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1. Introduction

1.1. Positive definite functions. We start with the classical notion of
positive definite functions.

Definition. A continuous function f : R −→ C is called positive definite if
it satisfies

(1) f(−x) = f(x),
(2) the matrix

(
f(xi − xj)

)
for any x1, . . . , xn ∈ R is positive definite.

For such a function f(0) ≥ 0, and because[
f(0) f(x− y)

f(y − x) f(0)

]
(1.1.1)

is positive definite, we get |f(x− y)|2 ≤ |f(0)|2. So if f(0) = 0, then f ≡ 0.
We assume f 6≡ 0, so we normalize so that f(0) = 1.

The main result about positive definite functions is Bochner’s theorem.

Theorem. A continuous function f is positive definite if and only if it is
the Fourier transform of a positive finite measure.

This notion generalizes to locally compact topological groups.

Definition. Let G be a locally compact topological group. A continuous
function f : G −→ C is positive definite if

(1) f(x−1) = f(x),
(2) the matrix

(
f(x−1

i xj)
)

for any x1, . . . , xn ∈ G is positive definite.

The only natural way to construct such functions is via representation
theory.

A representation is a group homomorphism π : G −→ Aut(X ) where X
is a Hilbert space, which is continuous into bounded linear operators. It is
called
irreducible if X has no nontrivial proper closed G-invariant subspaces,
completely reducible if any G−invariant closed subspace W ⊂ X has a
G−invariant complement,
unitarizable if there is an inner product 〈 , 〉 for which π(g) are unitary
operators, i.e.

〈π(g)v, π(g)w〉 = 〈v, w〉, g ∈ G, v, w ∈ X . (1.1.2)
1
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We will consider representations which are algebraic only, no topology in-
volved. In that case the same definitions hold, one drops the condition of
closed.

Suppose π is unitarizable. We can construct a positive definite function
as follows. Let 0 6= v ∈ X be a vector of norm 1. Then

Φv(g) := 〈v, π(g)v〉 (1.1.3)

is positive definite.

Conversely, let f be positive definite. Then define

V := spanC {Lxf : x ∈ G}. (1.1.4)

This is a G−module with action π(g)v(x) := (Lgv)(x) = v(g−1x). The space

N := {v ∈ V : |v| = 0} (1.1.5)

is the radical of the hermitian bilinear form

〈Lgf, Lhf〉 := f(g−1h). (1.1.6)

This is because if v ∈ N ,
〈w, v〉 ≤ |v| · |w| = 0, ∀w ∈ V. (1.1.7)

Let X be the completion of V/N with respect to the induced inner product
〈 , 〉. This is a unitary representation of G such that Φf (g) = f(g).

1.2. The General Problem. Given a locally compact topological group
G, find all irreducible unitarizable representations.

If G is compact, the Peter-Weyl theorem provides an answer. First ev-
ery finite dimensional representation is unitarizable. Namely if (π, V ) is a
complex finite dimensional representation, choose any inner product ( , ).
Then

< v,w >:=
∫
G

(π(g)v, π(g)w) dg (1.2.1)

is an invariant inner product. If (σ, Vσ) is an irreducible representation,
define the space of matrix entries of σ

Fσ := span{fv,w(g) := 〈v, π(g)w〉}. (1.2.2)

This is a module for G × G by ρ(g1, g2)f(x) := f(g−1
1 xg2). Then Fρ ∼=

V ∗σ ⊗ Vσ. The Peter-Weyl theorem states that the regular representation
L2(G) decomposes as

L2(G) =
⊕
σ∈ bK

V ∗σ ⊗ Vσ. (1.2.3)

So in some sense the problem in this case is solved. But even an explicit
answer can be very difficult to come by. For example for G = Sn there is
an entire field of combinatorics devoted to representation theory. For the
kind of groups Gx,0 in the previous lectures the answer is quite intricate.
For noncompact groups this gets even more difficult. The space L2(G), if it
even makes sense to talk about a decomposition, will have a continuous and
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a discrete spectrum. Not all unitary representation will occur. For example
the trivial representation is unitary, but unless G is compact, it will not
occur in L2(G).

1.3. An Example. Let G = SL(2,R). It contains a maximal compact sub-
group K = SO(2). The quotient space G/K is a very interesting space for
analysis. It identifies with the upper half plane {z : Imz > 0} by

g =
[
a b
c d

]
∈ G/K ←→ ai+ b

ci+ d
. (1.3.1)

We are interested in the spectral decomposition of ∆ = y2(∂2
x + ∂2

y) on
L2(H) with the invariant measure y−2(dx2 + dy2). For this we must look
for eigenfunctions ∆F = αF satisfying the additional invariance condition
F (r(θ) · z) = F (z) where

F (r(θ) · z) := F

(
cos θz + sin θ
− sin θz + cos θ

)
, r(θ) :=

[
cos θ sin θ
− sin θ cos θ

]
(1.3.2)

Lift such functions to G; they satisfy Fα(r(θ1)gr(θ2)) = Fα(g), as well as
a differential equation coming from ∆. They are of the form Φv,π for π the
spherical principal series. Let

B :=
{
b :=

[
er/2 y

0 e−r/2

] }
, A =

{
a(r) :=

[
er/2 0

0 e−r/2

]}
, N =

{
n(y) :=

[
1 y
0 1

]}
K :=

{
r(θ)

}
.

(1.3.3)
Note that G has the decompositions G = BK and G = KAK. Then let

X(ν) := {f : G −→ C : f(gb) = e−(ν−1/2)rf(g) f |K∈ L2(K)} (1.3.4)

The group G acts on X(ν) by πν(g)f(x) = f(g−1x). The space X(ν) identi-
fies with L2(K) so it is a Hilbert space. The K−finite functions have a basis
f2n(r(θ)a(r)n(y)) = e2niθe−(ν−1/2)r. The usual inner product on L2(K) is
unitary for the action of G only when ν ∈

√
−1R. Let v(kb) = |x|−ν+1/2. The

functions Fν from before are Fν(g) = 〈v, π(g)v〉. Since F (k1gk2) = F (g), it

is enough to give the values on the elements of the form
[
er 0
0 e−r

]
:

Fν(r) =
1

2π

∫ 2π

0
(er cos2 u+ e−r sin2 u)ν−1/2 du. (1.3.5)

For the spectral decomposition of L2(H) we only need ν ∈ iR. It turns out
that the function in (1.3.5) is positive definite precisely for −1/2 ≤ ν ≤ 1/2.
The relation Fν = F−ν holds. Fν is a special case of the hypergeometric
function, but one would be hard pressed to get the positivity result without
representation theory.

There are other problems coming from number theory/automorphic forms
where one wants information about L2(Γ\H) where Γ ⊂ G is an arith-
metic subgroup. In this case the ν ∈ R play a role. For example since
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vol(G/Γ) <∞, the trivial representation occurs. Often all one has available
is information about the nature of the unitary representations that occur.

1.4. General Strategy. The way one proceeds towards solving the prob-
lem of classifying the unitary dual is via several steps:

(1) Classify the irreducible admissible modules
(2) Classify the irreducible hermitian modules
(3) Find the unitary modules

In the rest of the notes I will spend considerable time on (1) and (2). The
general framework will be a group G which is the rational points over a
local field real or p-adic of a connected linear reductive group defined over
G. The group will be split. I will concentrate on spherical representations.
The group G has a maximal compact subgroup K = K0. This group is
unique up to conjugation in the real case, a special choice in the p− adic
case. A representation is called spherical if it has a fixed vector under
K. The question is to classify spherical irreducible representations. These
are the ones who give rise to the K−biinvariant positive definite functions.
But to do this for real groups I will study a wider class of representations
for p−adic groups, namely the category of representations admitting fixed
vectors under an Iwahori subgroup I.

2. Split p-Adic Groups

2.1. Iwahori subgroups. First some notation; let F be a local field of
characteristic zero. Then

F ⊃ R ⊃ $R = P, (2.1.1)

where R is the ring of integers and P the maximal ideal generated by the
uniformizer $. For a split group reductive connected group G defined over Q,
denote by G := G(F) its rational points, by K0 := G(R) the open compact
subgroup with entries in R, and by

Ki := {x ∈ G(R) : x ≡ Id mod ($i)} (2.1.2)

Then if Fq := R/P is the residue field, there is an exact sequence

1 −→ K1 −→ K0
π−→ G(Fq) −→ 1. (2.1.3)

Let B = AN be a Borel subgroup. Then G = KB. We are interested in
K− biinvariant functions. Note also that G = KAK, so such functions are
determined by their restrictions to A.

An Iwahori subgroup is a group conjugate to I := π−1(B(Fq)), where
B(Fq) is a Borel subgroup of G(Fq). This group is open compact, and will
play an essential role in the analysis of the induced modules. A character
χ of A is called unramified if it is trivial on A ∩K. The induced principal
series is

X(χ) := IndGB[Cχ]lc (2.1.4)
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where lc refers to functions f : G −→ C which are locally constant in
addition to f(gb) = χ(b−1)δB(b)1/2. The action is the usual one. Using lc
has the advantage that X(χ) is acted upon by the Hecke algebra

H(G) := {f : G −→ C | f locally constant with compact support}.
(2.1.5)

The action of H is
π(f)v :=

∫
G
f(g)π(g)v dg, (2.1.6)

and the algebra structure is convolution

f ∗ g(x) =
∫
G
f(yx−1)g(x) dx. (2.1.7)

The proper framework to do representation theory is the notion of an ad-
missible representation.

Definition. A representation (π, V ) is called admisible if
(1) The stabilizer StabG(v) of any vector v ∈ is an open compact sub-

group.
(2) For any irreducible representation τ of an open compact subgroup K,

dim HomK[τ, V ] <∞.

Irreducible modules, as well as induced modules of the form (2.1.4) are
admissible. As in the example 1.3 the module X(ν) has a unique K−fixed
vector f(kb) = χ(b−1)δB(b)1/2, and we can use it to form a spherical func-
tion Φν(g) =< f, π(g)f > . It will turn out that these are (essentially) all
spherical functions.

2.2. Hermitian Modules. A group representation (π, V ) is called hermit-
ian if V admits a nonzero sesquilinear form < , > satisfying

< π(g)v, π(g)w >=< v,w >, ∀g ∈ G, v, w,∈ V (2.2.1)

For a representation of H this relation translates into the following:

< π(f)v, w >=< v, π(f∗)w > (2.2.2)

where f∗(x) := f(x−1).

In general if V is a complex vector space, its hermitian dual is

V h := {` : V −→ C : `(λ1v1 + λ2v2) = λ1`(v1) + λ2`(v2)}. (2.2.3)

The complex structure is (λ · `)(v) := λ`(v). If (π, V ) is a representation of
an algebra M, then V h will not in general have an M module structure.
What is needed is a complex conjugate linear automorphism ∗ :M−→M.
Then we can define (πh, V h) by the formula (πh(m)`)(v) = `(π(m∗)v). A
module is hermitian if and only if there is a nontrivial complex linear map
h : V −→ V h which intertwines π and πh, i.e.

πh(m) ◦ h = h ◦ π(m). (2.2.4)

When (π, V ) is irreducible h must be an isomorphism.
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2.3. The Iwahori-Hecke Algebra. One of the main tools for studying
X(ν) is the Jacquet functor. Frobenius reciprocity states that

HomG[V, IndGB[σ]] ∼= HomA[VN , σδ
1/2
B ], (2.3.1)

where
VN := V/span{π(n)v − v}n∈N . (2.3.2)

The module span{π(n)v − v}n∈N is also denoted V (N), and VN is called
the Jacquet module of V. We note that

V (N) :={v ∈ V |
∫
N ′
π(n′)v dn′ = 0}

for some open compact subgroup N ′ ⊂ N.
(2.3.3)

Unlike for reductive groups, unipotent groups have the property that they
are the union of their open compact subgroups. The isomorphism in (2.3.1)
is implemented by the formula

L ∈ HomG[V, IndGB[χ]] −→ (v 7→ L(v)(1)). (2.3.4)

It is clear that the map on the right takes vectors of the form π(n)w−w to
0.

Let B = AN be the opposite parabolic subgroup. An important property
of I is that it has a Bruhat decomposition

I = I+ · I0 · I− := (I ∩N)(I ∩A)(I ∩N). (2.3.5)

One of the main tools will be the functor

V 7→ V I. (2.3.6)

This takes admissible modules of G with nontrivial I−fixed vectors to non-
trivial modules of the Iwahori-Hecke algebra

HI := H(I\G/I),

the subalgebra of H of compact supported locally constant functions invari-
ant under left and right translations by I.

The main property of I is that V I is isomorphic to VN . The relevant result
is the following.

Theorem (Borel-Casselman). The functor

V −→ V I

is an equivalence of categories between C(I), formed of admissible modules
such that each factor is generated by its I−fixed vectors, and the category of
finite dimensional modules of H(I\G/I).

Every irreducible module satisfying V I 6= 0 is a subquotient of an X(χ)
with χ unramified. In particular his is true for spherical modules. Denote
this subquotient by L(χ). Then L(χ) ∼= L(χ′) if and only if there is w ∈ W
such that χ′ = wχ.
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The fact that every irreducible module with I−fixed vectors is a sub-
quotient of an X(χ) comes from the fact that V I ∼= V I0

N . This theorem is
very powerful in that it reduces representation theory problems to problems
about the algebra H(I\G/I).

The ∗ operator of H induces one for HI. If (π, V ) is unitary, then so is
(πH, V I). But the converse is not at all clear.

2.4. Example 1. We illustrate the ideas of the proofs of the facts in the
previous section in the case of SL(2,F). The general case is not all that
different. Then

B = AN =
[
a 0
0 a−1

]
·
[
1 x
0 1

]
,

I =
[
α β
$γ δ

]
, α, β, γ, δ ∈ R.

(2.4.1)

We will need to decompose G into double cosets under I. The answer is

G =
⋃

I
[
$n 0
0 $−n

]
I ∪ I

[
0 $m

−$−m
]

I (2.4.2)

As an algebra HI is generated by two elements T0 and T1. They satisfy the
relations

T 2
i = (q − 1)Ti + q. (2.4.3)

It is better to consider the generators θ = q−1T0T1, T = T1. The relations
become

T 2 = (q − 1)T + q, Tθ = θ−1T + (q − 1)(θ + 1). (2.4.4)

The algebra has a basis over C given by θn, T θm. or alternatively θn, θmT.
This new basis has the advantage that it is easy to determine the center.

Theorem. The center of HI is generated by the expressions θn + θ−n (or
(θ + θ−1)n).

So this algebra is a polynomial algebra with generator θ + θ−1. Another
way of saying this is that W acts on C[θ, θ−1] by w · θ = θ−1. Then the
center is C[θ, θ−1]W .

Here is a sketch that V I ∼= V I0
N . For any compact open subgroup K let

eK be the delta function of K normalized so that the volume of K is 1. Let
J : V −→ VN be the quotient map. There are three steps:

(1) The image of V I and V I0I− under J are the same.
(2) J is injective when restricted to V I.

(3) J maps V I0I− onto V I0
N .

For (1), let v ∈ V I0I− . Then because v is fixed by I0, I−, and some compact
open N ′ ⊂ I+,

π(eI)v =
∫

I+
π(i+)v di+ =

1
N
π(ni)v (2.4.5)
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where N = [I+/N ′]. Thus v− π(eI)v ∈ V (N), i.e. J(v) = J(π(eI)v). For (2)
and (3), let

Λ+ :=
{
an =

[
$n 0
0 $−n

]}
n≥0

. (2.4.6)

Note that Λ+ preserves V I0I− . Also note that A acts on VN , and J(π(a)v) =
πN (a)J(v). Suppose U ⊂ V I0

N is any finite dimensional subspace. Let U be
a finite dimensional subspace in V I0 such that J(U) = U. There is an open
compact subgroup N

′ ⊂ N. which fixes U. Then there is n >> 0 such
that a−nI−an ⊂ N

′
. Thus π(an)U ⊂ V I0I− . and J(π(an)U) = π(an)U. In

particular,
dimU = dimπ(an)U ≤ dimV I <∞. (2.4.7)

To finish the proof of (2) observe that if U contains a basis of V I0
N , then so

does π(an)U. This also proves that V I0
N is finite dimensional.

For (3), suppose v ∈ ker J ∩ V I. Then v =
∑
π(ni)wi − wi. There is

n >> 0 such that annia−n ∈ I+ for all i. Then

π(eIa
neI)v = π(eI)π(an)v =

∑
π(eI)π(annia−n)π(an)wi−π(eI)π(an)wi = 0.

(2.4.8)
The proof is complete once we esatblish that eIa

neI ∈ HI is invertible. This
is an exercise using the generators and relations of HI.

We can determine the finite dimensional irreducible modules of HI. Let
(π, V ) be such a module. Then π(θ) has an eigenvector vν , π(θ)v = qνvν .
Consider Tvν . The subspace {vν , T vν} is nonzero and invariant, so equals
V. There are two possibilities:

(1) Tv = λv,
(2) Tv is linearly independent of v.

In case (1) we find that q2ν = ±q±1/2. In case (2) the irreducible module is
2-dimensional, and we will see explicit realizations later.

For H(I\G/I), the star operator ∗ is determined by the formulas

T ∗i = Ti. (2.4.9)

Then
θ∗ = (T0T1)∗ = T1T0 = T0θT

−1
0 . (2.4.10)

A more systematic way to determine the irreducible modules is the following.
Note that

HI = C[T ]⊗A, A = C[θ, θ−1]. (2.4.11)

Let (π, V ) be an irreducible module. Since A is abelian, it must have a
common eigenvector v ∈ V. Thus there is a representation Cχ of A such
that π(a)v = χ(a)v. Of course such a representation is determined by the
scalar value it takes on θ. Let

X(χ) := HI ⊗A Cχ.
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Then there is a nonzero map

Φ : X(χ) −→ V, Φ(x⊗ 11χ) = π(x)v (2.4.12)

which is onto, since the representation is irreducible. This means that in
order to classify irreducible representations of HI, we must study X(χ) in
particular its irreducible quotients.

2.5. Example 2. Consider the case of G = PSL(2) ∼= SL(2)/{±Id}. Then
the algebra HI is still generated by {T, θ} but the relations are

T 2 = (q − 1)T + q, Tθ = θ−1T + (q − 1)θ. (2.5.1)

2.6. The General Case. We consider a linear algebraic reductive group
G defined over Q. Such groups are classified by their root datums R =
(X,R, Y, Ř) whereR is a reduced roots system. We associate a Hecke algebra
to this datum.
Let W0 be the (finite) Weyl group associated to R, and fix Π ⊆ R a set of
simple roots. Then let HK be the Hecke algebra associated to this group,
generated by T1, · · · , Tn subject to

• T 2
i = (q − 1)Ti + q

• TiTj · · ·TiTj︸ ︷︷ ︸
m(i,j)

= TjTi · · ·TjTi︸ ︷︷ ︸
m(i,j)

Here the mi,j is the order of the element sisj ∈ W, where the si are the
simple root reflections in the Weyl group W. Let A := C[X] be the group
algebra of X generated by {θx}x∈X subject to

θx · θy = θx+y, θ0 = 11.

The Iwahori-Hecke algebra H is the algebra generated by HK and A subject
to

Tsθx = θs(x)Ts + (q − 1)
θx − θs(x)
1− θ−α

where s = sα is the reflection corresponding to the simple root α ∈ Π (recall
that W0 acts on X and Y ).

2.7. Connection to p-adic groups. If G is a split p−adic group, its alge-
bra HI is isomorphic to the above for the dual root system, Ř = (Y, Ř,X,R)

2.8. Example 1. G = Sp(2) the symplectic group of rank 2. Then Ǧ is
SO(5).

X = Zε1 + Zε2, R = ±ε1,±ε2,±ε1 ± ε2},
Y = Zε1 + Zε2 Ř = {±2ε1,±2ε2,±ε1 ± ε2}.

(2.8.1)
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Let θ1 ←→ ε1, θ2 ←→ ε2. The simple roots are α1 = ε1− ε2, α2 = ε2. Let
T1 and T2 be the corresponding elements in HK .

T1θ1 = θ2T1 + (q − 1)
θ1 − θ2

1− θ2θ−1
1

= θ2T1 + (q − 1)θ1

T2θ1 = θ1T2 T2θ2 = θ−1
2 T2 + (q − 1)

θ2 − θ−1
2

1− θ−1
2

= θ−1
2 T2 + (q − 1)(θ2 + 1)

T1θ2 = θ1T1 + (q − 1)
θ2 − θ1

1− θ2θ−1
1

= θ1T1 − (q − 1)θ1

(2.8.2)

2.9. Example 2. Let G = SO(5). Then Ǧ is Sp(2,C).

X = Zε1 + Zε2, R = {±2εi,±εi ± εj}
Y = Zε1 + Zε2, Ř = {±εi,±εi ± εj}.

(2.9.1)

Again let θ1 ←→ ε1 θ2 ←→ ε2

T1θ1 = θ2T1 + (q − 1)
θ1 − θ2

1− θ2θ−1
1

= θ2T1 + (q − 1)θ1.

The other relations are the same, except

T2θ2 = θ−1
2 T2 + (q − 1)

θ2 − θ−1
2

1− θ−2
2

= θ−1
2 T2 + (q − 1)θ2.

Even though sp(2) ' so(5), the algebras are not the same.

2.10. The Generic and Graded Hecke Algebras. The Hecke algebra
HI can be described as the specialization of a generic Hecke algebra. We
describe this generic algebra in terms of the root datum of the complex dual
group Ǧ, with maximal torus Ǎ and Borel subgroup B̌ containing Ǎ. Let z
be an indeterminate (which we will specialize to q1/2 to recover the Hecke
algebra H of the p–adic group). Let Π ⊂ R+ ⊂ R be the simple roots,
positive roots and roots corresponding to (B̌, Ǎ) and S be the simple root
reflections. Let Y = Hom(Gm, Ǎ) and X = Hom(Ǎ, Gm). Then the generic
Hecke algebra H(z) is an algebra over C[z, z−1] described in terms of the
root datum R = (X ,Y, R, Ř,Π). (This set is the dual data to the p–adic
group G in section 1.1.) The set of generators we will use is the one first
introduced by Bernstein. Write

A(z) := regular functions on C∗ × Ǎ. (2.10.1)

This can be viewed as the algebra generated by {θx}x∈X with coefficients in
C[z, z−1], Laurent polynomials in z. Then H(z) is generated (over C[z, z−1])
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by {Tw}w∈W and A(z) subject to the relations

TwTw′ =Tww′ (l(w) + l(w′) = l(ww′)),

T 2
s =(z2 − 1)Ts + z2,

θxTs =Tsθsx + (z2 − 1)
θx − θsx
1− θ−α

.

(2.10.2)

Specialized at z = q1/2, A(z) gives an algebra isomorphic to A in 2.6.
This realization is very convenient for detemining the center of H and thus
parametrizing infinitesimal characters of representations. Note that W acts
on A via the formula w · θx = θwx.

Theorem (Bernstein-Lusztig). The center of H(z) is given by the Weyl
group invariants in A(z).

In particular, infinitesimal characters are parametrized by W−orbits χ =
(q, t) ∈ C∗ × Ǎ. Such an infinitesimal character is called real if t has no
elliptic part.

The study is simplified by using the graded Hecke algebra introduced by
Lusztig in [L2]. Given an arbitrary infinitesimal character (q, t), decompose
t into its elliptic and hyperbolic part t = teth. In [L2] the graded algebra
Hte is introduced. This is done by considering the ideal H1 generated by
z − 1 and θx − θx(te). Then Hi is a filtration of ideals of H and one can
consider the graded algebra Hte . This algebra is generated by tw = Tw in
H/H1 and ωx = θx−θx(te) in H/H2 with coefficients in C[r] where r = z−1
in H/CH1.

Remark. In [L2] the grading is done at an element t such that te is central
or only fixed by the Weyl group. For the unitarity questions one needs to
also greade when te is not central. This is done in [BM2].

2.11. Example. Suppose we take the case of the example in 2.4. Then A
is generated by the character θ corresponding to the root. The last relation
in 2.10.2 is

θT = Tθ−1 + (z2 − 1)
θ − θ−1

1− θ−1
= Tθ−1 − (z2 − 1)(θ + 1). (2.11.1)

For example let us grade relation 2.11.1 at (1, 1). We rewrite

(θ − 1)T = T (θ−1 − 1) + ((z − 1)2 + 2(z − 1)))(θ − 1 + 2). (2.11.2)

Throwing away the terms in H2, we get ωt = −tω + 4r. Here we have used

θ−1 − 1 = −(θ − 1)
1

1− (1− θ)
= −(θ − 1)− (θ − 1)2 − . . . (2.11.3)

to get −ω in the formula.
If on the other hand we grade at (−1, 1), we find ωt = −tω because

θ + 1 ∈ H1 already. So in this case we get the group algebra of the affine
Weyl group. This gives a very different algebra from before; namely the
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group algebra of the affine Weyl group. It accounts for the reducibility of
a certain tempered induced module for SL(2), the ones where θ acted by
−q,−q−1.

Remark. If we think in terms of the algebraic groups involved, then the
dual group to SL(2) ∼= Sp(2) is Ǧ = PSL(2) ∼= SO(3). In the first case we

are grading at te = Id, in the second case at te =
[
i
0 −i

]
The te should be

thought of as elements in the diagonal torus. The second one is not central,
but is fixed by the Weyl group. �

In Example 2.5, A is generated by a θ such that θ2 is the character
corresponding to the root. The third relation in 2.10.2 is

θT = Tθ−1 + (z2 − 1)
θ − θ−1

1− θ−2
= Tθ−1 + (z2 − 1)θ. (2.11.4)

We summarize some properties when the grading is done at (1, 1). Let

J = {f ∈ A : f(1, 1) = 0}. (2.11.5)

This ideal satisfies HJ = JH, so we can introduce a filtration

H = H0 ⊃ · · · ⊃ Hi ⊃ Hi+1 ⊃ . . . , (2.11.6)

and form the graded object H. As a vector space it can be written as

H = C[r]W ⊗C A, (2.11.7)

where r ≡ z − 1(mod J ), and A is the symmetric algebra over ť = X ⊗Z C.
The generators satisfy the relations

twtw′ =tww′ ,

t2α =1,

tαω =sα(ω)ts + 2r < ω, α̌ >, (tα = tsα , ω ∈ ť).

(2.11.8)

Then W acts on A in the usual way and the center of H is AW . In par-
ticular, infinitesimal characters are parametrized by W–orbits of elements
χ = (r, s) ∈ C × ť. Such an infinitesimal character is called real if s is
hyperbolic.

We can specialize z to q1/2 in the generic algebra and r to r in the graded
Hecke algebra. We fix a choice of q which is not a root of unity (in fact a
power of a prime in the case of a p–adic group) and an r such that er = q.
The study of representations of H with infinitesimal character (q, t) having
elliptic part te, is reduced to the study of the representation theory of Hte

where r is specialized to r satisfying q = er. Furthermore Hq,te is Morita
equivalent to an H as above, which is the graded version of some related
Hecke algebra at (1, 1). The subject of [BM2] is to show that in fact all
questions of unitarity can be reduced to the case of a Hecke algebra ob-
tained by grading at te = 1. As a consequence, we only need to study the
representation theory and unitary spectrum of H, and at that we only need
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to consider real infinitesimal character (i.e. te = 1). The next theorem is a
summary of what we need from [L2]. More details and some facts that we
need from [BM2] are in 1.3.

Theorem ([L2]). There is a matching χ ←→ χ between real infinitesimal
characters χ of H and real infinitesimal characters χ of H so that if Hχ and
Hχ are the quotients by the corresponding ideals, then

Hχ ∼= Hχ.

2.12. The case of SL(2). We take up the case of H generated by ω and t
subject to the relations

tω = −ωt+ 1, t2 = 1. (2.12.1)

Denote by A := S[ω] the polynomial algebra generated by ω. To classify
irreducible modules we need to analyze

X(ν) := H⊗A Cν . (2.12.2)

This has a basis of vectors 1× 11ν , t⊗ 11ν . We would like a basis of (general-
ized) eigenvectors for ω. This can be achieved by using the general element
r′α := tαα− 1 which specializes to 2tω− 1 for SL(2). The following relations
hold in general [L2]:

ηr′α = r′αsα(η),

r′ir
′
j . . . r

′
ir
′
j︸ ︷︷ ︸

mij

= r′jr
′
i . . . r

′
jr
′
i︸ ︷︷ ︸

mij

,

r′α
2 = 1− α2.

(2.12.3)

For ν 6= 0 a basis of eigenvectors for A is then vν := 1 ⊗ 11ν , v−ν :=
(2νt−1)⊗11ν . Consider the case Reν > 0. Since the dual of X(ν) is X(−ν),
the case Reν < 0 is dual to this. The eigenvector 1 ⊗ 11ν generates X(ν).
Thus X(ν) has a unique irreducible quotient; there is a unique maximal
proper submodule namely the largest submodule that does not contain vν .
This module could be zero. We also have an intertwining operator A′s(ν) :
X(ν) −→ X(−ν) given by x ⊗ 11ν 7→ xr′s ⊗ 11−ν . To be an intertwining
operator means

π−ν(x)A′s(ν)v = A′s(ν)πν(x)v. (2.12.4)
The image of As(ν) is the unique irreducible quotient of X(ν). This is
because X(−ν) is dual to X(ν) so it has a unique irreducible submodule.
This submodule is characterized by the fact that it contains the eigenvector
of X(ν) with eigenvalue ν, (2νt − 1) ⊗ 11−ν . So the image of As(ν) is the
unique irreducible quotient of X(ν). Denote this module by L(ν).

This takes care of the cases when V has an eigenvector with eigenvalue ν
such that Reν > 0. If there is no such vector, there are two cases,

(1) V is a subquotient of an X(ν) with Reν = 0, but Imν 6= 0. This is
taken care of by the above discussion.

(2) V has only one weight with eigenvalue −ν > 0.
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(3) V has only generalized eigenvalues equal to 0.
In case (2), the only choice is that v−ν is a subrepresentation of X(ν) for
some ν > 0. But

t(2νt− 1)⊗ 11ν = (2ν − t)⊗ 11ν = c(2νt− 1)× 11ν (2.12.5)

which gives the equations −c = 2ν, −1 = 2cν which for ν > 0 has the only
solution c = −1, ν = 1/2. This module is called the Steinberg module.

In case (3) note that ωt⊗110 = (−tω+1)110 = 1⊗110, and ω⊗110 = 0. This
vector also generatesX(0). SoX(0) has a unique eigenvector with eigenvalue
0. Any nonzero submodule V ⊂ X(0) must contain an eigenvector, so it must
equal X(0).

The two modules X(0) and St (as well as all X(iν) with ν real are called
tempered. They are modules of the form V I for V which figure in the de-
composition of L2(G), so are always unitary.

The spherical vector is (1 + t) ⊗ 11ν . Its image under the intertwining
operator A′s(ν) is

(1 + t)(−2νt− 1)11−ν = (−2ν − 1)(1 + t)⊗ 11−ν . (2.12.6)

We normalize the intertwining operator to be multiplication on the right by

rα = (tαα− 1)(α− 1)−1. (2.12.7)

Applied to a principal series it is (−2ν − 1)−1A′s, and it is the identity on
the spherical vector (1 + t)⊗ 11ν . It satisfies

As(ν)2 = Id. (2.12.8)

To determine when L(ν) is unitary, we need to determine first when it is
hermitian. The hermitian dual of X(ν) is X(−ν). This is true in general,
the pairing is

< tx ⊗ 11ν , ty ⊗ 11−ν >= δy−1x,1. (2.12.9)
If Reν > 0 then Re(−ν) < 0, so Re(−sαν) > 0. So the irreducible quotients
are L(ν) and L(−sα(ν)). The only way L(ν) is hermitian is if the two
parameters are conjugate. It comes down to ν and −ν must be conjugate.
Thus either ν is real or it is imaginary. The imaginary case always gives
unitary irreducible modules X(ν). In the real case, we can define a hermitian
pairing on X(ν) by the formula

(a⊗ 11ν , b⊗ 11ν) =< a⊗ 11ν , As(b⊗ 11ν) > . (2.12.10)

The radical of this form is X ′(ν). We compute on the basis (1+ t)⊗11ν , (1−
t)⊗ 11ν . The matrix is [

1 0
0 1−2ν

1+2ν .

]
(2.12.11)

This is positive (semi)definite in the interval −1/2 ≤ ν ≤ 1/2.
We will describe the generalization of this result to the classical and ex-

ceptional split groups.
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2.13. The Langlands Classification. So for any element w ∈W we take
a reduced decomposition w = s1 . . . sk, and form r′w =

∏
r′i. Then w gives

rise to an intertwining operator

A′w : X(ν) −→ X(wν), x⊗ 11ν 7→ xr′w ⊗ 11wν . (2.13.1)

Theorem. Assume that 〈ν, α〉 ≥ 0 for all positive roots. Then X(ν) has a
unique irreducible quotient L(ν). This module is spherical and the image of
the intertwining operator A′w where w is the shortest Weyl group element
such that 〈wν, α〉 ≤ 0 for all positive roots α. Two modules L(ν) and L(ν ′)
are isomorphic if and only if there is w ∈W such that wν = ν ′.

Proof. Consider the case of 〈ν, α〉 > 0 for all roots. Then {vw(ν) := r′w⊗11ν}
forms a basis for X(ν). It is a basis of eigenvectors for A, each r′w ⊗ 11ν has
eigenvalue wν. These facts also imply that if a submodule W of X(ν) con-
tains an eigenvector with eigenvalue ν, then it is equal to X(ν) because
it contains all the basis vectors vw(ν). Thus X(ν) has a unique maximal
proper submodule X ′(ν) characterized by the property that it doesn’t con-
tain any eigenvector with eigenvalue ν. Consider now the operator Aw0 where
w0 is the long Weyl group element. The image is in the module X(w0ν)
which is dual to X(−w0ν). Since 〈−w0ν, α〉 > 0 for all roots, X(w0ν) has a
unique irreducible submodule generated by the eigenvector with eigenvalue
ν. Consider the intertwining operator Aw0(ν) : X(ν) −→ X(w0ν). Then
Aw0(x ⊗ 11ν) = πν(x)Aw0(1 ⊗ 11ν) = πν(x)r′w0

⊗ 11w0ν . So the image is the
unique irreducible module L(ν). It follows that the kernel of Aw0 is X ′(ν).
The fact that the module L(ν) is spherical follows from showing that∑

w

(tw)r′w0
⊗ 11w0ν 6= 0. (2.13.2)

In fact note that this is essentially the spherical function.

Now suppose ν is singular. Then there is a parabolic subgroup P = MN
with roots

∆(m, a) = {α ∈ ∆ : 〈α, ν〉 = 0}, ∆(n, a) = {α ∈ ∆ : 〈α, ν〉 > 0}.
(2.13.3)

Then H has HM corresponding to (X,RM , Y, ŘM ) as a subalgebra. Let
XM (ν) be the standard module for HM corresponding to ν. We can write
a = aM + zM where

zM = {x ∈ ǎ : α(x) = 0 for all α ∈ ∆(m, a), aM = span{α̌ : α ∈ ∆(m, a)}.
(2.13.4)

Let also m0 be the semisimple Lie algebra with root system RM . Then
HM = HM0 ⊗ S(zM ). The module XM (ν) decomposes as XM0(0) ⊗ Cν . In
fact XM0(0) is irreducible. Indeed it is enough to prove this for X(0). This
module has a basis tw ⊗ 110 which is a basis of generalized eigenvectors for
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A. In fact
ω :

⊕
`(w)=i

tw ⊗ 110 −→
⊕

`(w)≤i−1

tw ⊗ 110. (2.13.5)

For every w there is ω such that ωtw ⊗ 110 6= 0. So the only eigenvector is
1⊗ 110. Then any nonzero submodule X ′ ⊂ X(0) must contain 1⊗ 110. Since
this vector also generate X(0), the claim follows.

As before, if wM,0 is the shortest element mapping ν to an antidominant
element, then X(LM (0), ν) := H⊗HM LM (ν)⊗ Cν has a unique irreducible
subquotient L(ν) which is the image of the intertwining operator AwM,0 .

�

2.14. Kazhdan-Lusztig Classification. The classification of irreducible
representations is given by the work of Kazhdan-Lusztig for H and Lusztig
for H:

Theorem ([KL], [L4], [L5]). The irreducible representations of H are
parametrized by Ǧ conjugacy classes (s, e, ψ), where s ∈ ǧ is semisimple,
e ∈ ǧ is nilpotent such that [s, e] = re and ψ ∈ Â(s, e) is an irreducible
representation of the component group of the centralizer of s and e. The
characters ψ that appear are the same ones that occur in the Springer cor-
respondence.

2.15. Hermitian Modules. The ∗ operation also transfers to the graded
version. Here is a summary of what we need. We refer to §5 of [BM2] for
the details.

Let w0 ∈ W be the longest element, t0 be the corresponding element
in CW. Since ť = X ⊗Z C, it has a conjugation coming from the complex
conjugation on C. We denote it by . Let ι(ω) = (−1)degωω and ω̃ = w0ι(ω).

Theorem ( [BM2] ). Let ω ∈ A. Then

t∗w =tw−1 ,

ω∗ =t0 · ω̃ · t0.

In particular, if ω ∈ ť, then

ω∗ = −ω + 2r
∑
β∈R+

< ω, β̌ >tβ, (2.15.1)

where tβ ∈ C[W ] is the reflection about β.

The main result of [BM2] can be summarized as follows. Let (e,H, f)
be a Lie triple corresponding to e. Write t = t0tH , where t0 is an element
centralizing the triple and tH = exp(1/2 log qH). Let t0 = teth be the
decomposition of t0 into elliptic and hyperbolic parts. Denote by t := tet

−1
h .

An irreducible representation admits a hermitian form if and only if (t, e, ψ)
is conjugate to (t0tH , e, ψ). An infinitesimal character (or parameter) will
be called real if te = 1.
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Corollary. The classification of the unramified unitary dual of a split p−adic
group having infinitesimal character with a given elliptic part te reduces to
the classification of the unitary dual of the corresponding graded Hecke alge-
bra Hq,te. Furthermore, this is equivalent to the classification of the unitary
dual of an algebra H obtained from a Hecke algebra by grading at (er, 1).
In other words, it is sufficient to consider the case of parameters with real
infinitesimal character.

The relation between s in the theorem in 1.2 and the t in this corollary
is es = thtH .

2.16. Parameters for irreducible modules. We summarize some of the
basic results about modules of H related to theorem 2.14. We may as well
take r = 1.

Let (s, e, ψ) be a parameter as in theorem 2.14, and let {e, h, f} be a Lie
triple such that s = s0 + 1

2h with s0 in the centralizer of {e, h, f}. Denote by
O the Ǧ orbit of e. To each such parameter is associated a standard module
X(s,O) which decomposes into a direct sum of standard modules X(s,O, ψ)
where ψ ranges over the characters of A(s, e). Each X(s,O, ψ) has a unique
irreducible quotient L(s,O, ψ). Every irreducible module is isomorphic to
an L(s,O, ψ), and the factors of X(s,O, ψ) have parameters (s,O′, ψ′) such
that O ⊂ O′ and O 6= O′.

A parameter is called tempered if s0 = 0. In this case the moduleX(s,O, ψ)
is irreducible and corresponds to the Iwahori fixed vectors of an irreducible
tempered representation of the group. The parameter is called a Discrete
Series if in addition the orbit O of e does not meet any proper Levi com-
ponent of ǧ. Such modules correspond to the I−fixed vectors of a Discrete
Seriesof the p–adic group G. Now suppose that the pair (s, e) is contained

in a Levi component m̌. Then we can form XM (s,O) and XG(s,O). The
relation between them is

XG = IndH
HM [XM ] = H⊗HM XM . (2.16.1)

More generally, write A(s, e,M) and A(s, e,G) for the corresponding com-
ponent groups. Then

IndH
HM [XM (s, e, φ)] =

∑
[ψ|A(s,e,M) : φ]XG(s, e, ψ). (2.16.2)

In other words, A(s, e) plays the role of an R–group.

We can use s0 to construct the Levi component m̌. We then find a tem-
pered representation W equal to XM (h,O, ψ) tensored with a character ν
corresponding to s0. Then

XG(s,O, ψ) = IndH
HM [W ⊗ ν]. (2.16.3)

Thus we recover the usual Langlands classification. We remark that H is
defined in terms of a fixed system of positive roots. The data s, e can be
conjugated so that s0 = ν is dominant with respect to this system; we
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assume that this is the case. When we want to emphasize that we are using
the usual Langlands classification, the standard module will be denoted by
X(M,W, ν).

The W–structure of the standard modules is also known. Let Be be the
variety of Borel subgroups that contain e. Then H∗(Be) carries an action
of W called the Springer action. It is usually normalized so that for the
principal nilpotent, H∗(Be) is the trivial module. It commutes with the
action of the component group A(e). Let d(e) = dimBe. Then Hd(e)(Be)
decomposes according to characters of A(e). Each isotypic component is
irreducible as a W × A(e)–module and the ensuing φ ↔ σO,φ is called the
Springer correspondence.

Results of Borho–MacPherson imply that if [σ : H∗(Be)φ] 6= 0, then σ is
of the form σO′,φ′ where O′ contains O in its closure. O 6= O′ unless φ = φ′

as well and this representation occurs with multiplicity 1. We call σφ,O a
lowest K−type of H∗(Be)φ.

Proposition (Kazhdan-Lusztig). There is an isomorphism of W–modules

X(s, e) ∼= H∗(Be)⊗ sgn.

Then A(e) acts on the right hand side; the action of A(s, e) on the left
hand side is via the natural map A(s, e) → A(e). In particular we can
talk about lowest K−types for X(s, e, ψ). They occur with multiplicity 1
and, given our discussion above, L(s,O, ψ) is the unique subquotient which
contains the lowest K−types σφ,O ⊗ sgn for which the φ ∈ Â(e) contains
ψ ∈ Â(s, e) in its restriction. If s = h/2, then A(s, e) = A(e), and X(s, e, ψ)
has a unique lowest K−type namely σψ,O ⊗ sgn.

2.17. Example. Suppose Ǧ = Sp(2n,C). Then nilpotent orbits in ǧ are
parametrized by partitions of (x0, . . . , xk) of 2n (with xi ≤ xi+1) such that
every odd part occurs an even number of times. The centralizer of the
corresponding Lie triple is of the form∏

O(r2a)×
∏

Sp(s2b+1)

where r2a is the number of xi equal to 2a and s2b+1 is the number of xi equal
to 2b + 1. The component group is then

∏
Z2. The number of Z2’s equals

the number of (distinct) even parts occuring in the partition.
A nilpotent orbit meets a proper Levi component if and only if xi = xi+1

for some i. More precisely, if say xi = xi+1 = a, then the nilpotent or-
bit meets the maximal Levi component GL(a) × Sp(2n − 2a). In general
we will write M̌ = GL(a) × G(n − a) for such Levi components. The
intersection contains the nilpotent corresponding to the partition (a) ×
(x0, . . . , x̂i, x̂i+1, . . . , xk). Here (a) denotes the principal nilpotent in GL(a).
Thus we can write the nilpotent orbits corresponding to discrete series as

(2x0, . . . , 2xk) with xi < xi+1.
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The corresponding standard modules behave as described in 1.4. Not all
characters of the component group give rise to standard modules, (or equiv-
alently occur in the Springer correspondence). The ones that do, and the
corresponding lowest K−types, are described in [L3].
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