit antennas in the network. Also, define

Ci.i.d.
Q (⌦) , log det

✓

I +
P

(Q + 1)�2
H⌦!⌦cH†

⌦!⌦c

◆

,

which is the mutual information across the cut ⌦ if the channel
input distribution at node j is i.i.d. CN (0, P I) and the noise
is i.i.d. CN (0, (Q + 1)�2). The matrix H⌦!⌦c denotes the
induced MIMO matrix from ⌦ to ⌦c and log denotes the
natural logarithm. The main result of this paper is given in
the following theorem.

Theorem 1. The rate achieved by noisy network coding in
this network can be lower bounded by

C � C � d⇤
0 log

✓

1 +
M

d⇤
0

◆

� N

Q
� d⇤

Q log(Q + 1),
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for any non-negative Q where C is the cutset upper bound on
the capacity of the network given in (2) and d⇤

Q is the degrees-
of-freedom (DOF) of the MIMO channel corresponding to the
cut ⌦⇤

Q that minimizes Ci.i.d.
Q (⌦), denoted succinctly as

d⇤
Q = DOF

⇣

arg min
⌦

Ci.i.d.
Q (⌦)

⌘

.

The proof of Theorem 1 is presented in Section IV.

Remark 1. The result can be extended to the case of multiple
multicast, i.e. when multiple sources are multicasting their
information to a common group of destination nodes.

Note that Q in the theorem is a free parameter that can be
optimized for a given network to minimize the gap between the
achieved rate and the cutset upper bound. Q�2 corresponds to
the variance of the quantization noise introduced at the relays;
larger Q corresponds to coarser quantization. In previous
works [1], [2], Q is chosen to be constant independent of
the number of nodes (or antennas) N (i.e. Q ⇡ 1 and the
quantization noise Q�2 is of the order of the Gaussian noise
variance �2). This results in an overall gap that is linear in
N . Note that both d⇤

0 and d⇤
Q can be trivially upper bounded

by N . However, in many cases, the min cut of the network
can have much smaller DOF than M and N and in such cases
allowing Q to depend on N can result in a much smaller gap.

For example, in the diamond network with single antenna
at each node it is clear a priori that any cut of the network
has at most two degrees of freedom, regardless of the number
of relays, and therefore d⇤

Q  2 for any Q. It can be seen
immediately from the above theorem that choosing Q = N
in this case results in a gap logarithmic in N [6], [7], which
compares favorably with a gap that is linear in N . Similarly,
for the fast-fading layered network with K single antenna
nodes per layer considered in [8], it is the case that d⇤

Q  K
for any Q. If there are D layers in the network so that
N = M = KD, the above expression tells us that choosing
Q to be proportional to D gives a gap that is logarithmic in D
instead of linear in D. In Section V, we demonstrate another
setting in which applying Theorem 1 with Q increasing with
the number of layers in the network allows us to obtain an
improved gap. This demonstrates that the rule of thumb in the
current literature to quantize received signals at the noise level
(Q ⇡ 1) can be highly suboptimal.

IV. PROOF OF THEOREM 1

We know that the rate in (1) is achievable in the Gaussian
network for any

Q

k2N p(xk)p(ŷk|yk, xk) that satisfies the
power constraint. We choose the channel input vector at each
node j as Xj ⇠ CN (0, P I) and Ŷk for each receive antenna
in the network is chosen such that

Ŷk = Yk + Ẑk where Ẑk ⇠ CN (0, Q�2),

independent of everything else.
Consider the achievable rate expression in (1). We first

show that max⌦✓N I(Y⌦; Ŷ⌦|XN , Ŷ⌦c)  N
Q . This follows

on similar lines as [8, Lemma 1].

I(Y⌦; Ŷ⌦|XN , Ŷ⌦c)  h(Ŷ⌦|XN ) � h(Ŷ⌦|Y⌦, XN )

= (
X

j2⌦

Nj) log

✓

1 +
1

Q

◆

 N

Q
. (4)

We now lower bound the first term in (1). Let ⌦⇤
Q denote

arg min Ci.i.d.
Q (⌦). Then,

min
⌦

I(X⌦; Ŷ⌦c |X⌦c) = min
⌦

Ci.i.d.
Q (⌦) = Ci.i.d.

Q (⌦⇤
Q)

(a)

� Ci.i.d.
0 (⌦⇤

Q) � d⇤
Q log(Q + 1)

� Ci.i.d.
0 (⌦⇤

0) � d⇤
Q log(Q + 1)

(b)
� max

XN
I(X⌦⇤

0
; Y(⌦⇤

0)c | X(⌦⇤
0)c) � d⇤

0 log

✓

1 +
M

d⇤
0

◆

� d⇤
Q log(Q + 1)

� max
XN

min
⌦

I(X⌦; Y⌦c | X⌦c) � d⇤
0 log

✓

1 +
M

d⇤
0

◆

� d⇤
Q log(Q + 1)

= C � d⇤
0 log

✓

1 +
M

d⇤
0

◆

� d⇤
Q log(Q + 1), (5)

where
(a) is justified by the following:

Ci.i.d.
Q (⌦⇤

Q)

= log det

✓

I +
P

(Q + 1)�2
H⌦⇤

Q!(⌦⇤
Q)cH†

⌦⇤
Q!(⌦⇤

Q)c

◆

� log det

✓

I +
P

�2
H⌦⇤

Q!(⌦⇤
Q)cH†

⌦⇤
Q!(⌦⇤

Q)c

◆

� d⇤
Q log(Q + 1)

= Ci.i.d.
0 (⌦⇤

Q) � d⇤
Q log(Q + 1), and

(b) follows from [1, Lemma 6.6] equation (144).
The proof of Theorem 1 follows from (4) and (5).

Remark 2. If there exists a class of cuts A such that

min
⌦

Ci.i.d.
Q (⌦) � min

⌦2A
Ci.i.d.

Q (⌦) � 

for all Q, where  is a constant, then the gap in Theorem 1
can be possibly improved to

d̃⇤
0 log

 

1 +
M

d̃⇤
0

!

+
N

Q
+ d̃⇤

Q log(Q + 1) + , (6)

where
d̃⇤

Q , DOF
✓

arg min
⌦2A

Ci.i.d.
Q (⌦)

◆

. (7)

This can be seen by modifying the proof of the lower bound
(5) slightly as:

min
⌦

I(X⌦; Ŷ⌦c |X⌦c) = min
⌦

Ci.i.d.
Q (⌦)

� min
⌦2A

Ci.i.d.
Q (⌦) � 

� min
⌦2A

Ci.i.d.
0 (⌦) � d̃⇤

Q log(Q + 1) � 

� C � d̃⇤
0 log

 

1 +
M

d̃⇤
0

!

� d̃⇤
Q log(Q + 1) � .
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⌦ ⌦c

s d

V0 V1 VD�1 VD

Fig. 2: The cut ⌦ depicted here /2 A since the crossing links
come from 4 layers, and 4 > K � 1 = 2.

V. LAYERED NETWORK WITH MULTIPLE RELAYS

In this section, we apply Theorem 1 to obtain an improved
approximation for the capacity of a layered network in which
a source node with K transmit antennas communicates to a
destination node with K receive antennas over D�1 layers of
relays each containing K single-antenna nodes (see Figure 2).
Since the network is layered, for 0  i  D � 1, the received
signal at nodes in Vi+1 (or antennas if i = D � 1) depends
only on the transmit signals of nodes in Vi and at time t is
given by

YVi+1 [t] = HVi!Vi+1XVi
[t] + ZVi+1 [t],

where YVi+1 and XVi
are vectors containing the received

and transmitted signals at nodes in Vi+1 and Vi respectively;
and ZVi+1 ⇠ CN (0, �2I). The (k, l)’th entry of the matrix
HVi!Vi+1 denotes the channel coefficient from l’th relay in
Vi to k’th relay in Vi+1 at time t and we assume that it is
an arbitrary fixed complex number with unit magnitude, i.e.,
of the form ej✓kl for some ✓kl 2 [0, 2⇡]. The phases ✓kl are
arbitrary for different links. All transmitting nodes are subject
to an average power constraint P . We can assume that YV0 = 0
and Xd = 0. Note that N = M = KD. We have the following
lower bound on the capacity C of this network.

Theorem 2. For K � 2 and D � 2,

C � C � 2K2 log D � K log K � K. (8)

This theorem shows that for a fixed number of nodes K per
layer, the gap to capacity grows only logarithmically with the
number of layers D. We note that the constants in the gap can
be carefully optimized for, however to maintain brevity we do
not worry about getting the best constants.

VI. PROOF OF THEOREM 2
We first show that for any Q, min⌦ Ci.i.d.

Q (⌦) can be
approximated upto an additive constant by restricting the
minimization to cuts in a particular class. Then, Theorem 2
follows immediately from Remark 2.

For convenience, we call the K2 entries in HVi!Vi+1 as the
links in layer i. With this convention in mind, let A denote
the set of s � d cuts ⌦ for which the links crossing from ⌦
to ⌦c come from at most K � 1 layers, e.g. see Figure 2.

Lemma 1. We have

min
⌦2A

Ci.i.d.
Q (⌦)�K log K  min

⌦
Ci.i.d.

Q (⌦)  min
⌦2A

Ci.i.d.
Q (⌦).

Proof: The upper bound is immediate. The lower bound
can be proved as follows. For any cut ⌦ /2 A,

Ci.i.d.
Q (⌦) =

D
X

i=1

Ci.i.d.
Q,MIMO

�

H(Vi\⌦)!(Vi+1\⌦c)

�

(a)

� K log

✓

1 +
P

(Q + 1)�2

◆

(b)
� Ci.i.d.

Q (V0) � K log K

� min
⌦2A

Ci.i.d.
Q (⌦) � K log K,

where (a) follows since for any cut /2 A, at least K terms
in the summation are non-zero, each lower-bounded by the
point-to-point AWGN capacity; and (b) follows by Lemma 2.
This concludes the proof of the lemma.

Lemma 2. We have

Ci.i.d.
Q (V0)  K log

✓

1 +
P

(Q + 1)�2

◆

+ K log K.

Proof: Ci.i.d.
Q (V0) = log det

✓

I +
P

(Q + 1)�2
HV0!V1H

†
V0!V1

◆

(a)


K
X

i=1

log

✓

1 +
P

(Q + 1)�2
hih

†
i

◆

 K log

✓

1 +
P

(Q + 1)�2

◆

+ K log K,

where (a) follows by using Hadamard’s inequality; hi denotes
the ith row of HV0!V1 .

The desired result (8) follows from (6) by setting Q = D�1
and noting that the DOF (7) of the MIMO channel created by
any cut in A is trivially upper-bounded by K2.

REFERENCES

[1] A. Avestimehr, S. Diggavi, and D. Tse, “Wireless network information
flow: A deterministic approach,” IEEE Trans. Inf. Theory, vol. 57, no. 4,
pp. 1872–1905, 2011.

[2] S. Lim, Y.-H. Kim, A. El Gamal, and S.-Y. Chung, “Noisy network
coding,” IEEE Trans. Inf. Theory, vol. 57, no. 5, pp. 3132–3152, 2011.

[3] A. Ozgur and S. Diggavi, “Approximately achieving gaussian relay
network capacity with lattice codes,” in IEEE Int. Symp. Inf. Theory,
2010, pp. 669–673.

[4] G. Kramer and J. Hou, “Short-message quantize-forward network cod-
ing,” in Multi-Carrier Systems Solutions (MC-SS), 2011 8th Interna-
tional Workshop on, 2011, pp. 1–3.

[5] X. Wu and L.-L. Xie, “On the optimal compressions in the compress-
and-forward relay schemes,” IEEE Trans. Inf. Theory, vol. 59, no. 5, pp.
2613–2628, 2013.
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