FPGA Performance versus Cell Granularity

Jack L. Kouloheris*

Abbas El Gamalt

Dept. of Electrical Engineering
Stanford University
Stanford, Ca. 94305-4055

(415) 723-3473
FAX: (415) 723-8473

Abstract

An experimental approach is used to investigate the re-
lationship between the performance of an FPGA and
its basic cell granularity. Over a large set of design
examples it is found that a 4 or 5 input cell achieves
minimum average critical path delay for a wide range of
programmable switch time constant, 7,. As expected,
the “optimal” cell granularity is found to gradually in-
crease as T, increases.

Introduction

A crucial choice in the design of FPGAs [3, 4, 5, 6] is
the type and granularity of the basic cell. Employing a
large basic cell would require less routing resource and
result in less overall routing delay than for a smaller
cell. On the other hand, a large basic cell would be
slower and less utilized than a smaller one. It is, there-
fore, plausible that an “optimal” granularity may in-
deed exist. Rose et al. [1] used an experimental ap-
proach to examine the effect of cell granularity on area.
In this paper we use a similar approach with a slightly
different model to show the effect of cell granularity on
performance.

FPGA Model

The FPGA model we assume in this paper is similar
to [6], comprising rows of identical K-input one-output
basic cells interspersed with segmented routing chan-
nels. In order to simplify the logic mapping problem
and to provide an easily parameterizable cell, we as-
sume as in [1] that each basic cell can implement an ar-
bitrary boolean function of K variables (e.g. a K-input
RAM or ROM). The basic cell is also assumed to have
a D flip-flop optionally in series with the cell output.

*Supported by an IBM Resident Study Fellowship and
DARPA contract J-FBI-89-101
tResearch supported by DARPA contract J-FBI-89-101

The cell inputs are connected to vertical wire segments
that extend over the routing channel (see Figure 1.) A
switch (such as an antifuse [6] or RAM-controlled pass
transistor [3]) is located at each intersection of the in-
put segments with the horizontal wire segments. The
cell outputs are handled in a similar fashion, but ex-
tend over multiple routing channels. We additionally
assume single segment routing [7] between cell outputs
and cell inputs. This implies that each cell output
passes through exactly two switches to reach any in-
put that is connected to it. We define the switch time
constant, 7, = R4y Csyw, where Ry, is the switch“on”
resistance, and Cj,, is the switch loading capacitance
(including parasitics) seen by a wire segment. Inter-
connect delays are computed using the method of Pen-
field et al. [8] (see Figure 2). Cell delay was modeled
as shown in the formula in Figure 2, and was deter-
mined via Spice simulations of an implementation in a
0.8 micron CMOS technology.

Experimental Procedure

We use a set of benchmark designs representing a mix of
design styles and sources, including the MCNC [9] and
ISCAS benchmark sets as well as real FPGA designs
(see Table 1). Our experimental procedure is as follows:

For each design in benchmark set
For K =2 to 10

1. Remap logic design onto K-input cells
(Chortle[2])

2. Run placement (GDT AutoCells)

3. Run global routing to determine
horizontal and vertical segment lengths
and channel densities

4. Calculate net delays

5. Back annotate netlist with delays and find
critical path delays (Ceres[10})

End
End

For each design and for each K we find the number of
cells, net delays, critical path delay, as well as horizontal

6.2.1

IEEE 1991 CUSTOM INTEGRATED CIRCUITS CONFERENCE

CH2994-2/91/0000/0020 $1.00 © 1991 IEEE

and vertical track requirement W and V. We use the
average of all the combinational path delays (input to
output or latch to latch) as a measure of the critical
path delay. The baseline implementation for comparing
the designs is the implementation for K=2. The delay
for each design is normalized by dividing the values for
K=3 ... 10 by the values for K=2. This allows us to
combine the data from the different benchmarks, and
show the relative change over the K=2 case.

Results

Our results are shown in Figures 3 through 6. The error
bars in all figures indicate the 95% confidence interval
of the mean over all benchmarks.

Figure 3 shows how the total number of basic cells
in a design decreases as the granularity of the basic cell
is increased. As K increases from 2 to 4, the number
of cells required to implement a design decreases sub-
stantially, requiring less than half as many cells as for
K=2. For K greater than about 5 or 6 there is little
Improvement in the number of cells required. We found
that the average number of cells in the critical path de-
creased in direct proportion to the decrease in the total
number of cells in the design.

The average net delay (Figure 4) is an increasing
function of K as the number of switches capacitively
loading each net is increasing.

Figure 5 shows how the critical path delay varies with
K and with r,. The top curve, 7, = 0, shows the criti-
cal path delay with zero interconnect delay. This is an
increasing function of K as the delay per cell is increas-
ing faster than the number of blocks in the critical path
is reduced. For non-zero values of 7, the critical path
delay first decreases, as the savings from having fewer
cells in the critical path exceeds the increase in cell and
net delay, then increases as the critical path ceases to
be significantly improved with increasing K.

Figure 6 plots the median best K vs r,. As expected,
technologies with small 7, favor small granularity while
technologies with larger 7, favor larger granularity (see
Fig. 6). The curve flattens out for large 7, as the
mapping program is not able to effectively use more
than 6 inputs per output for most designs. However,
a few designs are able to effectively utilize large cells,
resulting in a large variance in the best K for large 7,.

An analysis of variance (ANOVA) was performed on
the data for the curves in Figures 3-5, to see if the effect
due to varying the granularity was significant compared
to the variability between benchmarks. For all three
cases, the effects were significant with p < .0001. The
non-parametric Kruskal-Wallis test was used to test the
variation of the best K vs 7, shown in Figure 6, as
the distributions were highly non-normal. In this case
also , the effect was significant with p < 0.0001. No

significant differences in behavior were found for large
designs (> 1000 cells) vs. small designs.

Limitations of Study

The experiments in this study have been limited to
one routing scheme, one basic cell type, and one
mapping program in order to isolate the effect we
wanted to study. The density achieved by the simple
single-segment routing scheme used has been previously
shown [7] to differ by only a small constant factor from
unrestricted channel routing, hence we do not believe
it would change the basic tradeoff we observed. How-
ever other routing schemes, such as hierarchical rout-
ing, could change the results. The basic cell we used
has a delay that is linearly dependent on the number
of inputs; other cells with different delay dependencies
could produce different results. The logic mapping and
placement tools also exert an influence on the results.
The tools we used optimized for area. Performance-
directed CAD tools might perform differently. In all of
these cases the same experimental methodology could
still be used to examine the tradeoffs.

Conclusions

Our initial work indicates that, for the single-output
RAM-based FPGA, 4 to 5 inputs yield the best delay
for a range of programming technologies. Surprisingly,
[1] showed that this size cell was optimal for area as
well. Our experiments indicate that single output ba-
sic cells are increasingly underutilized as K increases
above about 5 or 6 (see Figure 3). This is because for
larger K the input to output ratio of the cell becomes
unbalanced. In arelated paper [12] we investigate other
cell types (e.g. multiple-output RAMs, PLAs) to de-
termine if area-efficient multi-output structures can be
found that improve basic cell utilization.

Acknowledgements

We would like to thank Jonathan Rose and Bob Francis
for supplying us with the Chortle [2] technology map-
ping program, Frederic Mailhot for enhancements to his
Ceres [10] and Mercury[11] tools, and Mentor Graph-
ics (Silicon Design Division) for the use of their GDT
software.

References

[1] Jonathan Rose et al, “Architecture of Field-
Programmable Gate Arrays: The Effect of Logic
Block Functionality on Area Efficiency,” IEEE
Journal of Solid-State Circuits, Vol. 25, No. 5, Oc-
tober 1990, pp. 1217-1225.

6.2.2

[2] R. J. Francis et al., “Chortle: A Technology Map-
ping Program for Lookup Table-Based Field Pro-
grammable Gate Arrays,” Proceedings of the 27th
Design Automation Conference, June 1990, pp.
613-619.

[3] W. Carter et al., “A User Programmable Reconfig-
urable Gate Array,” Proceedings of the 1986 Cus-
tom Integrated Circuits Conference, 1986, pp. 233—
235.

[4] H. Hsieh et al., “A Second Generation User Pro-
grammable Gate Array,” Proceedings of the 1987
Custom Integrated Circuits Conference, 1987, pp.
515-521.

[5] H. Hsieh et al., “A 9000-Gate User Programmable
Gate Array,” Proceedings of the 1988 Custom In-
tegrated Circuits Conference, 1988, pp. 15.3.1-7.

[6] Abbas El Gamal et al., “An Architecture for Elec-
trically Configurable Gate Arrays,” Proceedings of
the 1988 Custom Integrated Circuits Conference,
1988, pp. 15.4.1-4.

7 Abbas El Gamal, Jonathan Greene, and Vwani
Roychowdhury, “Segmented Channel Routing,”
Proceedings of the 27th Design Automation Con-
ference, June 1990, pp. 567-572.

[8] Jorge Rubinstein, Paul Penfield, Jr., and Mark
Horowitz, “Signal Delay in RC Tree Networks,”
IEEE Transactions on Computer Aided Design,
Vol. 2, No. 3, July 1983

[9] R. Lisanke , “Logic Synthesis and Optimization
Benchmarks, User Guide, Version 2.0,” Microelec-
tronics Center of North Carolina , 1988

[10] F. Mailhot and G. De Micheli, “Technology Map-
ping Using Boolean Matching and Don’t Care
Sets”, Proc. European Design Automation Conf.,
March 1990, pp. 212-216.

[11] G. De Micheli, D. Ku, F. Mailhot and T. Truong,
“The Olympus Synthesis System”, IEEE Design
& Test of Computers, Vol. 7 No. 5, October 1990,
pp. 37-53.

[12] “FPGA Cell Utilization vs. Granularity”, in prepa-
ration.

O Open Switch
@ Closed Swinh
V Tracks
\J
Tracks
Output
Cin = W * Cswitch + Cgate_input
Cvertical = height'W*Cswitch
Chorizontal = width*(2°K + V) Cswitch
Figure 1: FPGA Model
Physical Model
vertical segment
horizontal segment 2

programmed switch ——/

-‘——E horizontal segment 1
Driving cell |

Electrical Mode!
R: Ch1 Cint
i o
C Ch2 Cin2
T =
K-input Buffer interconnect
Look-up table
D(K) = 0.1 +0.165 (K-1) Rout = 0.1 Rsw Delay estimated by method
of Penfield & Rubenstein
(DAC 1981)

Figure 2: Delay Model

6.2.3

o9l
os}
o1}
=]
8 o6
-
T ost
4
E 04}
0.3+
0.2F
0.1+
0
2 3 4 5 6 7 8 9 10

Number of Inputs

Figure 3: Number of Basic Cells vs. Number of Inputs.

22

Normalized Net Delay
>

Number of Inputs

Figure 4: Average Net Delay vs. K.

Normatized Critical Path Delay

0.5t

2 3 4 5 6 7 8 9 10

Number of Inputs

Figure 5: Critical Path Delay vs. Number of Inputs vs.
7,. The top curve, 7, = 0, shows the critical path delay
with zero interconnect delay. The curves for 7, = 4ps.
and 7, = 16ps. correspond to programming technolo-
gies such as the antifuse and pass transistor, respec-
tively.

Best K for Performance
Y

0 10 20 30 40 50 60 70 80

Ts(ps.)

Figure 6: Best K vs. 7,. Low 7, architectures (close to
a mask-programmed gate array) favor small granular-
ity while for larger 7, larger granularity yields higher
performance. The curve flattens out and exhibits large
variance for large 7, as the mapping program is not
able to effectively use more than 6 inputs per output
for most designs. A few designs are able to effectively
utilize large cells.

Benchmark | 2-input Best K for 7,
name cells 0 41 16 | 40
C499 392 4 4 4 4
apex6 671 2 2 4 4
decbig 3247 2 4 5 8
rot 591 2 2 6 6
des 3218 2 4 4 7
seq 3338 3 5 51 10
wmm 586 2 4 4 8
alu 384 2 4 8 8
bmk3 82 2 4 8 8
hsim 440 2 4 4 4
C880 348 5 5 5 7
C1908 429 2 4 4 4
C6288 2400 2 2 4 4
C7552 3283 2 2 4 4
afmt 551 2 4 5 5
bam 612 2 2 8 8
graphic 8940 2 7 7 7
k2 2596 2 4 5 9
sampler 605 2 4 4 6
soar 510 2 3 4 4
Mode 2 4 4 4
Mean 2313715651157
Total [33,223

Table 1: Best K vs. 7, for each benchmark

6.2.4

