PLA-based FPGA Area versus Cell Granularity

Jack 1. Kouloheris*

Abbas El Gamal*

Dept. of Electrical Engineering
Stanford University
Stanford, Ca. 94305-4055

(415) 723-4769
FAX: (415) 723-8473

Abstract

The tradeoff between the area of a PLA-based FPGA
and its cell granularity is experimentally investigated.
We show that the total FPGA area is smallest for a
cell with 8-10 inputs, 3—4 outputs, and 12-13 prod-
uct terms, a larger granularity than the minimum area
lookup table cell. The total area for the minimum area
PLA-based designs and lookup table designs are com-
parable when implemented in the same technology.

1 Introduction

Previous works[1, 2] have examined area tradeoffs in
multi-output lookup table cells and found that the 4-
input, l-output cell yields the smallest FPGA area of
any K-input, M-output lookup table cell for a wide
range of programming technologies and routing pitches.
For an FPGA with large interconnect delays, however,
a cell with more than 4 inputs may yield better per-
formance, since there will be fewer interconnections be-
tween the cells and fewer levels of logic[3]. A lookup ta-
ble with much more than 4 inputs will be prohibitively
large because of its exponential growth in size with the
number of inputs.

In [2] we examined the number of product terms used
per cell in an FPGA based on a multi-output lookup
table cell. We found that, on average, the functions
mapped into the lookup tables used considerably fewer
product terms than the lookup table capacity (see Fig-
ure 1). These results indicate that PLAs may be an
area-efficient alternative to lookup tables.

In this paper we investigate the best granularity for
a PLA cell (in terms of the number of inputs, K, out-
puts, M, and product terms, N). We then compare the
area of an FPGA based on the best PLA cell to one
based on the best lookup table cell. We show that the
“optimal” granularity for the PLA cell is larger than
for the lookup table cell, and that the total FPGA area

*Partially supported by DARPA contract J-FBI-89-101

0.8 . .
0.7¢
0.6
Bl
2 05 —— M =1 Output
ki -~ M =2 Outputs
=] \ --- M = 3 Qutputs
= 0Ak \ M = 4 Qutputs
& -
3
H 03-
02F
0.1+

I

Number Of Inputs, K

Figure 1: Cell Utilization versus K and M. The cell
utilization U, for a K-input, M-output lockup table cell
is defined as the ratio of the number of product terms
used per cell to the cell capacity, M - 2K-1,

for the two are comparable when implemented with the
same programming technology.

2 Multi-Output PLA Cells
2.1 FPGA Model

The FPGA model we assume comprises rows of iden-
tical K-input, M-output, N-product term basic cells
(denoted (K,M,N)) interspersed with horizontal rout-
ing channels. Each cell output is assumed to have an
optional D flip-flop in series with it (see Figure 2). We
assume the vertical wiring goes over the cell rows. This
FPGA model does not directly correspond to any com-
mercial FPGA, but rather tries to capture the essential
elements of a PLA-based design.

4.3.1

IEEE 1992 CUSTOM INTEGRATED CIRCUITS CONFERENCE

0-7803-0246-X/92 $3.00 © 1992 IEEE

K-input

M-output

N-pterm
PLA

o

Il

D
. Flip-Flop

Buffer

Figure 2: Basic Cell

2.2 Area Model

The PLA cell area model is based on measurements
of the layout of a static pseudo-NMOS PLA generated
by MPLA[4]. We assume that the elements used to
program the PLA are roughly square and have an area
Ape. Different programming technologies (e.g. fuses,
EPROM cells, etc.) are represented by varying A,.,
subject to a minimum size determined by the design
rules. The cell width (in lambda) of the layout is given
by

C = max(18, /A,) - K + max(10,/4,.) - M + 98,
and the cell height is given by
Cr = max(10,/4,.) - N + 136.
Thus the PLA cell area is given by
Ace1 = Cy - COn + Apized - M,

where Af;z0q 1s the area required for the output flip-
flops, buffers, and associated fixed internal connections.
The routing area per cell, A, yute, 18

Aroute - Cw A Rpa

where 7" is the number of horizontal wiring tracks in a
wiring channel, and R, 1s the routing pitch. Thus the
total area for a design of Ny, is simply

Atotal = (Acell + Aroute) ' Ncells~

2.3 Optimizing N

In addition to choosing K and M, we also choose N to
minimize the total cell area as follows. Let pg be the
probability mass function of the number of minimized
product terms per cell in each benchmark and N, ..
be the maximum number of product terms in any cell
in the benchmark. We assume that each lookup table
with less than N product terms fits into one PLA and
those with more than N product terms must be broken

x103%
55 T v T . . «,"

45k 1

Normalized Total Cell Area

Number Of Product Terms, N

Figure 3: A.ne vs. N for a specific benchmark and
(K,M)

up into several PLAs. For each benchmark and for each
value of K and M we want to choose N such that the
total cell area, A..;us(N), is minimized, where

Nmaz .
. J
Acells(N) = ; pB(])AceH : [ﬁ“ .
A plot of Acenns(N) for a typical benchmark is shown
in Figure 3.

2.4 Experimental Procedure

We use a set of 20 benchmarks chosen to represent a
variety of design types (e.g. random logic, ALU, ECC,
etc.) and sources (MCNC[5] and ISCAS benchmark
sets, and real FPGA designs) ranging in size from from
80 to almost 9000 2-input cells. Our experimental pro-
cedure is as follows:

For each benchmark
For K = 2 to 20
For M =1to4
1. Partition logic design into K-input
equations {Chortle-crf)[6]
2. Map equations into (K,M,N) cells (DDmap)?
3. Place and Route
4. Record number of cells and tracks
End
End
End

2.5 Areavs. K and M

Figure 4 plots Ayorar versus (K,M) as computed us-
ing the area model described in section 2.2, For each

1The DDmap algorithm is a modified version of the algorithm
presented in [7].

2In this figure we have plotted a subset of the benchmarks
that does not include the ECC benchmarks (C499 and C1908)

43.2

M% —— M= 1 Cutput —
| ---- M =2 Outputs J
1.2 ---- M = 3 Outputs
fo M = 4 Outputs

Normalized Total Area

Number Of Inputs, K

Figure 4: Total Area vs. K and M (The error bars
represent a 95% confidence interval of the mean over
all benchmarks)

(K,M) and each benchmark, the best N was chosen us-
ing the method described in 2.3. For this figure we
used a value of 200A2 for A,.[9], a value of 13100A” for
Atizeq and an R, of 154, which roughly corresponds to
an EPROM based programming technology. Aysrar is
smallest for a PLA with 810 inputs, 3-4 outputs, and
12-13 product terms. One output cells are the small-
est from K=2 to K=4, two output cells from K=4 to
K=7, and three output cells beyond K=7. For K>4,
the differences between 2, 3, and 4 output cells are not
statistically significant. Varying A,. over a wide range
(20022 —2000A%) does not significantly change the best
(K,M,N).

2.6 Comparison with Lookup Tables

To compare the relative area efficiency of the lookup
table cell and the PLA cell, we compare the smallest
lookup table implementation, (4,1), with the smallest
PLA implementation, (10,3,12). For a fair compar-
ison, we consider both implementations in the same
programming technology, the EPROM cell. We find
that Aipiqr for the PLA cell implementations ranges
from 80% to 300% of the lookup table based imple-
mentations. The worst results are obtained with the
ECC benchmarks. Exclusive of these two benchmarks,
the PLA implementations range from 80% to 130% of
Atorar for the lookup table implementations, and on
the average are about the same size. A disadvantage
of these PLA-based implementations (as compared to
the lookup tables) is that they dissipate static power.

as they distort the trends followed by most of the benchmarks.
To handle these sorts of designs well, it would be useful to add
XOR gates external to the PLA as done in [10, 11].

On the other hand, the large grained PLA implemen-
tations use 25% fewer wiring tracks and 40% fewer
levels of logic on average, which would lead to better
performance[3].

The PLAs are still relatively sparse, however, and
could be improved over the simple-minded model con-
sidered here. We collected a number of statistics on
the PLAs and found that on average only about half of
the inputs are involved in any one product term (Fig-
ure 5). This suggests that a fixed product term folding
could be used to reduce the size of the PLA. We also
found that in the multi-output PLAs, only about 10%
of the product terms were shared between outputs (Fig-
ure 6). This suggests that fixing the OR-plane (as in
PALs) would further reduce the PLA size. On average,
less than half of the input variables occur in both true
and complement form, which suggests that some of the
input inverters could be deleted (Figure 7). Using some
or all of these methods would reduce the area for the
PLAs to less than that of the lookup tables.

3 Conclusions

We examined the product term utilization of each cell
in an FPGA based on (K,M) lookup tables, and found it
to be relatively low. This suggested that a PLA might
be a reasonable choice for a basic cell, especially for
larger granularities. For the PLAs, a cell with 8-10 in-
puts and 3—-4 outputs, and 12-13 product terms yields
the smallest total area. When implemented in the same
technology as the lookup tables the PLA implementa-
tions are about the same size as lookup table implemen-
tations, but hold the potential for greater performance
because of the larger granularity. Benchmark statistics
point the way to reducing the size of the PLAs through
folding and other techniques. Future work will involve
testing the effectiveness of these techniques as well as
investigating other types of cells, such as logic function
based cells (e.g. multiplexers, AND-OR gates, etc.).

4 Acknowledgements

We would like to thank Bob Francis for supplying us
with the Chortle-CRF[6] technology mapping program.
Hubert Hsieh and Harry Hsich wrote an early version of
the DDmap program as a class project under our direc-
tion. We would also like to thank the technical staff of
Altera and Xilinx for several helpful discussions, Dana
How for suggestions on improving the presentation, and
Mentor Graphics for the use of their GDT software.

43.3

Inputs/Product Term

Figure 5: Inputs/Product Term vs. K and M

Number of Outputs/Prerm

Awverage Number of Binate Inputs

35F

2.5F

081 -=-~ M= 2 Outputs

0.6}

M = 4 Outputs

- M=3 Outputs
2 ---- M =2 Outputs
[2 —- M=1Output
15/
1 . .
2 3 4 s 6 7 8 9 10

Number Of Inputs, K

-—— M=1Qutput

-- M= 3 Outputs
- M= 4 Outputs

2 3 4 5 6 7 8 9 10

Number Of Inputs, K

Figure 6: Outputs/Pterm vs. K and M

M = 4 Outputs
- M= 3 Ouputs
--- M =2 Quiputs
25} —— M=1 Ourput

Number Of Irputs, K

Figure 7: Binate Inputs vs. K and M

References

(1

43.4

Jonathan Rose et al., “Architecture of Field Pro-
grammable Gate Arrays: The Effect of Logic Block
Functionality on Area Efficiency,” IFEE Journal
of Solid State Circuits, Vol. 25, No. 5, October
1990, pp. 1217-1225.

Jack L. Kouloheris and Abbas El Gamal, “FPGA
Area vs. Cell Granularity — Lookup Tables and
PLA Cells,” FPGA ’92 Workshop Notes.

Jack L. Kouloheris and Abbas El Gamal, “FPGA
Performance vs. Cell Granularity,” Proceedings of
the 1991 Custom Integrated Circuits Conference,
pp. 6.2.1-4.

Walter S. Scott et al., editors, “1986 VLSI
Tools: Still More Works by the Original Artists,”
University of California at Berkeley Report No.
UCB/CSD 86/272, December 1985.

R. Lisanke, “Logic Synthesis and Optimization
Benchmarks, User Guide, Version 2.0,” Microelec-
tronics Center of North Carolina, 1988.

R. J. Francis, Jonathan Rose, Zvonko Vranesic,
“Chortle-crf: Fast Technology Mapping for
Lookup Table-Based FPGAs,” Proceedings of the
28th ACM/IEEE Design Automation Conference,
June 1991, pp. 227-233.

D. L. Dietmeyer and M. H. Doshi, “Automated
PLA Synthesis of the Combinational Logic of a
DDL Description,” Design Automation and Fault
Tolerant Computing, Vol 111, No. 3/4, 1980, pp.
241-257.

W. Carter et al., “A User Programmable Reconfig-
urable Gate Array,” Proceedings of the 1986 Cus-
tom Integrated Circuits Conference, pp. 233-235.

R. Hartmann, private communication.

S. C. Wong et al., “A 5000-gate CMOS EPLD with
multiple logic and interconnect arrays,” Proceed-
ings of the 1989 Custom Integrated Circuits Con-
ference, pp. 5.8.1-4.

Cecil H. Kaplinsky, “Programmable Logic De-
vice,” U.S. Patent 4,847,612, July 11, 1989.

