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Noisy Network Coding
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Abstract

A noisy network coding scheme for sending multiple sourcesr @ general noisy network is
presented. For multi-source multicast networks, the sehemturally extends both network coding
over noiseless networks by Ahlswede, Cai, Li, and Yeung, @vdpress—forward coding for the relay
channel by Cover and El Gamal to general discrete memorgleg&aussian networks. The scheme also
recovers as special cases the results on coding for wireddmg networks and deterministic networks
by Avestimehr, Diggavi, and Tse, and coding for wirelessera networks by Dana, Gowaikar, Palanki,
Hassibi, and Effros. The scheme involves message repetitoaling, relay signal compression, and
simultaneous decoding. Unlike previous compress—forveattemes, where independent messages are
sent over multiple blocks, the same message is sent mulitipés using independent codebooks as in the
network coding scheme for cyclic networks. Furthermore,riflays do not use Wyner—Ziv binning as in
previous compress—forward schemes, and each decoderrpsréamultaneous joint typicality decoding
on the received signals from all the blocks without exglcilecoding the compression indices. A
consequence of this new scheme is that achievability isgat@imply and more generally without
resorting to time expansion to extend results for acyclitvoeks to networks with cycles. The noisy
network coding scheme is then extended to general multiesouetworks by combining it with decoding
techniques for interference channels. For the Gaussiaticastl network, noisy network coding improves
the previously established gap to the cutset bound. We aswodstrate through two popular AWGN
network examples that noisy network coding can outperfoomventional compress—forward, amplify—

forward, and hash—forward coding schemes.
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. INTRODUCTION

Consider theN-node discrete memoryless network depicted in Figlire 1hEace wishes to send a
message to a set of destination nodes while acting as a retapdssages from other nodes. What is
the capacity region of this network, that is, the set of ratewhich the nodes can reliably communicate
their messages? What is the coding scheme that achieveagheity region? These questions are at the

heart of network information theory, yet complete answersain elusive.

(XN,YN) <—MN

M1 — (Xl,Yl)

./

My — (X3,Y3)

Fig. 1. An N-node discrete memoryless network.

Some progress has been made toward answering these gedstibie past forty years. Inl[1],[2], a
general cutset outer bound on the capacity region of thisgr&twas established. This bound generalizes
the max-flow min-cut theorem for noiseless single-sourdeasat networks[[3],[[4], and has been shown
to be tight for several other classes of networks.

In their seminal paper on network coding [5], Ahlswede, @Caiand Yeung showed that the capacity
of noiseless single-source multicast networks coincidiés tive cutset bound, thus generalizing the max-
flow min-cut theorem to multiple destinations. Each relayhiea network coding scheme sends a function
of its incoming signals over each outgoing link instead eh@y forwarding incoming signals. Their
proof of the network coding theorem is done in two steps. For acyclic networks, relay mappings ar
randomly generated and they show that the message is d¢pmecbded with high probability provided
the rate is below the cutset bound. This proof is then extndecyclic networks by constructing an
acyclictime-expanded network and relating achievable rates and codes for thedxpanded network to
those for the original cyclic network.

The network coding theorem has been extended in severatidine. Dana, Gowaikar, Palanki, Hassibi,

and Effros [6] studied the multiple-source multicast erasometwork as a simple model for a wireless
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data network with packet loss. They showed that the capaedion coincides with the cutset bound
and is achieved via network coding. Ratnakar and Kramer X@reled network coding to characterize
the multicast capacity for single-source deterministiomeeks with broadcast but no interference at the
receivers. Avestimehr, Diggavi, and Tse [8] further extthdhis result to deterministic networks with
broadcasand interference to obtain a lower bound on capacity that cdexwith the cutset bound when
the channel output is a linear function of input signals cadimite field. Their proof is again done in
two steps. As in the original proof of the network coding tten, random coding is used to establish
the lower bound foltayered deterministic networks. A time-expansion technique isitbsed to extend
the capacity lower bound to arbitrary nonlayered deterstiminetworks.

In an earlier and seemingly unrelated line of investigatieem der Meulen[[9] introduced the relay
channel with a single sourc¥, single destinatior¥s, and single relay with transmitter—receiver pair
(X2, Y>5). Although the capacity for this channel is still not knowngeneral, several nontrivial upper
and lower bounds have been developed.In [10], Cover and BEiabaroposed the compress—forward
coding scheme in which the relay compresses its noisy oasenvof the source signal and forwards
the compressed description to the destination. Despitsintplicity, compress—forward was shown to
be optimal for classes of deterministic [11] and modulo-Ja&] relay channels. The Cover—El Gamal

compress—forward lower bound on capacity has the form

C> max I(X1; Y2, Y3|Xa), €y
p(z1)p(z2)p(Je|y2,22)

where the maximum is over all pmgz, )p(z2)p(92|y2, 22) such thatl (Xy; Ys) > I(Yy; Ya| X5, Y3). This
lower bound was established using a block Markov coding reehein each block the sender transmits
a new message, and the relay compresses its received sighaéads the bin index of the compression
index to the receiver using Wyner—Ziv codirig [13]. Decodiagerformed sequentially. At the end of
each block, the receiver first decodes the compression iadéxhen uses it to decode the message sent
in the previous block. Kramer, Gastpar, and Guptd [14] use@xension of this scheme to establish
a compress—forward lower bound on the capacity of genetay neetworks. Around the same time,
El Gamal, Mohseni, and Zahedi [15] put forth the equivaldmrecterization of the compress—forward

lower bound

C> max min{I(X1; Yo, V3| X2), I(X1, X2; Y3) — I(Ya; Ya| X1, Xo, Y3)}. (2)
p(@1)p(z2)p(Y2y2,22)
As we will see, this characterization motivates a more ganemy to extend compress—forward to

networks.
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In this paper, we describe a noisy network coding schemeetttahds and unifies the above results. On
the one hand, the scheme naturally extends compress—tbmaliing to noisy networks. The resulting
inner bound on the capacity region extends the equivaleatackerization in[(2), rather than the original
characterization il .{1). On the other hand, our scheme deslunetwork coding and its variants as special
cases. Hence, while the coding schemes for deterministireonies and erasure networks can be viewed as
bottom-up generalizations of network coding to more coogtéid networks, our coding scheme represents
a top-down approach for general noisy networks.

The noisy coding scheme employs block Markov message tigpetioding, relay signal compression,
and simultaneous decoding. Instead of sending differessages over multiple blocks and decoding one
message at a time as in previous compress—forward codirgge&si[10], [14], the source transmits the
same message over multiple blocks using independentlygiegecodebooks. Although a similar message
repetition scheme is implicitly used in the time expansiechnique for cyclic noiseless networks [5]
and nonlayered deterministic networks [8], our achievgbiroof does not require a two-step approach
that depends on the network topology. The relay operatioalse simpler than previous compress—
forward schemes—the compression index of the receivedbkigreach block is sent without Wyner—Ziv
binning. After receiving the signals from all the blocksckadestination node performs simultaneous
joint typicality decoding of the messages without expljcilecoding the compression indices. As we
will demonstrate, this results in better performance thaavipus schemes im [14], [16], [17], [18], [19]
for networks with more than one relay node or multiple messag

The simplicity of our scheme makes it straightforward to bame with decoding techniques for
interference channels. Indeed, the noisy network codihgree can be viewed as transforming a multi-
hop relay network into a single-hop interference networkesghthe channel outputs are compressed
versions of the received signals. We develop two codingreelsefor general multiple source networks
based on this observation. At one extreme, noisy networingdd combined with decoding all messages,
while at the other, interference is treated as noise.

We apply these noisy network coding schemes to Gaussiaroretwor the multiple-source multi-
cast case, we establish an inner bound that improves upempsecapacity approximation results by
Avestimehr, Diggavi, and Tsél[8] and Perronl[20] with a teghggap to the cutset bound. We then show
that noisy network coding can outperform other specialigeldlemes for two-way relay channels|[16],
[17] and interference relay channels [18], [[19].

The rest of the paper is organized as follows. In the nexi@gcive formally define the problem of

communicating multiple sources over a general network ascuds the main results. We also show that
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previous results on network coding are special cases of @im theorems and compare noisy network
coding to other schemes. In Sectlon Ill, we present the noégwork coding scheme for multiple-source
multicast networks. In Sectidn 1V, the scheme is extendegetoeral multiple-source networks. Results
on Gaussian networks are discussed in Section V.

Throughout the paper, we follow the notation Inl[21]. In parar, a sequence of random variables
with node indexk and time index; € [1 : n] is denoted asX;’ = (Xk1,..., Xkn). A set of random
variables is denoted a% (A) = { X, : k € A}.

Il. PROBLEM SETUP AND MAIN RESULTS

The N-node discrete memoryless network (DMI@)]{L1 Xk,p(yN]mN),Hfle V) depicted in Fig-
ure[d consists oV sender—receiver alphabet pais;, Vi), k € [1: N] :={1,..., N}, and a collection
of conditional pmfsp(yy,...,yn|x1,...,2x). Each node € [1 : N] wishes to send a messagdé, to
a set of destination node®;, C [1 : N]. Formally, a(2"®: ... 2"~ n) code for a DMN consists of
N message setd : 2] ... [1: 2"F~], a set of encoders with encoderc [1 : N] that assigns an
input symbolzy,; to each pair(my,y; ) for i € [1 : n], and a set of decoders with decodeg U}_ D;,
that assigns message estimges,q : k € S;) to each(y;, my), whereS, := {k : d € D} } is the set of
nodes that send messages to destinafioRor simplicity we assumé € S, for all destination nodes.

We assume that the messagdg, k£ € [1 : N|, are independent of each other and each message is

uniformly distributed over its message set. The averagbgiiity of error is defined as
P™ = P{ M4 # M, for somed € Dy, k € [1 : N]}.

A rate tuple(Ry,...,Ry) is said to be achievable if there exists a sequenc&@®f:, ..., 278~ pn)
codes WithPe(") — 0 asn — oco. The capacity region of the DMN is the closure of the set ofi@cble
rate tuples.

We are ready to state our main results.

Multiple-source multicast networks: In Section1ll, we establish the following noisy network dogl
theorem for multicasting multiple sources over a DMN. Thding scheme and techniques used to prove
this theorem, which we highlighted earlier, constitute kieg¢ contributions of our paper.

Theorem 1. LetD = D; = --- = Dy. Arate tuple(Ry, . .., Ry) is achievable for the DMN(y |z")
if there exists some joint pms(q) [Tr_, p(zx|q)p(Jk|yr, Tk, ¢) Such that

R(S) < min [(X(8);Y(S),YalX(8%),Q) = I(Y(S);V(S)| XY, V(8. Y4, Q) (3)
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for all cutsets S C [1: N| with S ND # 0, whereR(S) = 3, .5 Rk

This inner bound has a similar structure to the cutset outent given by
R(S) < I(X(5); Y(S9)|X(S9)) (4)

for all S C [1: N] with S¢ND # (. The first term of[(#), however, has replaced by the “compressed”
versionY . Another difference between the bounds is the negative &pearing in[{3), which quantifies
the rate requirement to convey the compressed version. diti@i the maximum in[(3) is only over
independenix V.

TheorenTll can be specialized to several important networdtetsaas follows:
Noiseless networks: Consider a noiseless network modeled by a weighted diragpgehg = (N, £,C),
where N = [1: N] is the set of nodesS C [1: N] x [1: N] is the set of edges, arll= {Cj; € RT :
(4,k) € &} is the set of link capacities. Each ed@gk) € £ carries an input symbat;, € X}, with
link capacity Cj;, = log|Xj|, resulting in the channel output at no#leas Y, = {X,; : (j, k) € &}.
By settingY}, = Y}, for all k£ and evaluating Theorefd 1 with the uniform pmf &r", it can be easily
shown that inner bound](3) coincides with the cutset bound, thus the capacity region is the set of

rate tuples(Ry, ..., Ry) such that
RS)< Y Cp (5)

(,F)e€
JES keS®

This recovers previous results inl [5] for the single-sowase and [6] for the multiple-source case.

Relay channels: Consider the relay channglys, ys|x1, z2). It can be easily shown that the inner bound (3)

reduces to the alternative characterization of the conspfesvard lower bound in{2).

Erasure networks: Consider the erasure multiple-source multicast networwtiich the channel output
atnodek € [1: N|is Y, ={Yj;:j €[1: N]}, whereYj, = ¢ if it is erased, and’j;, = X, otherwise.
Assume further that the network erasure pattern is knowraetdestination nodes. Takifg, = Y;,
k € [1: N] and the uniform pmf onX” as in the noiseless case, inner bound (3) reduces to

R(S) < Z(log | X;|(1 — P{link (j,k) is erased for alk € 5°})). (6)

j€S

It can be also shown that the inner bound coincides with theetlbound and thus characterizes the
capacity region. This recovers the previous result in [6].
Deterministic networks: SupposeY; = gi(X1,...,Xny), k € [1: N]. By settingY}, = Y, k € [1 : N],

Theorem L implies that a rate tupl®y, ..., Ry) is achievable for the deterministic network if there
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exists some pmp(q) [Tr_, p(zx|q) such that
R(S) < I(X(5); V(89X (59),Q) = H(Y(S)|X(5°),Q) ()

for all S C [1 : N] with SN D # (). This recovers previous results inl [8] for the single-seucase
and in [20] for the multiple-source case. Note that the loeund () is tight when the cutset bound
is attained by the product pmf, for example, as in the detwstié network without interferencé[7] or

the finite-field linear deterministic network, = Z;V:l gk X; [8].

Note that in all the above special cases, the channel outpait®zk can be expressed as a deterministic

function of the input symbol$X,..., Xy) and the destination output symbyy}, i.e.,
Yi = gap(X1, ..., Xn,Yy) foreveryk e[l: N]andd € D. (8)

Under this structure, the inner bound in TheorEm 1 can be Ifietb by substitutingY;, = Y} for
k € [1: N]in () to obtain the following generalization.
Corollary 1: Let D = Dy = --- = Dy. A rate tuple(Ry,..., Ry) is achievable for the semideter-

ministic DMN (8) if there exists some joint pmf(q) H]kvzlp(ack|q) such that
R(S) < I(X(S5); Y(59)|X(5%),Q) (9)

forall S C [1: N] with ScND # 0.
We also show in Appendik]C that our noisy network coding soleran strictly outperform the

extension of the original compress—forward scheme for ¢#feyrchannel to networks in [14, Th 3].

General multiple-source networks: We extend the noisy network coding theorem to general meitip
source networks. As a first step, we note that Thedrem 1 agegino hold for general networks with
multicast completion of destination nodes, that is, when every message is dedogledl destination
nodesD = UY_,D,. Thus, we can obtain an inner bound on the capacity regioth®DMN in the
same form as{3) wittD = U}, D,

This multicast-completion inner bound can be improved biingothat noisy network coding trans-
forms a multi-hop relay network(y” |=V) into a single-hop interference netwopky” |=V), where the
effective channel output at decodeiis Y}, = ( Xk, Yz, Yi,... ,YN) and the compressed channel outputs
(Yl,...,ffN) are conveyed to decoders with some rate penalty. This disenvleads to a modified
decoding rule that does not require each destination tod#eaaintended messages correctly, resulting

in the following improved inner bound.
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Theorem 2: A rate tuple(Ry,...,Ry) is achievable for the DMN if there exists some joint pmf

p(q) TTn-, p(x|q)p(Gk| vk, 2k, ¢) Such that

R(S) < min I(X(8):Y (8, YalX(8),Q) — I¥ (S): Y (S)XY, V(5. Ye.Q)  (10)

for all cutsetsS C [1 : N] with SN D(S) # 0, whereD(S) := UgesDk.
The proof of this theorem is given in Subsection TV-A.

As an alternative, each destination node can simply treatférence as noise rather than decoding it.
Using this approach, we establish the following inner boandhe capacity region.

Theorem 3: A rate tuple(R;,...,Ry) is achievable for the DMN if there exists some joint pmf

(@) TTny p(ur, 2kl @) (Grlye, . @) with
R(T) <I(X(T),U(8); Y (S%), YalX(T),U(S%),Q) — I(Y(S); Y(S)|X(Sa), UN, Y (5%, Ya, Q) (11)

forall SC[1:N],deD(S),andSNS; C T C S, such thatS® N D(S) # 0, whereT¢ = S;\T.

Unlike the coding schemes in Theorems 1 Bhd 2 where each nags both its own message and the
compression index to a single codeword, here each nodesapplperposition coding [22] for forwarding
the compression index along with its own message. (Noteathah a node does not have its own message
and it acts only as a relay, there is no difference in the refagration from the previous schemes.) The
details are given in Subsection 1V-B.

Gaussian networks: In Sectior Y, we present an extension of the above resultats§&an networks and
compare the performance of noisy network coding to otheciafized coding schemes for two popular
Gaussian networks.
Consider the Gaussian network
YN =GgxN 42V, (12)

where G € RY*¥ is the channel gain matrix and” is a vector of independent Gaussian random
variables with zero mean and unit variance. We further assawerage power constraifit on each
senderXy.

In Subsection V-A, we establish the following result on thaltinast capacity region of this general
Gaussian network.

Theorem4: Let D = D, = --- = Dy. For any rate tupl€R;, ..., Ry) in the cutset outer bound,
there existyR,. .., R}y) in the inner bound in Theorem 1 for the AWGN netwoirk](12) suudt t

8] min{|S], |5}

Z(Rk —Ry) < o + 5
keS

log(2|S])
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for all S C [1: N] with S°ND # .

This theorem implies that the gap between the cutset bouddaninner bound is less than or equal to

(N/4)log(2N) for N > 3, regardless of the values of the channel gain mairixnd power constrain®.
We also demonstrate through the following two examples ttinégy network coding can outperform

previous coding schemes, some of which are developed syalyiffor these channel models:

Two-way relay channel (SubsectionV=B): Consider the AWGN two-way relay channel
Y1 =921 Xo + g X3+ 21,
Yo = g12X1 + g32X5 + Za, (13)
Y3 = g13X1 + 923 Xo + Z3,

where the channel gains atg; = g2 = 1, g13 = g31 = d /2 andgo3 = g32 = (1 — d)~"/2, and

d € [0, 1] is the location of the relay node between nodes 1 and 2 (whieligit distance apart). Source
nodesl and2 wish to exchange messages reliably with the help of relayBoWarious coding schemes
for this channel have been investigatedlinl [16], [17]. InuUf&2, we compare the performance of noisy
network coding (Theorem 2) to amplify—forward (AF) and anession of compress—forward (CF) for
d € [0,1/2] and~y = 3. Note that noisy network coding outperforms the other twlesees coinciding
with the compress—forward only when the relay is midway leetwnodes 1 and 2/ & 1/2) and when

it coincides with node 1d = 0).

Sum rate

K R Amplify—forward
RS - - - Compress—forward
. | ——Noisy network coding

I I I I I I I I I i
0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 0.5

Relay locationd

Fig. 2. Comparison of coding schemes f8r= 10.
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10

Interference relay channel (Subsection [V-C): Consider the AWGN interference relay channel with or-

thogonal receiver components in Figlie 3.

Zy s
X o T Y,
Y3— Ry
X2 925 '? > Y
Zs

Fig. 3. AWGN interference relay channel.

The channel outputs are

Y, =91, X1 +99; X0+ 725, j=3,4,5,

where g;; is the channel gain of link4, j). Source node 1 wishes to send a message to destination
node 4, while source node 2 wishes to send a message to diestinede 5. Relay node 3 helps
the communication of this interference channel by sendomgesinformation abou¥s; over a common
noiseless link of rateR, to both destination nodes. In Figuré 4, we compare noisy ertwoding
(Theorems 2 and 3) to compress—forward (CF) and hash—fdri#¢#) in [19]. The curve representing
noisy network coding depicts the maximum of achievable satasrin Theorems] 2 arid 3. Note that,
although not shown in the figure, Theorem 3 alone outperfeh@®sther two schemes for all channel gains
and power constraints. At high signal-to-noise ratio (SNR)eorem 2 provides further improvement,

since decoding other messages is a better strategy wheferetece is strong.

1. Noisy NETWORK CODING FORMULTICAST

To illustrate the main idea of the noisy network coding scheand highlight the differences from
the standard compress—forward coding scheme [10], [14firsteprove Theorerhll for the 3-node relay

channel and then extend the proof to general multicast mksvo

Let xy; denote(xy, (j_1ynt1s---»Thjn)s J € [1 1 b]; thus 332" = (Tr1, s Thd) = (X1, - -5 Xip) =
x?. To send a message € [1 : 2"°%], the source node transmits ;(m) for each blockj € [1 : b].

In block j, the relay finds a “compressed” versign; of the relay outputy,; conditioned onxs,;, and
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Theorem 2

e
R
-

Sum rate

Theorem 3

————— Hash—forward
- - - Compress—forward
—— Noisy network coding

I I I I I I I i
0 5 10 15 20 25 30 35 40

Power constrain® (in dB)

Fig. 4. Comparison of coding schemes fat = g25 = 1, g15 = g24 = g13 = 0.5, g13 = 0.1.

transmits a codeword; ;1 1(y2;) in the next block. Afterb block transmissions, the decoder finds the
correct messager € [1 : 27°F] using (ys1,...,ys) by joint typical decoding for each df blocks

simultaneously. The details are as follows.

Codebook generation: Fix p(z1)p(x2)p(92]y2, x2). We randomly and independently generate a codebook
for each block.

For eachj € [1 : b], randomly and independently generaté” sequences;(m), m € [1 : 27|,
each according t§[;" | px, (71,(j—1)n+4)- Similarly, randomly and independently generzltée2 sequences
x25(lj—1), lj—1 € [1: 2”32], each according tq[;; px, (T2,(j—1)n+i). FOr €achxg;(l;-1), Ij—1 € [1 :
2”}?2], randomly and conditionally independently generzltg2 sequenceys;(llli—1), [ € [1: 2”}?2],
each according tﬂ?:lpf@\)g (Y2, (= 1yntilT2,(j—1yn+i (li=1))-

This defines the codebook
C; = {x1j(m), xo;(lj—1), 25 (llj—1) : m € [1: 27°R] 15,051 € [1: 27Fe])

for j € [1:b].
Encoding and decoding are explained with the help of Tdble I.

Encoding: Let m be the message to be sent. The relay, upon recejvingt the end of block € [1: ],
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12

Block 1 2 3 e b—1 b
X, x11(m) x12(m) x13(m) . X1,p—1(m) x1p(m)
Yoo | yalhll),li 922(l2|lh),le Y23(sll2),ls ... Y2p-1(lo-1llo—2),l—1  F2u(lbllb-1), b
X3 X21(1) X22(11) X23(12) cee X2,b71(lb72) X2b(lb71)
Ys 0 0 0 . ) m
TABLE |

NOISY NETWORK CODING FOR THE RELAY CHANNEL

finds an index; such that
(92 (11151 y25. %25 (15-1)) € T3,

wherely = 1 by convention. If there is more than one such index, choose ainthem at random.
If there is no such index, choose an arbitrary index at randimm |1 : 2"R2]. The codeword pair

(x15(m),x25(lj—1)) is transmitted in blockj € [1 : b].

Decoding: Let ¢ > €. At the end of blockb, the decoder finds a unique messaiges [1 : 2"°%] such
that

(315 (110), §725(13]1j-1), %25 (Ij—1), y3;) € T\ for all j € [1: 9]
for somely, ls, ..., I,. If there is none or more than one such message, it declareg@m

Analysis of the probability of error: Let M denote the message sent at the source nodelarténote

the indices chosen by the relay at blogk [1 : b]. Define

b
& = | J{ (Y (G1L; 1), Xaj (L 1), Yoy) ¢ TS for all 1},
j=1

(Sm = {(le(m),ng(lj|lj_1),ng(lj_l),ng) S 7;(n)’ j S [1 : b] for Somell,lg, - ,lb}.

To bound the probability of error, assume without loss ofegality that A/ = 1. Then the probability

of error is upper bounded by
P(€) < P(&) +P(& N ET) + P(Umz1Em)-
By the covering lemma [21]P(&,) — 0 asn — oo, if Ry > I(Ya; Ya|Xs) + 6(€). By the conditional

typicality lemma [21],P(£§ N &) — 0 asn — oo.
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To boundP (U, +1&,,), assume without loss of generality that;,...,L,) = (1,...,1); recall the
symmetry of the codebook construction. Foe [1 : b], m € [1 : 2"°%], andi;_1,1; € [1 : 2"R2], define
the events

Aj(m, L1, 1) == { (Xu(m), Yo, (L] -1), Xoj(1-1), Ya5) € T}
Then,
P(Em) = P(Up N0_y Aj(m,1j-1,1;))
< ZP —1Aj(m, 11, 15))

_ZHP i(m,li1,15)) (14)

b j=1

<ZHP i(my i1, 1)),

v j=2
where equality[(14) follows since the codebook is generatdépendently for each block and the
channel is memoryless. Note thatsif # 1 andi; 1 = 1, thenXy;(m) ~ [, px, (1 (j—1)n+s) 1S
independent of(ng(lj\lj_l),ng(lj_l),ng) (given L;_; = L; = 1). Hence, by the joint typicality

lemma [21],

P(A;(m,1j_1,1;)) = P{(Xy;(m), Yo;(l|lj—1), Xa;(1j-1), Y3;) € TV}

< 2—n(I(X1 §Y27Y3‘X2)_6(5))
_. 9—n(l1—=6(e)) (15)

Similarly, if m # 1 andl;_; # 1, then

(X1j(m), Xa;j(lj—1), Yo, (Ij|lj—1)) ~ HPX1 (@1,(-1)n+i)Px, ¥, (@2,G-1)n+i> §2,(i— 1)n+i)
=1
is independent olYs; (given L;_; = L; = 1). Hence, by the joint typicality lemma

P(A (m l] l’l )) < 2~ (I(Xl7X2§Y3)+I(Y2§X17Y3‘X2)_6(€)) = 2-”(12—5(6))' (16)
If the binary sequenc¥~! hask 1s, then by[(15) and (16),

b
[T PA;(m,1;-1,15)) < 27nktE=1=RL=0=10),
=2
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Therefore

b
S TP om0, 1)) =D T P(Aj(m, 11, 1))

b j=2 ly 1b—15=2
b—1
b n(b—1—k) Rz o—n(kl+(b—1—k)I.—(b—1)d(e
SZ(>2 VB2 g—n (kL +(b—1—k)I>—(b=1)5(c))
I, k=0
b—1
:Zz<b ) (kI +(b—1—k)(I—Ra)— (b-1)5(c))
I, k=0
b—1
- (b—l) n((b—1)(min{I,, L~ R2}—6(e)))
I, k=0

— gnRagb—1 2—n((b—1)(min{ll,Ig—Rg}—é(e)))'

Thus,

b
ZZH j(myli—1,lg) | Lji—n = Lj=1) =0

m#£l [P j=2

asn — oo, provided that
b—1, . R 1.
R < T(mln{ll, I2 — RQ} — 5(6)) — ERQ

Finally, by eliminatingz, > I(Ya; Y2|X>) + 6(¢') and lettingb — oo, we have shown the achievability

of any rate
R < min{I(X1;Ys, Y3 Xy), I(X1, Xo;Y3) — I(Ya; Ya| X1, Xa, ¥3)} — 8(e) — 6(€).
This concludes the proof of Theorem 1 for the special casdefelay channel.

We now describe the noisy network coding scheme for mulplerce multicast over a general DMN
p(y™N|z™). For simplicity of notation, we consider the cage= (). Achievability for an arbitrary time-

sharing random variabl€® can be proved using the coded time sharing technigue [21].

Codebook generation: Fix ]_[ff:l p(zk)p(Uk|yk, ). We randomly and independently generate a codebook
for each block. For eache [1 : b] andk € [1 : N], randomly and independently generatéf x2nhx ge-
quencescy, ;(mp, Ik j—1), my € [1: onbR) lpj—1€l: Q"Rk], each according [, px, (T, (j—1)nt4)-

For each nodé € [1 : N] and eachxy; (my, Ik j_1), mi € [1 : 2708 I, 5y € [1 : 222], randomly and
conditionally independently genereﬁ@ék sequencegy; (lxj|mp, lkj—1), lj € [1 Q”Rk], each according

to H?lem)(k (Uk,(j—1)n+ilTk, (j—1)n+i (M, I j—1))- This defines the codebook

Cj = {Xps (M, U jo1)s Tieg (Ui s Lo j—1) = e € [12 2708 0y 0y o g € [1: 2%k € [1: N}
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for j € [1:0].

Encoding: Let (m1,...,my) be the messages to be sent. Each node(l : N], upon receivingyy; at

the end of blockj € [1: b], finds an indexy,; such that

(Vi (Ui lma, Ue j—1), Vs> Xii (M, L j—1)) € 7;@),

wherel,y = 1, k € [1 : N|, by convention. If there is more than one such index, choogedd them at
random. If there is no such index, choose an arbitrary indearedom from([1 : Q"Rk]. Then each node

k € [1: N] transmits the codewors;,;(my,l; ;—1) in block j € [1:b].
Decoding: Let e > €. At the end of block, decoderd € D finds a unique index tuplé g, . .., myNg),
whereriy,g € [1: 27 for k # d andingg = mg, such that there exist sonié, ..., In;), ly; € [1 :
Q"Rk], k#d andidj =lg, j € [1:b], satisfying
(%15 (1d, 11 j—1)s - - - XN (Nas I j—1),
(G, bj-1), - ¥ (v, Ing-1), yai) € T4
forall j € [1:0].

Analysis of the probability of error: Let A, denote the message sent at ndde [1 : N] and Ly;,
k € [l:NJ,je€[l:b], denote the index chosen by nokléor block j. To bound the probability of error

for decoderd € D, assume without loss of generality th@t/;,..., My) =(1,...,1) =: 1. Define
b N
& = U U{(ij(lkj‘laLk,j—1)7ij(1aLk,j—1)7ij) ¢ 7. for al lkj }
j=1k=1

Em = {(le(ml,lw_l), o XNj(ma, v 1),
Yj(ljlma, o), - Y (g lma, Iv—1), Ya) € T,
€ [1:b], for some(ly,...,1,), wherely = Lgj,j € [1:b]}.
Here,l; = (l1;,...,In;) for j € [1:b]. Then the probability of error is upper bounded as
P(E) < P(&) + P(E§NET) + P(Umx1Em), (17)

wherem := (my,...,my) such thatn; = 1. As in the3-node case, by the covering lemni®¥{£y) — 0
asn — oo, if Ry > I(Yi;Yi|X) +6(¢), k € [1 : N], and by the conditional typicality lemma

P(E§NEL) — 0 asn — oo. For the third term, assume without loss of generality Ihat= - - - = L; = 1,
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whereL; := (L, ..., Lnj). Define the events
Aj(m,1;_q,1) = {(le(ml,lw_l), o Xnj(ma, Iy -1),
Yij(lylma lj-1), - Y (vglma, Ivg-1), Yai) € TV}
for m # 1 and alll;. Then,
P(Em) = P(Up Nb_; Aj(m,1;_1,1;))

< Z P(N5_1A4;(m,1;_1,1;))

—ZHP j(m, L1, 1)) (18)

=1
< ZHP (m,1;_1,1;)),
=2
where [(18) follows since the codebook is generated indegafydfor each blockj and the channel is
memoryless.

For eachl® andj € [2 : b], let S;(m,1°) C [1 : N] such thatS;(m,1%) = {k : my # 1 or [ ;_1 # 1}.
Note thatS;(m,1°) depends only orfm,1;_;) and hence we write it a§;(m,1;_;). We further define
T(m) C [1 : N] such that7T(m) = {k : my # 1}. From the definitions we can see tHa{m) C
Sj(m,1;_1) andd € S§(m,1;1) C 7¢(m).

DefineX;(S;(m,1;_1)) to be the set 0X,;(mx, i j—1), k € Sj(m,L;_1), wherem;, andl;, ;_; are the
corresponding elements in and1®, respectively. Similarly defin& ;(S;(m,1;_1)) andY;(S;(m,1;_;)).
Then, by the joint typicality lemma and the fact that

(X(8j(m,1;-1)), Y(S;(m, 1) ~ [ TIex@e-vnss) Poy . Gr.G-nril@r G-1ynri)
keS;(m,1;_;)i=1

is independent of X(S¢(m,1;_1)), Y(S¢(m,1;_1)), Y4) (givenL;_; = L; = 1), we have

P(A;(m,1;_q, 1)) < 27 (SEmL-))+1(Sm];-1)=6()

I

where
I(8) == I(X(8); Y (8°), Ya| X (S°)),

=3 IV Y(STUL{K € S K < k}), Yy, XV |X).
keS
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Furthermore, from the definitions ¢f(m) andS;(m,1;_;), if m # 1 with my = 1, then

Z 9—n(11(S; (m,1;1))+12(8; (m,1; 1)) —6(€))
1]‘71

< Z Z 9—n(11(S; (m,1-1))+12(S; (m,1;-1)) =6(€))
SC[1:N]

g 1: ] 1281'(11'1,1:,'71):8
T(m)CS,deSe

< Y S Ties Bub(0)
SC1:N]

T(m)CS,des*

< oN—1g—n(mins (I1(8)+12(8)~Xcs Rk—cg(e)))’

where the minimum is ove$ C [1 : N] such that7 (m) C S andd € S¢. Hence,

ZZHP i(m, 1 g, 15))

m#l b j=2

- Y TTP )

m#1 1, 1b-1j=2

S 3D 3 | pREICRINN)

m#l 1, j=21;4

< Z ZH (ZQ n(I1(S;(m,l,;_ 1))+I2(S](m,ljl))5(e)))

m#1l 1, j=2 \1

< Z 2Zk€7_ nbRy 2Zk¢d an2(N—1)(b—1) 2n(—(b—1) ming (11 (S)+12(S)—",cs Rk—6(e)))7 (19)

TC[1:N]
T#0,deT*

where the minimum in[(19) is ove$ C [1 : N] such that7T C S,d € §¢. Hence, [(IB) tends to zero as

-1 1 R
R <2 min (1S + 1S )= R | =) | =5 [ D R
b SC[1:N] b
TCS,deSe keS k#d

for all 7 C [1 : N] such that7 # 0 andd € T¢. By eliminating R;, > I(Y;; Yi|Xx) + 6(¢) and letting

n — oo if

b — oo, the probability of error tends to zero as— o if

R(T) < Sgﬁ% (Il(S) + I(S) — Z[(Yk;Yk\Xk)> — (N = 1)d(¢) — d(e)
TCS dese kes
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for all 7 C [1: N] such thatd € T¢. Finally, note that
)= Y IV YalXp) = = > I(Vis Vil XV, V(S%), Yo, Y{K € S K < k}))
keS keS

=Y IV Y(S)IXY,V(89),Ye, Y({K € S: K < k}))
keS

= —I(Y(8);Y(8)IXV,Y(5),Ya).
Therefore, the probability of error tends to zeroras» oo if
R(T) < I(X(S); Y(8°).Ya| X(5%) — I(Y(S); Y(S)| XV, ¥ (8), Ya) = (N — 1)d(¢') — 6(e) ~ (20)

forall S, 7 C [1: N] such that) # 7 C S andd € S¢. Since for everyS C [1 : N| such thatS # ()
andd € S¢ the inequalities with7” C S are inactive due to the inequality with = S in (20), the set

of inequalities can be further simplified to
R(S) < I(X(S); Y (8%, Yal X (8%)) = I(Y(S); Y(S)|X™, Y (5), Ya) — (N = 1)é(') —d(e) (1)

for all S C [1 : N] such thatd € S¢. Thus, the probability of decoding error tends to zero fochea
destination node € D asn — oo, provided that the rate tuple satisfiés(21).
Hence, by the union of events bound, the probability of efosrall destinations tends to zero as

n — oo if the rate tuple(Ry, ..., Ry) satisfies

R(S) < min I(X(S)Y (8%, Yl X(8%) — I(Y(S):V(S)|X™, (59, Ya)

for all S C [1 : N] such thatS°ND # 0 for SomerNzlp(:Ek)p(g]k|yk,ajk). Finally, by coded time

sharing, the probability of error tends to zeroras+ ~c if the rate tuple(R;, ..., Ry) satisfies

R(S) < delg}gpf(X(S);Y(SC),Yd\X(SC),Q) —I(Y(S):Y(8)|XY,Y (5, Ya, Q)

for all S C [1 : N] such thatS® N D # () for some[]r_, p(q)p(zx|q)p(Jr|yk, 2k, q). This completes the
proof of Theoreni 1.

V. EXTENSIONS TOGENERAL MULTIPLE-SOURCE NETWORKS
A. Proof of Theorem 2 via Multicast Completion with Implicit Decoding

We modify the decoding rule in the previous section to eshblheoreni 2 as follows.

Decoding: At the end of blockb, decoderd € Ué\’lek finds a unique index tuplémy, : k € Sy} such

that there exist som@ny, : k € S§) and (Iy, . .., In;), whererig, € [1 : 28] for k # d, 1hgq = ma,
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I € [1: 2"8%] for k + d, andig = Iy, j € [1 : b], satisfying

(%1 (M1dy 11 1), - - - XN (N dy IN 1),
1 (jlmaay i j—1)s - - o I (Inglmna, v j—1), ya;) € TE

forall j € [1:10].
The analysis of the probability of error is similar to that fidheorenti L in Sectidn lll. For completeness,

the details are given in Appendix A.

B. Proof of Theorem 3 via Treating Interference as Noise

Codebook generation: Again we consider the casg = (). Fix Hflep(uk, z)p(Uk|yk, ur ). We randomly
and independently generate a codebook for each block. Fdr gac [1 : b] andk € [1 : NJ,
randomly and independently gener@t@’?k sequences; (I j—1), lkj—1 € [1: 2”Rk], each according
to [T;, pu, (uk,(j—1)nts)- FOr eachk € [1 : N] and eachuy;(ly;—1), lxj—1 € [1 : Q"Rk], randomly
and conditionally independently generat®f: sequencesc;(mg|lk;—1), mx € [1 : 2"°Fx], each
according to] [;_ px, v, (T, (j—1)ntiltk,(i—1)nti(lk,j—1)). For eachk € [1 : N] and eachuy;(lx 1),
lpj—1€[1: 27R+] randomly and conditionally independently generzité sequencesy; (lx;llk 1),
lj €[1: Q"Rk], each according tq ", Py, U, (Uk,(j—1)n+iltk,(j—1)n+i(lk,j—1))- This defines the code-
book

Ci = {uk;j(lj—1), %uj (Ml j—1), Tij (ijllij—1) = mp € [L: 2708 L D jy € [1: 274] k€ [1: N}
for j € [1:b].
Encoding: Let (m1,...,my) be the messages to be sent. Each node(l : N], upon receivingyy; at

the end of blockj € [1 : b], finds an index,,; such that

(ks Ui 1o j1)s g Wiy (e j—1)) € TS,

wherel,y = 1, k € [1 : N|, by convention. If there is more than one such index, choogedd them at
random. If there is no such index, choose an arbitrary indearedom from([1 : Q"Rk]. Then each node

k € [1: N] transmits the codeworsy;(my|lx j—1) in block j € [1 : b].

Similarly as before, decoding is done by simultaneous joiptcal decoding, however, since we are
treating interference as noise, codewords correspondiriget unintended messages,, : k£ € SJ) are

discarded, which leads to the following.
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Decoding: At the end of blockb, decoderd € u{f:le finds a unique index tuplény, : k € Syg) such
that there exist SOm@;,. .., Ix;), Wherermy, € [1 : 270F] andk # d andrigg = mg, ly; € [1 : 277],

k#dandlg =g, j € [1: b], satisfying

((ij(mkd\ik,j—l) ke Sy),u(l 1), uni(n 1),
g1 (sl 5-1), - - 7yNj(ZNj’ZN,j—1)aYdj) e 7™

forall j € [1:0].
The analysis of the probability of error is delegated to Amgir [Bl.

V. GAUSSIAN NETWORKS

We consider the additive white Gaussian noise (AWGN) networwhich the channel output vector

for an input vectorX? is YV = GXV + ZV, whereG € RV*V is the channel gain matrix and’v
is a vector of independent additive white Gaussian noisk méro mean and unit variance. We assume
average power constraift on each sender, i.e.,

Z E (xil(mk, Ylj_l)) <nP

=1
for all k € [1 : N] andm;, € [1 : 2"%]. For each cutse§ C [1 : N], define a channel gain submatrix
G(S) such that

Y(8°) = G(S)X(S) + G'(S)X(S°) + Z(S°).

In the following subsection, we prove Theoréim 4. In SubsesiV-B and V-C, we provide the capacity
inner bounds for the AWGN two-way relay channel and the AW@keiference relay channel used in
Figured 2 andl4.

A. AWGN Multicast Capacity Gap (Proof of Theorem 4)

The cutset outer bound for the AWGN multiple-source mutticaetwork simplifies to the set of rate

tuples such that

1 P 1
SR < 5log |1+ EG(S)G(S)T + 5 min{[S], |87} og(2[S]) (22)

keS
forall S C [1: N] with S°ND £ (. To show this, first note that the cutset outer bourdd (4) coes

to hold with the set of input distributions satisfyit§X?) < P, k € [1 : N]. For eachS C [1 : N] such
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that S N'D # 0, we can further loosen the cutset outer bound as

R(S) < I(X(S5); Y (S%)|X(S5))

(Y (89)1X(S%) — h(Y (89)1XT)

Il
>

(G(S)X(S) + Z(8°)1X(S8%)) — h(Y (S| X™)

(G(S)X(S) + Z(89)) — h(Y (89)1X™)
|5¢]

log(2me)!S (1 + G(S)KX(S)G(S)T‘ - ST log(2me)

IN

1og(1 +tr(Kx 5))G(S)G(S)T‘ (23)

IN

1og(f +1S|P- G(S)G(S)T‘ (24)

IN
[ S R I NON SN NG N IS~

log |2|S| - I + 2\5;? -G(S)G(S)T

LIS
2

where K'x sy is the covariance matrix ok (S), (23) follows sincetr(K)I — K is positive semidefinite

I+ §G(5)G(3)T

<=1
_20g

log(2]5]),

for any covariance matrix< [23, Theorem 7.7.3], and_(24) follows sin¢e&(K x(s)) < |S|P, from the

power constraint. By rewritind (24) as
%log 1+151P-G(S)G(S)T| = %log‘l HISIP - G(S)TG(S)
and following similar steps, we also have

R(S) < %log

1+§G@F06ﬂ+§h%@ww

I+ gG(S)G(S)T

On the other hand, the noisy network coding inner bound inofdma[1 yields the inner bound

_ 1 S|
= 2log + 5 log(2|S]).

characterized by the set of inequalities

IS
2

for all S C [1 : N] with SN D # (. To show this, first note that by the standard proceduré [21],

R(S) < %log I+ gG(S)G(S)T - (25)

Theorem[ll for the discrete memoryless network can be eadéyptad for the AWGN network with
power constraint, which gives the inner bouhd (3) on the ci@peegion with (product) input distributions
satisfyingE(X?) < P, k € [L: N].

Let @ =0 and Xy, k € [1: N], be i.i.d. Gaussian with zero mean and variafte_ et
?k:Yk—I—ZAk, k?E[l:N],
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whereZ, k € [1: N], are i.i.d. Gaussian with zero mean and unit variance. TherdchS C [1 : N]
such thatS*ND # () andd € D,

I(Y(S);Y(S)IXN, Y(8%), Ya) < I(Y(S): Y(8)IX™)

= WY (S)IXY) = h(Y ()Y (5), X7)

= % log(4me) — g log(2me)

2 )
where the first inequality is due to the Markovity (S¢), Yy) — (XV,Y(S)) — Y(S). Furthermore,

[(X(8); Y (8%, Yal X(89)) = I(X(8): Y (591X (S59))

|5¢]

-5 log(4me)

Therefore, by Theoref 1, a rate tuglg,, ..., Ry) is achievable if
S|

I+ BG(S)G(S)T 5

1
R(S) < 3 log 5

for all S C [1: N] such thatScND # .
Comparing the cutset outer bourid(22) and inner bolind (2&)ptates the proof of Theorem 4.

B. AWGN Two-Way Relay Channels

Recall the model for the AWGN two-way relay chanriell(13) irctBm 11l
Rankov and Wittenben [16] showed that the amplify—forwaké)(coding scheme results in the inner

bound on the capacity region that consists of all rate pdws R2) such that

1 (aﬁ vb) b L)

R < =1
kS 508 2

D) 5 L P(g2 +a292 92 ) L P(g2 +06292 g2 )
for somea < /P/(gi3P + g5, P + 1), wherea; := 1 + =504 gy o= 1 + LT 00,

by = 213;;93%, andby := 213;;93%. They also showed that an extension of the original compress
32 31

forward (CF) coding scheme for the relay channel to the tvag-welay channel results in the following
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inner bound on the capacity region that consists of all raiesgR;, R2) such that

b oo (BP0 AP
14 02
Ry < C 933P+ (1+0%)g5, P
1402
for some
52> maX{ (1 + g% P)(1 + g% P) — (g12913P)% (14 g2, P)(1 + g3, P) — (921923 P)> }
B min{g§2, 9%1}P ’ min{ggz, 9?%1 }P

Specializing Theorernl 2 to the two-way relay channel givesitimer bound that consists of all rate

pairs (R, R2) such that
Ry < min{I(Xy;Ya, V3| X2, X3,Q), [(X1, X3; Ya| Xa, Q) — I(Ya; V3| X1, Xo, X3,Y2,Q)}
Ry < min{I(Xy; Y1, Y3 X1, X3,Q), (X2, X3;V1|X1,Q) — I(Y3; V3| X1, X2, X3,Y1,Q)}

for somep(q)p(z1|q)p(x2|q)p(x3]q)p(G3|ys, 23, q). By settingQ = 0 and¥; = Y3+Z with Z ~ N(0, 02),
this inner bound simplifies to the set of rate pdifg, R2) such that

2 P 1 2\ 2 P
Ry < min {C <913 +1(+—;g )12 > , C(g1oP + g3, P) — C(1/02)} ;

2 2\ 2
Ry < min {C <g23P +1(1+—;g )921P> ) C(lePl +9§1P) - 0(1/02)} (26)

for someco? > 0.

C. AWGN Interference Relay Channels

Recall the model for the AWGN interference relay channehwgtthogonal receiver components in
Figure[4.

Djeumou, Belmaga, and Lasaulce [18], and Razaghi and _Yu $h8jved that an extension of the
original compress—forward (CF) coding scheme for the ralaginnel to the two-way relay channel

results in the inner bound on the capacity region that ctmsisall rate pair§ R, R2) such that

R < C <(9%3 + (1 +02)g}y) P + (923914 — 924913)2132)
1+ 02+ (925 + (1 +02)g3,)P ’

Ry < C <(9§3 +(1+02)g35)P + (g13925 — 915923)2P2>
1+02+ (9%3 + (1 + 02)9%5)]3
for some
o2 > ‘ Inax{ (913924 — 923914)°P® + a1 (913925 — 923915)° P + ap }
T 2% —1 (93, P+ g3, P+1) (935 P + g35 P + 1) ’
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where
(2 2 2 2
a1 := (913 + 910) P + (923 + 920) P + 1,
(2 2 2 2
a2 == (913 + gi5) P + (923 + 925) P + 1.
Razaghi and Yu[[19] generalized the hash—forward codingrseh[24], [11] for the relay channel to
the interference relay channel, in which the relay senddithéndex (hash) of its noisy observation and
destination nodes use list decoding. This generalized-faskard scheme gives the inner bound on the

capacity region that consists of the set of rate paits, R2) such that

2 2 2
g1, (993 + g5,) P + 1)
Ri<C|==—"——)+Ry—-C ,
' <g§4P + 1) ° < (934 P + 1)o?

ga5 P (913 + 915) P + 1>
Ry < C + Ry — C
2 <915P > ‘ < (935 P + 1)o?

for somes? > 0 satisfying

9 1 . { (913924 — 923914)°P? + a1 (913925 — 923915)° P2 + as }
(o2 min s

= 2R — 1 (974P + g5, P +1) (935 P + g3 P + 1)
wherea; anday are the same as above.

Specializing Theoreffl 2 by settifg = Y3+ Z with Z ~ N(0,02) gives the inner bound that consists
of all rate pairs(R;, R2) such that

(9%3 + (1 + 0'2)9%4)P
1+ 02 ’

(935 + (1 + 02)935)P> } |

R < min{C(gilP) + Rog — C(1/02), C <

Ry <min{C(g§5P)+R0—C(1/U2), C< T3 o2
Ry + Ry < C((g14 + 954)P) + Ro — C(1/5?),

(933 + 933) P + (1 + 0%) (934 + 93) P + (913924 — 923914)2P2>
14 02 ’

Ri+ Ry <C

Ry + Ry < C((g15 + 955)P) + Ry — C(1/5?),

(933 + 935)P + (1 + 0%)(935 + g35) P + (923915 — 913925)2P2>
1402

R1+R2<C<

for someo? > 0. By the same choice dfs, the inner bound in Theoref 3 can be specialized to the set

of rate pairs(R;, Rz) such that
2 2 2
gis P (955 + 954) P + 1>
Ri<C(24 ) 4+R—C :
' <9§4P + 1) ° < (934 P + 1)o?
Ry <C <(9%3 + (1 + 0'2)9%4)P + (923914 — 924913)2P2>
1+ 02+ (925 + (1 +02)g3,)P ’

935 P (935 + gi5)P + 1)
Ry < C + Ry —C ,
2 <915P > ’ ( (935 P + 1)02
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Ry < C <(9§3 +(1+02)g35)P + (q13925 — 915923)2P2>

1+024 (¢35 + (1 +02)g3)P

for somecs? > 0.

VI. CONCLUDING REMARKS

We presented a new noisy network coding scheme and usedstablish inner bounds on the capacity
region of general multiple-source noisy networks. Thisesoh unifies and extends previous results on
network coding and its extensions, and on compress—forfaardhe relay channel. We demonstrated
that the noisy network coding scheme can outperform previoetwork compress—forward schemes.
The reasons are: first, the relays do not use Wyner—Ziv coftingbinning index to decode), second,
the destinations are not required to decode the compregsilices correctly, and third, simultaneous
decoding over all blocks is used.

How good is noisy network coding as a general purpose schémefe have seen, noisy network
coding is optimal in some special cases. It also performegdy well under high SNR conditions in
the network. In addition, it is a robust and scalable schemthé sense that the relay operations do
not depend on the specific codebooks used by the sources atidatiens or even the topology of the
network. Noisy network coding, however, is not always thetlmrategy. For example, for a cascade
of AWGN channels with low SNR, the optimal strategy is for theday to decode the message and
then forward it to the final destination. This simple multighscheme can be improved by using the
information from multiple paths and coherent cooperatisiinathe decode—forward scheme for the relay
channel [[10] and its extensions to networks|[25],/ [14]. Rertimprovement can be obtained by only
partial decoding of messages at the relays [10], and by adnmbinoisy network coding with partial
decode—forward to obtain the type of hybrid schemes_ in [1@] [@4].

Another important direction to improve noisy network caglifor multiple sources is to use more
sophisticated interference coding schemes, such as drgade alignment [26] and Han—Kobayashi

superposition coding [27].
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APPENDIXA

ERRORPROBABILITY ANALYSIS FOR THEOREM[Z

The analysis follows the same steps of the multicast casepexisat the union in the third error term

of (I7) is over allm such that(my, : k € S;) # (1,...,1). Thus,

P(UmEm)

IN

S 2Zker R 9Tk nftg(N=1)(b=1) gn(=(b-1) mins (11(S)+12(8)~Lres Be=6(e)) - (27)

TC[1:N]
TNSa#0,deTe

where the minimum in[(27) is ove$ C [1 : N] such that7T C S,d € S¢. Hence, [(2I7) tends to zero as

n — oo if
R <2 min (0©) +0©) - | -6 ] -+ (SR
) 2 s (1 )+ 12(S) K (€) 2 K
TCS,deSe keS k#d

for all 7 C [1: N] such thatT NS, # 0 andd € T¢. By eliminating Ry, > I(Y}; Y| Xi) +6(¢), letting

b — oo, and getting rid of inactive inequalities, the probabildyerror tends to zero as — oo if
R(S) < I(X(S8);Y(8%), YalX(8%)) = I(Y (S); Y(8)| XN, V(8%), Ya) — (N = 1)5(¢') = d(e),  (28)

forall S C [1: N] such thatS NS, # 0 andd € S°¢. Thus, the probability of decoding error tends to
zero for each destination nodec D asn — oo, provided that the rate tuple satisfiés](28). Finally, by
the union of events bound, the probability of error for alktigations tends to zero as— oo if the

rate tuple(Ry, ..., Ry) satisfies

R(S) < _min I(X(S)V(S),YalX(8%) ~ IV (S): V()XY ¥(59. %)

for all S C [1 : N] such thatSN'D(S) # ) for some[[r_, p(x1)p(ik|yr, zx). This completes the proof
of Theorenl2 forQ = (). The proof for the genera) follows by coded time sharing.

APPENDIX B

ERRORPROBABILITY ANALYSIS FOR THEOREM[3

Let M}, denote the message sent at néde [1 : N| andLy;, k € [1: N], j € [1: b], denote the index

chosen by nodé for block j. To bound the probability of error for decodér D, assume without loss
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of generality that M, ..., My) = (1,...,1) = 1. Define

b N

€o = J{ (ViU L j—1), Unj (L j—1), Yiy) & T2 for all Iy}
j=1k=1

Em = {({Xnj(mrllej-1) : k € Sa}, Ur(lij-1),- -, Unj(ing-1),
Yl g-1)s - Yi(niling-1), Ya) € T, 5 € [1: 8],
for some(ly,...,1;), wherely = Lg;,j € [1: b]}.

Here,m := (my : k € §;) andl; = (L;,...,ln;) for j € [1:b]. Then the probability of error is upper
bounded a (&) < P(&) + P(E§ NEF) + P(Umz1Em), Wherem, = 1 in m. By the covering lemma,
P(&) — 0 asn — oo, if Ry > I(Y};Y3|Ux) +d(¢'), k € [1 : N], and by the conditional typicality
lemmaP(£§ N EF) — 0 asn — oo. For the third term, assume thh{ = --- = L, = 1. Define

Aj(m, 1, 1) o= {({ X (millp,j—1) < k € Sa}, Ugj(lyj-1), -, Unj(ln,-1),

Y1 (Ul -1), - Y (vgling-1), Yo) € T}

for m # 1 and alll;. Then, from similar steps to the multicast case,
b
P(€m) <D [IP(A;(m,1;-1,15)).
=2
For eachl® andj € [2: b], let S;(1°) C [1 : N] such thatS;(1°) = {k : Iy j_1 # 1}. We further define
T(m) C [1: N] such that7 (m) = {k : k € Sg,my # 1}. By definition,d € 7¢(m) N S5(1;-1), where
T¢(m) := S¢\7T (m). Then, by the joint typicality lemma, we can show that

9

P(A; (m, 11, 1)) < 2" (S0m) TOm) 1 (S0, T (m)—5(6)

where
L(S,T)=1(X(SUT)NSy),U(S); Y(SC), Yal X (S NT)NSy),U(SY)), and

(S, T) =) I(Vi;Y(S°U{K €8 : K < k}),Yq, X (Sq), UN|Uy).
keS
Furthermore from the definitions 6f (m) andS;(1;_1), if m # 1 with my = 1, then

Z 9—n(I1(8;(15-1), T (m))+12(8;(1;-1),T (m))—=4(e))
1:,71
< Z 911 (S, T(m))+12(S,T(m)) =, s Rr—6(c))
SC[1:N]:deS¢

< 9N—Tg=n(ming (5 (8,7 (m))+L2(8,T(m) =5 cs Ri=6(9))
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b
H (Z 2"(Il(sa(lj1)vT(m))+12(51(111)7(‘“))5(6)))
=2

2.2
< Z Z ﬁ <2N—12—n(mins(11(S,T(m))'f‘Iz(S,T(m))—Zkes Rk—é(g)))>
1, j=2

m#1

th

< Y 2Trer MR g nhg(N-1) (1) gn( (=D mins (1S THIST)=Tres b)) (29)

TCSq
T#0,deTe

where the minimum in[(29) is ove$ C [1 : N] such thatd € S¢. Hence, [(2DB) tends to zero as— ~o
if
b—1

. 1 A

Kes ktd
for all 7 C S, such thatd € 7¢. By eliminating &, > I(Yy;Y:|Ur) + 0(¢') and lettingb — oo, the

probability of error tends to zero as— oo if

R(T)<  min (Il(S,T) + (S, T) — ZI(Yk; Yk|Uk)> — (N = 1)6(¢") — d(e)

SCJ[1:N],deS¢c
C[L:N],de oS

for all T C S, such thatd € T7°¢. Finally, note that

LS, T) =) IV YalU) = = > I(Vis Vil X(Sa), UN, Y(S%),Ya, Y({K € S: K < k}))
keS keS
==Y IV Y(S)|X(Sa), UN, YV (89, Yo, Y({K € S : K < k}))
keS

= —I(Y(S);Y(8)[X(82), UN. Y (5%, Yo).
Therefore, the probability of error tends to zeroras» oo if
R(T) < I(X((SUT)NSa),U(S); Y (8%, Yal X ((8°N T) N 8a), U(S))

— I(Y(8); Y (8)|X(Sq), UN, Y (8),Ya) — (N — 1)3(€') — 6(e) (30)
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forall S C [1: N]and7 C S; such thatd € S¢ andd € T¢. Since for everyS C [1: N|, d € S the
inequalities corresponding th C (S NS,) are inactive due to the inequality with = S N S, in (30),

the set of inequalities can be further simplified to
R(T) < I(X(T),U(8); Y (8%, Ya| X (T),U(8))

— I(Y/(S); Y (8)|X(Sa), UN, Y (8%, Ya) — (N = 1)5(€') — 6(e) (31)
forall SC[1: NJandSNnS; C T C S, such thatd € 8¢, where7T< = S;\7. Thus, the probability
of decoding error tends to zero for each destination nbdeD asn — oo, provided that the rate tuple
satisfies[(31). By the union of events bound, the probabilftgrror tends to zero as — o if the rate
tuple (Ry, ..., Ry) satisfies

R(T) <I(X(T),U(S); Y (8%, Yal X(T),U(8%)) = LY (S); Y (S)|X (Sa), UN, Y (5%), Ya)

forall S C[1:NJ],de D(S), andSNSy C T C S; such thatS N D(S) # 0, whereT¢ = S;\T
for some[[r_, p(xx)p(9x|yx, x1). This completes the proof of Theordth 3 fgr= . The proof for the

general@ follows by coded time sharing.

APPENDIXC

COMPARISON TO APREVIOUS EXTENSION OF THEORIGINAL COMPRESS-FORWARD SCHEME
For a DM single-source (node 1) multicast network with dedton nodesD C [2 : N], a hybrid
scheme proposed by Kramer, Gastpar, and Gupta [14, Thedregime3 the capacity lower bound
C2max&neigl(Xl;YZN,YﬂUZN,XéV), (32)
where the maximum is over(z) ]_[,JCV:2 p(ug, T6)p(Gr|ud’ , 21, yx) such that

IV (T Y (MU, X3, Y (T9), Ya) + Y I(Vi; X3'|U5', X)
keT

T
< I(X(T):YalU(T), X(T°), Ug, Xa) + > U (Ke); Yy [U(K), Xp(1)) (33)
t=1

for all 7 C [2 : N], all partitions{K;}_, of [2: N], and allr(¢) € [2 : N] such thatr(t) € K;. The
complements7 ¢ and Kf are the complements of the respectiveand KC; in [2 : N].

The hybrid coding scheme achieving lower bound (32) usesx&énsgion of the original compress—
forward scheme for the relay channel as well as decodingeottimpression indices at the relays. The

pure compress—forward scheme without decoding gives thacidg lower bound

C>R = maxfin%l(Xl;YQN7Yd’Xév)7 (34)
€
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where the maximum is over all pmig§;_, p(z;)p(yx|zx) such that

LY (T:Y(TIXS Y (T), Ya) + ) 15 Vil X)) < T(X(T); Yal X(T€), Xa)
keT
forall 7T C[2: N]Jand7¢=[2: N]\T. This is identical to (32) with/; =0, j € [2: N].

In the following we show that the noisy network coding loweuhd in Theorerf]l is uniformly better
than lower bound{34) for every(yy |="). By using similar steps to those in [15, Appendix C] and

some algebra, lower bound (34) can be upper bounded as

R* <maxmin min I(Xy; Y5V, Y| X)) + I(X(T); Y| X (T°), X4)

deD TC[2:N]
_I(Y(T)§Y(T)’X2 ) (TC Z[ Yk;Xz | Xk)
keT
LV c c _ ¥ . N v
- mangngEnN] I(XbX(T)aY(T )7Yd|X(T )7Xd) I(Y(T)aY(T)|X 7Y(T)7Yd)

— I(X(T): Y (T)|Ya, X(T€), Xq) — > I(Vi; X |X5), (35)
keT

where the maximums are ovefz) [Tn_, p(z1)p(Jk|zk, yi). Here equality[(35) follows since
I(X13 Y5, Yal X3) + L(X(T): Yal X (T°), Xa) = LY (T); Y(T)| X5, Y(T°), Ya)

= [(Xy; Y (T°), YalX3') + I(X1; Y (T)| X3, Y (T°), Ya)
+ (X (T); Yal X(T), Xa) = IV (T); Y (T)| X5, Y(T), Ya)

= I(X0; Y(T9), Yal X3') + I(X0; Y (T X3, Y (T), Ya) + (X (T); Y (T°), Yal X (T¢), Xa)
— I(X(T); Y(T)X(T), Ya, Xa) = IV (T); Y(T)| X3, Y (T°), Ya)

= I(X0, X(T); Y (T9), Yal X (T€), Xa) + I(X1; Y (T)| X3, Y (T), Ya)
— I(X(T); Y(T)X(T), Ya, Xa) = 1Y (T); Y (T)IX3, Y (T°), Ya)

= I(X0, X(T): Y (T, Yal X (T°), Xa) + (X0, Y(T); Y (T)| X3, Y (T°), Ya)
— I(Y(T); Y (T)| X1, X3, Y (T9), Ya) = I(X(T); Y (T)| X (T°), Ya, Xa)
— IV (T); Y (T)IX5, Y (T°), Ya)

= I(X1, X(T); Y(T9), Yal X (T€), Xa) + I(X1; Y (T)| X3, Y (T), Y (T), Ya)
— I(Y(T); Y (T)| X1, X3, Y (T9), Ya) = I(X(T); Y (T)| X (T°), Ya, Xa)

= I(X0, X(T): Y (T, Yal X(T€), Xa) = I(Y (T); Y(T)| X1, X3, Y (T°), Ya)

— I(X(T); Y(T)X(T), Ya. Xa)
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forall T C[2: N], 7¢=[2: N\T andd € D, where the last equality follows from the Markovity
(X1, X(T°), Xy, Y (TC),Yyq) = (X(T),Y(T)) = Y(T). On the other hand, Theorém 1 can be simplified
by settingQ =) andR; =--- = Ry =0 as

C > max min min [(X1, X(T);Y(T°), Y4 X (T°), X, 36
S - WG Bt (X1, X(T); Y(T°), Ya| X(T°), Xa) (36)

— I(Y/(T); Y(T)|XN,Y(T°), Ya),
where7¢ = [2: N]\T. Thus, Theorerill achieves a higher rate than (34) with gap

I(X(T); Y (T Ya, X(T€), Xa) + Y T(Vi; X5 | X)
keT
for eachd € D and7 C [2: N].

We now present a simple example for which noisy network apdiarforms strictly better than the
general hybrid schem@_(32). Consider a 4-node noiseles®retwhereD = {4}, Ry = R3 = R4 =0,
andY; = X;,Y3 = X,,Y, = X3 are all binary. From[{5), we know that that the noisy netwookling
lower bound achieves the capacify = 1. On the other hand, applying_(32) to the above noiseless

network we get
I(X1;Y2,Y3,Ya|Us, Us, Xo, X3) = I(X1; Yo, Y3|Usz, Us, X2, X3) (37)
— I(XI;YAVQ|U27U37X27X37YAV3) (38)

where [(37) follows from the channel arid [38) follows from Markovity X; — (Us, Us, X3,Y3) — Ys.
The constraint[(33) corresponding o= {2} andr(1) =4 is

I(Yy; Ya|Us, Us, Xo, X3, Y3, Y1) + I(Ya; X3|Us, Us, Xo) < I(X; Ya|Us, Us, X3) + I(Usz; Ya|Us),
which can be simplified as
I(X1; Ya|Us, Us, Xa, X3,Y3) < I(Us; X|Us) — I(Ya; X3|Us, Us, X2)
< I(Usz; X3|Us)
=0,

where the equality follows fromt/y — Us — X3. Thus, the achievable rate of the hybrid scheme is zero
for this particular example. It can be easily seen that ousynnetwork coding scheme outperforms the
hybrid scheme for noiseless networks with more than twoyseldlote that in general, due to decoding at
the relay nodes, the hybrid scheme can sometimes perforter leain the noisy network coding scheme

without similar augmentation.
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