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ABSTRACT 
Gradient-based optical flow estimation methods such as Lucas- 
Kanade method work well for scenes with small dlsplacements 
but fail when objects move with large displacements. Hierarchical 
matching-based methods do not suffer from large displacements 
but are less accurate. By utilizing the high speed imaging capa- 
bility of CMOS image sensors, the frame rate can be increased to 
obtain more accurate optical flow with wide range of scene ve- 
locities in real time. Further, by integrating the memory and pro- 
cessing with the sensor on the same chip, optical flow estimation 
using high frame rate sequences can be performed without unduly 
increasing the off-chip &ta rate. The paper describes a method for 
obtaining high accuracy optical flow at a standard frame rate using 
high frame rate sequences. The Lucas-Kanade method is used to 
obtain optical flow estimates at h g h  frame rate, whch are then ac- 
cumulated and refined to obtain optical flow estimates at a standard 
frame rate. The method is tested on video sequences synthetically 
generated by perspective warping. Results demonstrate significant 
improvements in optical flow estimation accuracy with moderate 
memory and computational power requirements. 

1. INTRODUCTION 

A key problem in the processing of video sequences is the mea- 
surement of optical flow. Once estimated, optical flow can be used 
in performing a wide variety of tasks ranging from video compres- 
sion to 3D surface structure estimation and active exploration. Op- 
tical flow estimation based on standard frame rate video sequences 
has been extensively researched [l, 21. The developed methods 
can be classiEed into several categories including gradient-based, 
region-based matching, energy-based, Bayesian, and phase-based 
methods. These methods require storing many frames and per- 
forming large numbers of operations per pixel to acheve accept- 
able estimation accuracy. Moreover, in certain applications more 
accurate and dense velocity measurements of optical flow than can 
be achieved by these methods are needed. 

Recent advances in CMOS image sensor technology enable 
high speed digital image capture up to several thousand frames 
per second 13, 41. This high frame rate imaging capability en- 
ables more efficient implementations of existing applications such 
as motion estimation and of new applications such as multiple cap- 
ture for enhancing dynamic range [5,6,7]. It would be too costly, 
if not infeasible, however, to operate a digital camera system at a 
high frame rate due to the high inter-chip data rate requirements 
between the sensor, the memory and the processing chips. Inte- 
grating the memory and processing with the sensor on the same 
chip solves the high data rate problem and provides an econom- 
ical way to exploit the high speed capability of a CMOS image 
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sensor [8]. The basic idea is to (i) operate the sensor at a much 
higher frame rate than the standard frame rate, (ii) exploit the high 
on-chp bandwidth between the sensor, the memory and the pro- 
cessors to process the h g h  frame rate data, and (iii) only output 
the images with any application specific data at the standard frame 
rate [S, 81. 

Handoko et al. applied this idea to motion vector estimation 
that is commonly used in video compression standards such as M- 
PEG [SI. Their paper proposed an iterative block matching algo- 
rithm utilizing h g h  frame rate sequence to generate motion vec- 
tors at 30 frames/s. The main focus was to reduce computational 
complexity and hence reduce power consumption. The reduction 
in computational complexity was achieved by utilizing the small- 
er motion vectors that can be obtained from high frame rate se- 
quences to effectively shnnk the search area. 

In this paper, we apply the same idea to optical flow estima- 
tion, but with the goal of improving accuracy instead of merely 
reducing computational complexity. High accuracy optical flow is 
needed for a wide variety of video applications such as structure 
from motion, superresolution, motion-based segmentation and im- 
age registration. We describe a method for obtaining h g h  accu- 
racy optical flow at a standard frame rate using a high frame rate 
sequence. Gradient-based optical flow methods such as Lucas- 
Kanade’s [l, 91 achieve high accuracy for scenes with small dis- 
placements (< 1 - 2 pixels/frame) but fail when the msplace- 
ments are large. Hierarchlcal matching-based methods [ 1, 10, 111 
can handle large displacements but are not as accurate. Our method 
acheves high accuracy for scenes that have large displacements 
withmodest storage and computational complexity, especially when 
implemented in a single chp  digital imaging system 181. 

The rest of the paper is organized as follows. In the following 
section we present our optical flow estimation method. In Sec- 
tion 3 we describe the image sensor model used in the generation 
of the synthetic sequences. We use these sequences to test our op- 
tical flow estimation method. The simulation results demonstrate 
the significant accuracy improvements that can be attained using 
our method with high frame rate video sequences. 

2. OPTICAL FLOW ESTIMATION 

In thx section we describe our optical flow estimation method 
which uses h g h  frame rate sequences. It is based on the well 
known Lucas-Kanade’s gradient-based method, which is among 
the most accurate and computationally efficient methods for opti- 
cal flow estimation [l, 91. The Lucas-Kanade method is particu- 
larly attractive when applied to high frame rate sequences for the 
following reasons. 
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The assumption of brightness constancy, which states that 
the rate of change in intensity I along the motion trajectory 
is zero, Le., 

becomes more valid as frame rate increases. 
Motion (temporal) aliasing, which adversely affects optical 
flow estimation, also becomes less significant as frame rate 
increases [12,13]. 

Temporal derivatives are better estimated [12,13]. 
Smaller kernel sizes for smoothing and computing gradi- 
ents can be usecl, which lowers the memory and computa- 
tional requirements. 

The block diagmt of Lucas-Kanade optical flow estimation 
method is shown in Fip,ure 1. Each frame is first smoothed using a 
spatio-temporal filter to diminish aliasing and systematic error in 
the gradient estimates. The gradients I,, Iy , and It are typically 
computed using a 5-tap filter. The velocity vector is then computed 
for each pixel by solving the 2 x 2 linear equation 

Here w(z,  y) is a window function that assigns higher weight to 
the center of neighborhood and the sums are typically over 5 x 5 
pixels. 

Fig. 1. The block diagram of Lucas-Kanade method. 
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Fig. 2. The block diagram of the proposed method. 

The block diagram of our proposed method is shown in Fig- 
ure 2. We first obtain high accuracy optical flow estimates between 
two consecutive high speed frames (inkmediate frames) using the 
Lucas-Kanade method. We then use the estimates to construct the 
h l  estimate of the optical flow between two consecutive standard 
frame rate images (output frames). We tried three different meth- 
ods for constructing the standard frame rate optical flow estimates. 

The first was to accumulate along motion trajectories. Although 
this method performed better than optical flow estimation using a 
standard frame rate sequence, it suffered from emor accumulation. 
The second method we tried was to make a simple prediction of 
optical flow by scaling the optical flow obtained in the latest iter- 
ation, then warp accordingly and refine. The performance of this 
method, however, was too sensitive to the initial estimates. The 
third method, which we shall describe in this paper, combines e l e  
ments from the first two methods and achieves the highest accwa- 
CY. 

The detailed description of ow algorithm is as follows. We 
assume a high frame rate sequence, whose rate is OV times the 
standard frame rate (OV is the oversampling ratio), and deline 
F;,j to be the estimated optical flow (displacement) from frame i 
toframej. 

warp I 

Fig. 3. Our algorithm. 

Fori = 0, .  . . ,OV - 1: 

1. Find F;,;+l, the displacement from frame i to frame a + 1, 

2. Add the displacement F;,;+l to Fo,, along the motion tra- 

using the Lucas-Kanade method. 

jectory to obtain Fo,;+I. 

placement between frame i + 
warping frame 0 according to Fo,;+l. 

4. Set Fo,;+I = FO,;+I + AFo,i+i. 

3. Using the Lucas-Kanade method, find AFo,;+l, the dis- 
and the frame obtained by 

FO,OV i s  the final estimate of the optical flow at standard frame 
rate. Note that iterative method was chosen to keep the storage 
requirements minimal and constant independent of the frame rate. 
The warp and refine step prevents error accumulation. In the actual 
implementation, the gradients were warped instead of the frame 
itself to reduce computational complexity. 

Note here that the maximum value of optical flow estimates 
can be used to change the frame rate adaptively. If the maximum 
displacement is high, we can sample the scene at a higher frame 
rate to obtain smaller displacements between intermediate frames. 
On the other hand, if the maximum displacement is low, we can 
sample at a lower frame rate to save power and computations. This 
feedback loop can be used to ensure good quality of optical flow 
estimation at low power and computational complexity. 
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3. SIMULATION AND RESULTS 

In this section we describe the simulations we performed to test our 
optical flow estimation method. Instead of using natural video se- 
quences, we synthetically generated video sequences using image 
warping. Using synthetically generated sequences, the amount of 
displacement between consecutive frames can be controlled, and 
the true optical flow can be easily calculated from the warping pa- 
rameters. 

In the following subsection we describe the process of gen- 
erating the synthetic sequences. It is not customary to consider 
the motion blur and noise present in natural video sequences in 
the generation of synthetic video sequences. Since these effects, 
however, can vary significantly with frame rate, and thus affect the 
p e r f o m c e  of optical flow estimation, we use the realistic image 
sensor model, described in the next subsection, to generate these 
sequences. In Subsection 3.2, we present the simulation results, 
and in Subsection 3.3, we discuss the memory and computation- 
al requirements of our method. We demonstrate the feasibility of 
performing our method in a single chip digital imaging system. 

3.1. Synthetic Sequence Generation 

The image sensor used in a digital camera comprises a 2-D may 
of pixels. During capture, each pixel converts incident photon flux 
into photocurrent. Since the photocurrent density j(x, y, t )  Ncm2 
is too small to measure directly, it is spatially and temporally in- 
tegrated onto a capacitor in each pixel and the charge Q(m, n) is 
read out at the end of exposure time T .  Ignoring dark current, the 
output charge from a pixel can be expressed as 

j (x ,  y, t)dxdydt + N ( m ,  n), 

(1) 

where 20 and yo are the pixel dimensions, X and Y are the pho- 
todiode dimensions, (m, n) is the pixel index, and N(m, n) is 
the noise charge. The noise is the sum of two independent com- 
ponents, shot noise and readout noise. The spatial and temporal 
integration results in low pass filtering that can cause motion blur. 
Note that thepixel intensity I(m, n) commonly usedinimage pro- 
cessing literatureis directly proportional to the charge Q(m, n). 

The sensor model described above is used to generate realistic 
video sequences. The steps of generating a synthetic sequence are 
as follows. 

1. Warp a highresolution (1312 x 2000) image using perspec- 
tive warping to create a high resolution sequence. 

2. Spatially and temporally integrate (according to Equation 
(1)) and subsample the high resolution sequence to obtain 
a low resolution sequence. In our example, we subsampled 
by factors of 4 x 4 spatially and 10 temporally. 

3. Add readout noise and shot noise according to the model. 

4. Quantize the sequence. 

High frame rate sequences have less motion blur but suffer 
from lower SNR, which adversely affect the accuracy of optical 
flow estimation. Sequences with different warping parameters and 
frame rates were generated. One frame of a test sequence with the 
true optical flow is shown in Figure 4. 

(a) (b) 

Fig. 4. (a) One frame of a test sequence and (b) true optical flow. 

3.2. Simulation Results 

Three different scenes derived from a natural image (see Figure 4) 
were used to generate the synthetic sequences. For each scene, t- 
wo sequences, (A) simulating a standard frame rate (30 frames/s) 
sequence and (B) simulating a 120 framesls (i.e., 01f = 4) se- 
quence were generated as described in the previous subsection. 
The maximum displacements were between 3 and 4 pixelslframe 
at 30 framesls. We performed optical flow estimation on the (A) 
sequences using the standard Lucas-Kanade method as implement- 
ed by Barron et al. [ 11 and on the (B) sequences using our method. 
Both methods generate optical Bow estimates at a standard frame 
rate for each scene. Note that the standard Lucas-Kanade method 
was implemented using 5-tap temporal filters for smoothing and 
estimating temporal gradients versus 2-tap temporal Elters for im- 
plementing our method. The resulting average angular errors b e  
tween the true and the estimated optical flows are given in Table 1. 
As for the measure of accuracy, angular error was reported instead 
of magnitude error because the average of the magnitude error was 
found to be dominated by errors at areas with large displacements. 
The densities of all estimated optical flows are close to 50%. 

Lucas-Kanade method(A) Our method(B) 
Angular error Density Angular error Density 

3.43" 55.7% 

Scene 

53.0% 2.91" 
4.56" 53.5% 2.67" 

Table 1. Average angular error and density using Lucas-Kanade 
method with (A) sequences vs. our method with (B) sequences. 

The results demonstrate the hgher accuracy that can be achiev- 
ed using our method in conjunction with the high frame rate se- 
quence. The difference in accuracy would be even greater for 
scenes that do not satisfy the brightness constancy assumption (e.g., 
a scene where an object passes through a shade created by anoth- 
er object). Note that the displacements were kept relatively small 
to make comparison between the two methods more fair. As dis- 
placements increase, the accuracy of the standard Lucas-Kanade 
method deteriorates rapidly and hierarchical methods should be 
used in the comparison instead. 

To investigate the accuracy gain of our algorithm for large dis- 
placements (at 30 frameds), we applied the Lucas-Kanade method, 
our method with OV = 10, and the hierarchical matching-based 
method by Anandan [ 1 13 as implemented by Barron [ 11 to a syn- 
thetic sequence. The maximum displacement was 10 pixelslframe 
at 30 framesls. The average angular errors of the estimated optical 
flows are given in Table 2. 
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4. ACKNOWLEDGMENT 

Anandan’s method I 100% 
Our method (01f = 10) I 50.84% 

Table 2. Average angular error and density using Lucas-Kanade, 
Anandan’s and our method. 

We also investigated the effect of varying OV on accuracy. 
Figure 5 plots the average imgular error of the optical flow using 
our method for OV betwejm 1 and 14. The synthetic sequence 
used had a uniform displacement of 5 pixels/frame at OV = 1. 
As OV was increased, motion aliasing and the error due to tempo- 
ral gradient estimation decreased, which lead to hgher accuracy. 
The accuracy gain resulting from increasing OV, however, levels 
off as OV is further increased. This was caused by the decrease in 
sensor SNR due to the declease in exposure time and the leveling 
off of the reduction in motion aliasing. For thls example sequence, 
the minimum error is achieved at OV = 6, where displacements 
between consecutive high speed frames are approximately 1 pix- 
euframe. 
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Fig. 5. Average angular error vs. oversampling factor(0V). 

3.3. Hardware Complexity 

The memory and computational complexity of our optical flow es- 
timation method are modeaate. Since the algorithm is iterative, its 
memory requirement is constant, independent of frame rate. Al- 
so, since it uses 2-tap temporal filter for smoothing and estimating 
temporal gradients, its memory requirement is less than that of the 
Lucas-Kanade method which typically uses a 5-tap temporal filter. 
Assuming an m x n image, our method requires approximately 
19OmnOV operations per frame and 12mn bytes of frame mem- 
ory. By comparison the slandard Lucas-Kanade method as imple- 
mented by Barron et al. rcquires 105mn operations per frame and 
16mn bytes of frame memory. As described in [8], our method 
has the potential of being implemented in a single chip CMOS dig- 
ital imaging system comprising image sensor, memory, and pro- 
cessing elements. 

The work is supported under Programmable Digital Camera Pro- 
gram by Agilent, Canon, HP, Interval Research and Kodak. The 
authors wish to thank David Fleet, John Apostolopoulos, Ting 
Chen, Khaled Salama and Xinqiao Liu for helpful dmussions and 
John Barron et al. for standard optical flow estimation codes. 
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