An FPGA Family Optimized for High Densities and Reduced Routing Delay

Mike Ahrens, Abbas El Gamal, Doug Galbraith, Jonathan Greene, Sinan Kaptanoglu
K.R. Dharmarajan, Lynn Hutchings, Sifuei Ku, Phil McGibney, John McGowan, Amer Samie
Kitty Shaw, Norma Stiawalt, Telle Whitney, Tom Wong, Wayne Wong, Bortay Wu

Actel Corporation
955 E. Arques Ave.
Sunnyvale, California 94086

ABSTRACT: The Act-2 family of CMOS Field-
Programmable Gate Arrays uses an electrically programmable
"antifuse” and new architectural and circuit features to obtain
higher logic densities while increasing speed and routability.
Improvements include: two new logic modules, novel 10 and
clock driver circuitry, and more flexible and faster routing
paths. New addressing circuitry shortens programming time
and speeds complete testing for shorts, opens and stuck-at
faults. Fully automatic placement and complete routing are
retained. Special software tools used for architectural
exploration and layout generation are noted.

1. Introduction.

Previous papers described an architecture for field-
programmable gate arrays (FPGAs) [1], and its
implementation in the Act-1 FPGA circuits [2]. These
demonstrate that user programmability can be obtained
without sacrificing the application flexibility of a channeled
gate array architecture.

This paper describes new architectural features, circuit
techniques and software that approximately double system
speeds, and are capable of extending the architecture to logic
densities of 8,000 gates in 1.2 micron technology and to
approximately 16,000 gates for 0.8 micron. (Note that these
gate counts are based on the capacity of an equivalent mask-
programmed gate array. Other measures would yield higher
values.) The circuits employ a one-time electrically
programmable "antifuse” offering small area and capacitance,
and low resistance once programmed [3].

As before, the architecture consists of rows of logic
modules separated by horizontal channels. This organization
is similar to that of a channeled gate array, except that
instead of an area for custom metallization the channels
contain wiring segments of various lengths which can be
connected by antifuses.

A key goal was to insure complete automatic placement
and routing with acceptable routing delays. This is facilitated
by the inherent flexibility of the channeled architecture and
the integration of large numbers of antifuses (700,000 or
more) on a single chip.

2. Logic Module

The choice of the logic module is critical to an FPGA
architecture. The module must be simple enough to permit a
compact and high-speed circuit layout. Yet it must also be
flexible enough to accommodate the most frequently used
logic functions (macros) with several choices of routing. Qur
approach is to evaluate many candidate modules against
macro usage statistics from actual applications. (The
philosophy is similar to that used to define the instruction set
of a RISC microprocessor. It has also recently been applied
to BiCMOS gate arrays [4].) To assist in this task, a program
has been developed that can enumerate all macros
accommodated by a given module in minutes [5].

The Act-1 family uses one general-purpose module,
which implements all combinational functions of 2 inputs,
many of 3 or 4 inputs, and others ranging up to 8 inputs [1].
Any sequential macro can be configured from one or more
modules using appropriate feedback routings.

At higher logic densities, the law of averages makes
designs begin to adhere more closely to typical macro usage
statistics (see, e.g., [4]). This motivates the use of a mix of
two new modules, each of which is most efficient for a
different set of macros. The "C-module” is a modified
version of the Act-1 module reoptimized to better
accommodate high-fan-in combinational macros, e.g. wider
AND gates, though with some loss in ability to accommodate
sequential functions. The S-module, on the other hand, is
optimized for configuring sequential macros. It can
accommodate a latch or flip-flop and/or many combinational
macros of one to seven inputs. Both transparent-high and
-low latches and rising- and falling-edge-triggered flip-flops
are possible.

The two-module scheme can reduce the number of
modules required for a block of logic by up to a factor of 3.
On average, logic density per module is increased by over
50%. Furthermore, because the density is increased, the
number of routed nets in a typical critical path is reduced.
This significantly improves speed. Fig. 1 shows how a
typical critical path in a state machine can be implemented to
take advantage of the wide fan-in of the C-module, and the
capabilities of the S-module. The delay paths include only
two routed nets. Performance data is summarized in Table 1.

Since the fan-in of each module is no larger than that of
a typical gate-array macro, the two-module scheme maintains

31.5.1

IEEE 1990 CUSTOM INTEGRATED CIRCUITS CONFERENCE

CH2860-5/90/0000-0166 © 1990 IEEE

the generality of a "fine-grained" architecture. Significantly
larger and more specialized modules would risk a sharp loss
of efficiency for applications that deviate from typical usage
statistics. Using a larger module, or more types of modules,
also adds constraints to the placement and routing problem,
making automatic solution more difficult and ultimately
increasing net delay.

3. Input/Output

Of particular importance to system performance is the
delay between the time a clock signal changes at an input
pad and when data appears on an output pad, referred to as
T (Memory bus interface applications are a good
example). The goal is to gain maximum speed without
sacrificing flexibility.

This is accomplished by providing a dedicated
transparent-high latch in each output path. If desired, the
dedicated latch can be combined with a transparent-low latch
configured from a logic module to form a rising edge-
triggercd flip-flop. (Note that the net connecting the two
latches is not in the critical path, so T,y_p is not increased
relative to having a dedicated flip-flop in each 10.) If flow-
through operation is desired, the output latch gate is simply
tied off to make the latch transparent.

To limit set-up time requirements, a dedicated
transparent-low latch is provided on each input path. The
polarities of the input and output latches are chosen so they
can be combined with each other, and possibly with other
internal latches or flip-flops, to form a path that is
functionally equivalent to a chain of rising-edge flip-flops.
(See Fig. 2.).

Chips with many simultaneously switching outputs
require some form of slew rate control to avoid noise
problems; several alternatives are possible. Sequencing the
operation of several parallel drivers limits the slope of the
current ramp when driving a passive load, but large di/dt can
occur in bus contention situations when the contending driver
suddenly shuts off. Feedback remedies this problem, but can
still allow large di/dt in asynchronous systems where the
logic state changes before a transition is complete. Instead a
current mirror circuit was used to limit the drive current.

Figure 1: part of a state machine implemented
in four C-modules and one S-module.

This results in lower di/dt noise in worst case situations, a
simple way to implement programmable slew rate, and 90%
power efficiency. The output buffer meets the 4mA HCT
buss driver specification for AC, and the 6mA specification
in steady state when the current limit shuts off. ESD
protection is >2000V.

Connections between the array and the IO pads are
made via special IO modules interspersed with the logic
modules. The IO module has inputs for data, slew control,
tristate, and separate gates for the input and output latches.
The gate inputs are not restricted to a dedicated clock signal,
but may each be driven from any pad or internal net.

4. Clock Distribution

Clock distribution is a problem in most large chips. In
an FPGA, where the load capacitance may be changed or
redistributed to suit each application, it is a greater challenge.

Special distribution networks are provided to deliver
high-fanout clock signals to the inputs of any logic or IO
module with minimal skew. Each network may be driven
directly from an input pad for high speed, or from user-
defined internal logic. High speed and low power are
obtained by a distributed driver with 90% power efficiency.

Skew is further reduced by automatic placement
algorithms that balance the loading on each branch of the
distribution tree.

All clock inputs may also be routed in the normal way
instead, allowing many local asynchronous clock signals if
desired.

parameter nsel
module input to module input (critical net): 7
setup+hold time (module used as flip-flop): <
input pad to IO module output: 5-
<

5

[¢]

IO module input to output pad:
clock distribution net skew:
in-circuit probe delay (module to pad): 15-

Lo

0

Table 1: Performance Estimates.
(1.2 micron CMOS, typical process, 5 volts, 25 C).

A. Desired behavior:
RFF RFF RFF
(=] []
B. Using latches and rising-edge-triggered flip-flops:

IMJ—IMI—IWI—WI—IMI

\ 10 module

\ logic modules O mq)d

C. Using latches and falling-edge-triggered ﬂip—ﬂops:

] [l [| [

TLL

3 L™] L™] E3
\ 0 modute ™\ logic modules

Legend:

RFF = rising-edge D flip-flop. Fr = falling-edge D flip-flop.
THL = transparent-high latch. TLL= transparent-low latch.

Figure 2: IO clocking--three equivalent implementations.

31.5.2

5. Routing Architecture

Each routing channel contains horizontal tracks divided
into segments of various lengths [1]. Surprisingly, the
restriction to segments of predefined length does not greatly
increase the number of tracks beyond what would be required
in the unrestricted case of mask-programmed channels [6].

In an efficient architecture it is inevitable that some
nets’ routings will be slower than others. The use of a low
resistance switch, such as the antifuse, helps to narrow the
resulting delay distribution. Further improvements have been
obtained by a reduction in the maximum number of antifuses
in the worst delay paths, as follows.

In the vertical direction, most nets are routed using a
short dedicated segment connected to the module’s output
driver through an "isolation" transistor (Fig. 3). (The
transistor isolates the module circuitry from programming
voltages present on the segments). In this case, there are only
two antifuses plus the isolation device in the path from the
buffer to each input (input A in the figure)." Though this
favorable routing can be assured for speed critical nets,
generally some 5-10% of the other nets must be placed with
an input in some channel beyond the span of the dedicated

uncommitted vertical segment input segment
B

horizontal segment in a f
channel above the span —

of the dedicated vertical
segment
/programmed anti-fuse
dedicated -
vertical input segment
driver - T | |.~ segment A

isolation
device

.

Figure 3: Act-1 Routing

uncommitted vertical segment inputBsegment
]
driver
\
A dedicated .
vertical mputAsegment
=
P .~ segment 1
isolation *
device

Figure 4: Act-2 Routing

segment (input B, Fig. 3). In the past, this required use of an
uncommitted vertical segment and 4 antifuses.

Alteration of the order in which antifuses are
programmed and a robust driver circuit permit limited
programming of antifuses on the node connecting the driver
to the isolation device, without risk of device breakdown [7].
This allows direct connection of the driver to any of several
uncommitted vertical segments, as shown in Fig. 4. Since the
additional antifuse presents little more resistance than that of
the bypassed isolation device, the delay of these nets is not
much greater than those using dedicated segments. Prediction
of delays prior to placement (when it is not yet known which
nets require uncommitted segments) becomes more accurate
as well.

Segmented channels represent an unusual layout
challenge. They are as dense and large as a memory array,
yet not repetitive. (A carefully chosen but irregular mix of
segment lengths is provided for good routability.) For this
reason, a layout generation program was developed that
assembles the channels and modules automatically from the
same database used by the routing software. This permits
rapid layout of a family of arrays of various sizes by simply
rerunning the generator with the appropriate input files.

6. Placement and Routing Software

Several new complexities are added to the placement
optimization problem. Macros must be placed in modules of
the appropriate type (C or S). Macros hooked to a clock
network should be distributed so as to balance the load on
the network’s branches. There should not be excess demand
for uncommitted vertical segments within the same column.
Speed critical nets should be routed using only short
horizontal segments and dedicated vertical segments.

Nevertheless, new algorithms make it possible to satisfy
all these constraints. Nearly all designs with module
utilization under 85%, and most designs with utilization
under 95%, route without manual intervention. Table 2
summarizes results for several applications. Time for
complete placement and routing is about 45-60 minutes on a
68030-based workstation.

7. Programming and Testing

The time required to program an antifuse falls
exponentially ~with the applied voltage. To keep
programming time under 5-10 minutes for a chip with nearly
a million antifuses, new circuit designs were developed that
eliminate the threshold voltage drop along the path from the
chip’s supply pad to the antifuse being programmed.

Changes have also been made in the addressing circuits.
The pass transistor scheme described in [1] is appropriate for
cases where there are many short segments in a track.

i Two adjacent horizontal segments in the same track may be con-
nected end-to-end by an antifuse to form a longer segment [1]. For
good routability it is necessary to route some small percentage of
the nets in this way [6], which adds an antifuse to the path. How-
ever, speed critical nets are routed without this additional antifuse.

31.5.3

However in larger chips the number of horizontal segments
per unit area decreases to the point that it is possible to
address each individual segment directly using only a small
proportion of area for the addressing circuitry [7]. The
reduction in the number of pass devices in the programming
path improves the programming current and lowers the
resistance of programmed antifuses, improving performance.
The pass transistor scheme is still used in the vertical
direction where tracks are highly segmented.

Direct addressing also reduces the time required to test
for breakdown of defective unselected antifuses during
programming. A complete test for unintended connections
between any two segments can be done after the conclusion
of programming (despite the fact that it is not possible to
uniquely address each individual antifuse once programming
commences). The number of vectors required is only
logarithmic in the number of nets. Previously, the test for
shorts required one or more vectors after each antifuse is
programmed.

Proper closure of a programmed antifuse is confirmed
by the passage of the programming current. Note that this
complete testing for shorts and opens, combined with
exhaustive testing of each logic and IO module prior to
programming, is more thorough than even a so-called "100%
stuck-at fault coverage" test done on a conventional gate
array.

Once programming and testing are complete, no increase
in resistance of a programmed antifuse or false programming
of an unprogrammed antifuse have been observed in 1.8
million accelerated burn-in device-hours [8].

8. Other Circuit Improvements

The Act-1 and Act-2 architectures allow user selection
of any internal logic signal for presentation at a "probe” pad.
This allows real-time external observation of each net as the
chip operates in a system (similar to an in-circuit emulator
for a microprocessor). Use of a sense amp circuit greatly
increases the speed of the in-circuit probe path.

Another challenge is to keep the gates of thousands of
isolation devices pumped to a high voltage during normal

operation. A rapid, high-power pump operates when the chip
turns on. It is then shut down when the desired voltage is
reached and a low-power sustainer pump takes over. The
required standby current is under 300uA.

Acknowledgements

The authors acknowledge contributions by: Rick
Wilkenson (layout); Sam Beal, Andy Haines, Dennis
McCarty, Bob Osann (applications); Gregg Bakker, Steve
Chiang, Shafy Eltoukhy, Esmat Hamdy, John McCollum,
(technology); Sanko Lan, Justin Reyneri (logic) and Jeff
Schlageter for his support. Sample designs were contributed
by Texas Instruments, Data General, many Actel customers,
and the EE 218 class at Stanford University.

References

[1] A. El Gamal, J. Greene, J. Reyneri, E. Rogoyski, K. El-
Ayat, and A. Mohsen. "An Architecture for Electrically
Configurable Gate Arrays." IEEE J. Solid-State Circuits,
Vol. 24, No. 2, April, 1989, pp. 394-398.

[2] K. El Ayat, et. al. "A CMOS Electrically Configurable
Gate Array." IEEE J. Solid-State Circuits, Vol. 24, No. 3,
June, 1989, pp. 752-762.

[3] E. Hamdy, et. al. "Dielectric Based Antifuse for Logic
and Memory ICs." IEDM Tech. Digest, San Francisco,
CA, 1988, pp. 786-789.

[4] A. El Gamal, J. Kouloheris, D. How, M. Morf.
"BiNMOS: A Basic Cell for BIiCMOS Sea-of-Gates.”
Proc. IEEE 1989 Custom Integrated Circuits Conf., page
8.3.1.

[51S. Lan, J. Reyneri, J. Greene, A. El Gamal. "An
Automatic Function Generator for Field Programmable
Gate Arrays.” In preparation.

(6] J. Greene, V. Roychowdhury, S. Kaptanoglu, A. El
Gamal. "Segmented Channel Routing." Submitted for
publication.

[7] A. El Gamal, J. Greene, J. Reyneri. “Programmable
Interconnect Architecture.” US Patent 4,873,549.

design Togic module pins per | [8] S. Chiang, R. Wang, J. Chen, K. Hayes,
utilization logic module J. McCollum, E. Hamdy, C. Hu
a) design done in an 8K gate 11 gate array 90.3 % 428 "Oxide-Nitri de:0xi&e ’ A-ntif se:
b) 32 bit datapath, 16x16 mult, state machine 99.4 4,30 e A Lo u
¢) 2901 ALU (x4) 98.1 4.57 Reliability." Int’l Reliability Physics
d) DMA controller (x3) 97.1 3.99 Symp., March 1990.
¢) asynchronous serial ECC 97.0 478
f) pipelined fixed point mult, div, sqrt 94.5 3.37
g) state mach, mult/add, datapath, counter 92.7 4.34
h) color crt controller (x3) 87.3 3.83
i) 32 bit datapath w/ sum, compare (x3) 86.8 5.25
3) 40 bit floating point add/sub 86.7 4.33
y 16 bit datapath, 16x16 mult, state machine 981 486
1) 2901 (x2) 93.2 4,68
m) DRAM, DMA &SCSI controllers, UART 92.6 473

Table 2: Place and Route Examples.

Examples routed in possible implementations of the architecture with 1232 (a-j) and
649 (k-m) logic modules. The notation "(xN)" means the block was replicated N

times.

31.5.4

