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Average and Randomized 
Communication 

Complexity 

Abstract -The communication complexity of a two-variable function 
f ( x ,  y )  is the number of information bits two communicators need to 
exchange to compute f when, initially, each knows only one of the 
variables. There are several communication-complexity measures corre- 
sponding to whether 1) the worst case or average number of bits is 
considered, 2)  computation errors are allowed or not, and 3) randomization 
is allowed or not. Tight bounds are provided for the typical behavior of all 
bounded-error communication-complexity measures of Boolean functions. 
Let 3 bethesetoffunctionsf: { 0 ; ~ ~ , n - l ) X { 0 ; ~ ~ , n - l } - t { O , l )  
that contain s ones (i.e., I{(x, v ) :  f(x, y)  =1}1 =s). It is shown that for 
every n I s I t i 2 / 2 ,  the communication-complexity measures fall into two 
classes: 

logpi cluss -the error-free worst case randomized complexity and, more 
importantly, the error-free worst case deterministic complexity of most 
functions in 3 are between log n - 4 and log n + 1 bits (this holds even 
f o r s  = n ) ;  
/og(s /n)  cluss-the c-error worst case randomized complexity and 
the c-error average randomized complexity of most functions in e 
are  between (1 - 2c)(log (s/ n )  - 2 log log ( s / n )  and (1 - 
2c)(log(s/n) + 5.3 loglog n) bits. More importantly, the error-free aver- 
age deterministic complexity of all functions in is less than 
log(s/n)+8.3loglogn bits. For most of these functions it is also 
t log(s/n) -2loglog(s/n) bits. 

The difference between the complexities of the log n class and the l o g ( s / n )  
class ranges from a constant (for s = n2/2) to exponential (for s -- n log n ) .  
In particular, since most functions have about n2/2 ones, all their com- 
plexity measures are around log n bits. 

I. INTRODUCTION 

OMMUNICATION complexity was first introduced C by Abelson [l] and Yao [2]. It is concerned with 
different aspects of the following problem: n is a positive 
integer, f is a binary function defined on (0, .  . -, n - 1 )  X 
(0; . -, n - l } ,  and c 2 0. Two communicators, P, having a 
random integer X E (0; .  ., n -1} and P, having a ran- 
dom integer Y E (0; . . , n - l}, use a predetermined pro- 
tocol to compute f( X ,  Y )  with probability of error I c. 
How many bits must they exchange on the average? at 
worst? 

The next two sections make these notions more precise: 
in Section I1 we formally define the deterministic model; 
in Section I11 we describe randomized protocols and com- 
pare them to deterministic ones. In Section IV we survey 

Manuscript received August 1, 1987; revised May 18, 1989. This work 
was partially presented at the IEEE Symposium on Information Theory, 
Ann Arbor, MI, 1986. 

A. Orlitsky is with AT&T Bell Laboratories, Room 2C-370, 600 Moun- 
tain Avenue, Murray Hill, NJ 07974. 

A. El Gama1 is with the Information Systems Laboratory, Stanford 
University, Stanford, CA 94305. 

IEEE Log Number 8932717. 

previous work and describe the results obtained in this 
paper. These results are proved in Section V. 

11. DETERMINISTIC PROTOCOLS 

Communication is performed over a binary channel that 
can carry only one bit at a time. Therefore, each communi- 
cator, in turn, transmits a (possible empty) sequence of 
bits that we call a string or a message. Since empty 
messages are allowed, we lose no generality by assuming 
that Px transmits the first message. Communication pro- 
ceeds according to a predetermined protocol that, at each 
time, specifies the message transmitted and, at the end of 
the communication, decides on the computed value that 
the communicators (P, and P,) assume is the correct value 
of the function. The protocol is deterministic if, whenever 
P, and P, have the same pair of random integers, they 
transmit the same sequence of messages and decide on the 
same computed value. 

With this communication model in mind, we formally 
define deterministic protocols. The definition is similar to 
that of [3] and [4]. It differs from that of [3] in that 1) it 
views the protocol as a codebook (an approach that facili- 
tates information-theoretic treatment), and 2) the com- 
puted value of the function does not have to be transmit- 
ted explicitly. An input is an ordered pair (x, y )  E 

(0, .  . . , n - l} x (0, .  . 1 ,  n - l }  thought of as a value assign- 
ment for X and Y. If b,,. . - ,  b, are strings, we let 
( b k ; .  ., 6,) or (b,):-k denote the (1  +1-  k)-element se- 
quence whose i th element is b, + I - A deterministic proto- 
col cp for ( O , ~ ~ ~ , n - l } ~ { O , ~ ~ ~ , n - l }  can therefore be 
defined as a mapping that associates with each input. 

1) a sequence ( b , ( x ,  Y ) >  b,(x,  y ) , .  * ,  &(,, ")(X, Y ) )  of 
transmitted messages, all the odd-indexed messages 
to be transmitted by P, and all the even-indexed 
messages by P,,; 
a computed value u+(x, y )  that P, and Py assume is 
equal to f( x, y ) .  

Although the number of messages, m ( x ,  y ) ,  is finite for all 
protocols of interest, we extend the definition of b , (x ,  y )  
indefinitely and let b , (x ,  y )  = 0, the empty string, for all 
i 2 m(  x, y ) .  This simplifies notation and shortens proofs. 

2) 

def 

Remarks: 
1) The messages depend, of course, on the protocol 

used, but to shorten notation we write b , ( x ,  y )  and m ( x ,  y )  
without the (sub/super) script cp. 

0018-9448/90/0100-0003$01.00 01990 IEEE 

- - - -  
1- 



4 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 36, NO. 1, JANUARY 1990 

2)  In general, each of P, and Py could decide on a 

that a given communicator (say, P,) knows f( X, Y )  for all 

ensuring that both P, .and PY know f( X,  Y )  for all inputs. 

tor know f( X ,  Y )  for all inputs trivializes the problem as 
decide that f ( x ,  y j  = and ‘Y that 

f ( X ,  Y )  =I.) 

and 
I different computed value. However, any protocol ensuring ( b , ( x ,  y ) ) T = ,  = ( b , ( x ’ ,  Y ) ) , ” = ~  implies that 

inputs can be augmented by one bit to yield a protocol u,(x, Y )  = U,&’, Y ) .  

Remarks: 
(Note that requiring merely that at least One communica- 1) Note that the first two properties must apply to all 

)s, even those larger than m ( x ,  y ) .  
’ ’ p~ can 2)  It can be shown that, although empty messages are 

allowed, the prefix-free-messages property does not in- 
Not every protocol can be carried Out in a distributed 

environment where, initially, p~ knows Only x, p~ Only 
crease the amount of communication required. Every pro- 
tocol containing empty messages can be trivially modified 

knows Y, and their only information about each other’s 
random variable derives from previously exchanged mes- 
sages. To enable communication in such an environment, we 
we restrict consideration to protocols .possessing the fol- 
lowing properties. tions. 

Separate- Transmissions Property 

All that a communicator knows prior to. transmitting a 
message is a random variable and previous transmissions. 
To guarantee that his message will not depend on the other 
communicator’s variable, we require that, for all x ,  x ’ ,  y ,  
y ’ :  
for odd i ,  

( b , ( x ,  y ) ) ; : :  = ( b , ( x ,  y’)) j : :  implies that 

to obtain a protocol that transmits the Same number of 
bits but does not contain any empty message. 

henceforth that all protoco~s possess these 
three properties. N~~ we turn to the complexity defini- 

Let l , ( x ,  y )  = I3~L~’.”)Ibj(x,  y ) l  denote the total number 
of bits transmitted according to the protocol @ when P, 
knows and p p  knows y .  The worst complexity of @ 

is defined as 

L, = max { I , ( ~ ,  y ) :  (x ,  y )  E (0 , .  . . , n - 1 >  

def 

4 . 

*I del 

( 0 ; .  ., n -I>}. 
The average complexity of @ is defined as 

c q x ?  Y ) .  
- del 1 L = -  , Y )  = b i b ,  Y ’ )  

I and for even i ,  n2  (.y. 1.) E (0;. . ,  n - 1 )  x{O;. ., n - 1 )  

( b , ( x ,  y)) , ) : :  = ( b , ( x ’ ,  y));.:: implies that If f is a function defined on (0; * ,  n - l} X (0; . . , 
n - l }  and + is aprotocol for { O ; . . , n - l } X { O ; . . , n -  
I}, we say that @ is error-free for f if u,(x, y )  =f(x ,  y )  
for all ( x ,  y ) ~  { 0 , - ~ ~ , n - l } ~ { O , - ~ - , n - l } .  The worst 
case error-free communication complexity of f is then 
defined as 

?,(f,O) = min { L4(x, y ) :  @ is an error-free 

b i ( x 7  y )  = b i ( x ’ ,  y )  
e 

Prefix-Free-Messages Property 

Let al,. . . , ak and PI,. . . , p, be bits. The string a1 . . . ak 
is a prefix of the string p1 . . . p, if k 5 I and ai = pi for 
i = 1 , .  . 0 ,  k .  It is a proper prefix if, in addition, k # 1. A set 

def 

of strings is prefix-free if-no string in the set is a prefix of 
another. For each person to know when the message he deterministic protocol for f ] 
receives terminates, we require that, given his random 
variable and previous transmissions, the set of all possible 
messages he can receive is prefix-free. Hence, for odd i ,  

(b,(x, Y)) ; : :=  ( b , ( x ’ , Y ) ) ; z :  

( b , ( x , Y ) ) ; : : =  (b , (x ,Y’ ) ) ; : :  

implies that neither b, ( x ,  y )  nor b, ( x ’ ,  y )  is a proper 
prefix of the other, and for even i ,  

implies that neither b , (x ,  y )  nor b , (x ,  y ’ )  is a proper 
prefix of the other. 

Separate-Decisions Property 

When a communicator decides on the computed value, 
he must, again, base that decision on the random variable 
and the messages exchanged. Therefore, 

( b , ( x ,  y ) )Ts l  = ( b , ( x ,  Y ’ ) ) , ” , ~  implies that 

and the average error-free communication complexity of f :  

C D ( f , o > e f m i n { Z , ( x ,  y ) :  + isanerror-free 

deterministic protocol for f } . 
The subscript D stands for deterministic, whereas the 

zero indicates that no errors are allowed (zero probability 
of error). As might be suspected by the excessive notation, 
both requirements will soon be relaxed. 

111. RANDOMIZED PROTOCOLS 

Randomized protocols are like deterministic ones, ex- 
cept that P, and P, may use “coin flips” to determine 
their transmissions. Whereas deterministic protocols re- 
quire that P, base his transmissions and computed value 
only on X and preceding transmissions (similarly for P,), 
randomized protocols require that P, base the bias of the 

u,(x, y )  = u,(x, y ’ ) ,  coin flips (which determine his transmissions and com- 
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puted value) only on X and preceding transmissions (simi- 
larly, for P,.). Still, the set of all messages that have 
positive probability at any time must be prefix-free. Fur- 
thermore, the computed values must always agree (this 
requires a simple rejustification). 

We denote randomized protocols by Q, (as opposed to (p 
for deterministic protocols). The number of bits transmit- 
ted when P, knows x and P, knows y is now a random 
variable denoted by L,(x, y ) .  Its expected value is de- 
noted by &( x, y ) .  

The definitions of average and worst-case complexities 
of protocols can now be extented to randomized proto- 
cols. The worst case complexity L,  of Q, is 

def i, = max { t,( x, y ) :  ( x ,  y ) E (0; . . , n - I}  

. (0; . . , n - l} } . 
The average complexity E ,  of Q, is 

c L d X ,  Y ) .  
- def 1 

L4 = 7 ( x .  t ) t ( O .  , r I - l ) X ( O .  , n - l )  

Similarly, the computed value V,(x, y ) ,  which P, and P, 
assume is the value of f ( x ,  y ) ,  is now a 0-1 random 
variable. We let E,(x, y )  =p(V,(x,  y )  # f ( x ,  y ) )  denote 
the probability that the computed value determined by (D 
is wrong for ( x ,  y ) ,  and define E,(!), the worst case error 
incurred by (D in computing f ,  as 

def 

E (0;. ., n - I}  x (0;. ., n -I}}.  

1) The maximum in E,  and E,(f) is taken over the 
inputs. For each input we still average over the “coin 
flips.” 

2) For brevity we consider only worst case errors. 
Average error results (when average errors are appropri- 
ately defined) can also be obtained. 

Using these quantities, we define two more communica- 
tion-complexity measures. The worst case randomized 
communication complexity of a function f with c error: 

Remarks: 

ing to the integer known to the transmitter and previous 
transmissions. Conceptually, each communicator can per- 
form all the random experiments (corresponding to all 
possible integers she might have and all possible transmis- 
sions) prior to the commencement of the communication. 
Then, given the communicator’s value and previous trans- 
missions, he consults the appropriate experiment and dis- 
cards the rest. 

These two huge random experiments, each performed by 
one communicator, are independent of the current input. 
Every combined outcome of these two random experi- 
ments induces a deterministic protocol. Let p ( @ )  be the 
total probability of outcomes that induce the deterministic 
protocol @. As before, each @ determines l,(x, y )  and 
u+(x, y ) .  The expected communication length for ( x ,  y ) ,  
denoted earlier as L, (x , y ) ,  and the probability of error 
E,(x, y )  can now be written as 

Z , ( X ,  Y )  = C P ( @ ) l , ( X >  Y )  

E&, y )  = c P ( @ > .  (1) 
+ 

( @  ~ ~ ( k . k ) + / ( X , k ) )  

These equations clearly imply that 
- 

L,  = C P ( @ ) T ,  + 
G ( f )  = C P ( @ ) E , ( f ) .  ( 2 )  + 

Before proceeding further, we note that there are two 

shared random sources: the communicators have ac- 
cess to each other’s random experiment. 
separate random sources: the communicators do not 
have access to each other’s random experiment. 

Clearly, e,( f, ;) and cR( f, t )  depend on the model as- 
sumed. The bounds we prove hold in a strong sense: all the 
lower bounds apply even with shared random sources, i.e., 
even when we combine the two random experiments into 
one that is known to both communicators. All the upper 
bounds apply even if the experiments are separated, each 
known to one communicator. Therefore, all bounds apply 
to both models. 

possible models: 

1) 

2 )  

We have so farn defined four complexity measures: e,( f, 0), c,( f, 0) ,  C,( f ,  ;), and E,( f, t).  Of special inter- 
est are the randomized complexities when no errors are 

and the average randomized communication complexity of 
f with c error: 

Again, c^ denotes worst case complexity while c stands 
for average complexity, and the subscript R indicates that 
randomized protocols are allowed. The caret in t means 
that c worst case error is permitted (we will later use E for 
c average error). 

A simple relationship between randomized and deter- 
ministic protocols is useful in proving lower bounds on 
randomized protocols. Let Q, be a randomized protocol. 
Each transmission is the outcome of a random experiment 
whose probability distribution is determined by Q, accord- 

allowed ( c  = 0)-the so-called “Las Vegas” comptexities. 
There are two Las Vegas complexity measures (C,( f, 0) 
and C,(f,O), but it can be easily seen that for all functions 
f, cR( f , O )  = c,( f, 0). (We omit the carets because 0 worst 
case and 0 average errors are the same.) This leaves five 
different measures whose complexities we attempt to as- 
certain next. 

Remark: As in the case of randomized complexities, one 
c p l d  define the deterministic measures C,( f,;) and 
C,( f, t) .  However, for Geterministic protocols,-E,( f ) is 
either zero or one, thus C,(f, t )  = C,( f ,O)  and C,( f, t )  = - 

C,( f 3 0). 
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IV. PREVIOUS AND NEW RESULTS with s ones). We prove that for all s 2 n ,  the following 

Complexity measure A is smaller than complexity mea- 
sure B if A j f )  d B(f) for all functions f .  For example, 
FR( f ,  t )  5 C,( f, t )  for all functions f .  This relation in- 
duces a partial order on the five complexity measures 
which is depicted in Fig. 1. 

hold true. 
l) (Corollary 4) Most functions in % have worst 

c?se error-free (Las Vegas) complexities, e,( f ,  0) and 
C,( f, 0), at least log n - 4 (even when s = n) .  

2 )  (Corollary 7 )  However, all functions in % have 
cn(f,O) 2 log(s/n)+8.31oglogn + c. That is, a determin- 
istic protocol exists that commits no errors and, on the 
average, exchanges I log( s / n )  + 8.3 log log n + c bits. 

3) (Corollary 6) Most of the functions in 5 have e,( f ,  t )  < (1 - 2c)(log( s / n ) +  5.31oglog n + 210g(l/~)). 
4) (Corollary 8) For most of the functions in e, the 

bounds in (2) and (3) are tight: ( l - Z c ) ( l o g  n - 2  log log n )  l og  n + l  

Fig 1 Known relations for most functions c,( f, E )  2 (1 - 24(log ( s / n )  - 2loglog ( s / n ) )  - 9. 

The vertical lines bound the complexity of most func- 
tions. The dotted line therefore means that, for most 
functions, all complexity measures are smaller than 
log n + 1 (in this case, it is trivially true for all functions). 
The dashed line and other known results are described in 
the next two paragraphs. 

Yao [2] proved that, for most functions, e,(f,O) is the 
worst possible: about logn. The proof can be easily modi- 
fied to show that the same is true for c,(f,O). For 
randomized protocols, Yao showed that the equality func- 
tion (1 if x = y ,  OAotherwise), has t,(equ,O) = logn + 1, 
but, for all c > 0, C,(equ, E )  = O(log1og n) .  Mehlhorn and 
Schmidt demcpstrated [ 5 ]  a function (defined in Example 
2)  for which C,(f,O) = M ,  but C,(f,O) = O(filog2,w). 

More recently, i t  has been shown [6],  [7] that for most 
functions cR( f, E )  > (1 - 2r)(log n - loglog n )  - 2. This re- 
sult, indicated in Fig. 1 by a dashed vertical line, implies 
that for most functions it does not help to allow random- 
ization or E error or even to measure only the average 
complexity-the complexity remains about the same. In 
particular, it means that the equality and the function of 
[ 5 ]  are more the exception than the rule. 

Let 1, = {(x, y ) :  f ( x ,  y )  =1} be the set of inputs for 
which f is 1 and 0, be the set of inputs for which f is 0. 
The vast majority of binary functions have about equal 
number of ones and zeros in their function table. There- 
fore, saying that a certain property holds for most func- 
tions, is about the same as saying that it holds for most 
functions with 11,) = n2/2. A natural question, thus, is 
whether the complexity is reduced when the number of 
ones and zeros is not balanced, i.e., 11,1 n2/2 or 
lO,l << n2/2. 

Similar questions have been asked concerning the com- 
pression of binary sequences. Considerable insight has 
been obtained by noting that sequences are compressible 
to their entropy, notwithstanding the fact that most se- 
quences are incompressible because their entropy is maxi- 
mal. Does a similar property hold for communication 
complexity? 

Without loss of generality, we consider only functions 
with fewer ones than zeros, 1, I n2/2. For every integer 
s 5 n2/2, define .? = { f :  11,l = s} (the set of functions 

del 

dcl 

All the bounds proved apply to both models: shared and 
separate sources of randomness, and they are all tight up 
to an additive term. They are summarized in Fig. 2. As in 
Fig. 1, dotted vertical lines denote upper bounds and 
dashed lines denote lower bounds. 

log + +0.3 l og  log n 
(FOR ALL FUNCTIONS) 

log n + 1 

( 1  - 2 c ) ( l o g  + +5.3 log log n )  

Fig. 2. Bounds for most functions in s, n < s < n 2 / 2  

Some of the consequences of these results are as follows. 
1) All the complexity measures fall in onepf two dis- 

tinctly different classes. One (consisting of C,(f,O) and 
C,(f,O)) is at least lognA-4 bits for every s. The other 
(consisting of CD( f ,O ) ,  CR( f ,  E ) ,  and CR( f ,  E ) )  decreases 
with s and is about log(s/n) bits. For s = n2/2, there is a 
small difference between the complexity measures in the 
two classes. For s = n or s = n log n ,  the complexity mea- 
sures in the first class are exponentially larger than those 
in the second. 

For most functions, 11,1 = n2/2. Therefore, all complex- 
ity measures coincide and are about logn bits. However, 
for most sparse functions (11,l << n2/2), the following hold. 

2) In error-free computation, considerably fewer bits are 
needed on the average than at wo;st (most interesting, of 
course, is the difference between CD( f, 0) and C,( f ,  0)). 

3) In error-free computation, randomization does not 
help reduce the worst case Complexity. Even for s = n ,  
Fost functions in have C,( f,O) 2 log n - 4. Hence 
C,(f,O) is not much smaller than C,(f,O), and the func- 
tion described in [ 5 ]  (see Example 2) is an exception. 

4) However, if errors are allowed, randomization does 
reduce the worst case complexity. In fact, in this case, it is 
close to average error-free deterministic complexity. Thus 
the behavior of the equality function is typical of functions 
in its class: F,. 
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V. PROOFS 

In this section we prove the results claimed. In Section 
V-A, we prepare the ground-work by exploring some infor- 
mation theoretic properties of protocol!. In Section V-B, 
we show that for most functions, C,(f,O) 2 logn -4 
(Corollary 4). In Section V-C we prove the separation 
between the classes by showing that for all functions 
C,(f,O) I lo~(~lf~/n)+8.310glogn and that, for most 
functions, C,( f, t )  I (1 - 2c)(log (Il,l/n) + 5.3 log log n )  
+ 2 (Corollaries 6 and 7). These results are deduced from a 
stronger bound that takes into consideration the distribu- 
tion of ones in the function table. Last, in Section V-D 
Corollary 8, we show that these bounds are tight up to a 
negligible additive term by proving that for most functions 
C,(f, t )  2 (1 -2€)(log(~l/~/n)-2loglog((l/~/n)-9. 

A. Preliminary Results 

If b,; . ., 6,  are strings, we let [bk . .  . b,] or [b,]:+ 
denote the string obtained by their concatenation. We say 
that the sequence (b,; . ., b,) parses the string b if b = 

[b ,  . . . b,]. There usually are many ways to parse a string. 
For every (x, y ) ,  we let b,( x, y )  = [ b,( x ,  y)]733 ” I ,  the 

codeword associated with (x, y ) ,  be the concatenation of 
all messages transmitted according to + when (x, y )  is the 
input. The next theorem shows that only one parsing of 
b,( x, y ) complies with the separate-transmissions and the 
prefix-free-messages properties. 

Theorem 1: If either b,(x, y )  or b,(x’, y ’ )  is a prefix of 
the other, then 

def 

Proof We show by induction on i that (b, (x, y )); = 

= (b , (x ’ .  y ) ) ; = ,  = (h,(x, y’));,, = (b,(x’, y’));,l. The 
induction hypothesis is clearly true for i = 0. Assume it is 
true for i -1; then [b,(x ,  y)]’,:; = [b,(x’, y’)]’,::. Hence 
one of [b , (x ,  y)]:=, and [b,(x’, y’)]7=l is a prefix of the 
other, which implies that one of b, (x ,  y )  and b,(x’, y ’ )  is 
a prefix of the other. If i is odd, then, by the separate- 
transmissions property and the induction hypothesis, 
b, (x ,  y ’ )  = b , ( x ,  y ) .  By the prefix-free-messages property, 
neither b , ( x ,  y ’ )  nor b,(x ’ ,  y ’ )  can be a proper prefix of 
the other, and hence they must be the same. Using the 
same argument for (x’, y ) ,  we get b, (x ,  y )  = b,(x’, y )  = 

b,(x’ ,  y ’ ) .  The symmetric argument works for even i’s, 
which completes the proof of the induction. Q.E.D. 

Besides showing that b,(x, y )  can be parsed into the 
individual messages in a unique way the theorem has three 
other implications. They are used extensively later so we 
restate them as individual corollaries. To do so, we need 
the following definitions. 

A rectangle is a set of the form R ,  X R ,  where R,,  R ,  
~ ( O ; . . , n - l } .  If S is a subset of {O;. . ,n- l}x 
(0; . ., n - l}, we define its closure to be Cl(S) = {(x, y ) :  

def 

f o r someuand  u i n ( O ; . . , n - l } , b o t h ( x , u ) a n d ( u , y )  
are in S }. It can be shown that C1 ( S )  is the intersection of 
all rectangles that contain S and is therefore a rectangle. 
The theorem implies that if b,(x, y )  = b,(x’, y ’ ) ,  then the 
“corner points” (x, y ’ )  and (x’, y )  have the same code- 
word. Therefore, i f  a protocol assigns the same codeword 
to all inputs in a set S ,  it assigns the same codeword to all 
inputs in C1 ( S ) .  

Let R,(x,  y )  = {(U, U ) :  b,(u, U )  = b,(x,  y ) }  be the set 
of inputs having the same code-word as (x, y ) .  The first 
corollary of Theorem 1 states that R,(x,  y )  can assume 
only special forms. 

Corollary 1: For all (x, y )  E (0;. ., n - l} X (0 ; .  ., 
n - l}, R , ( x ,  y )  is a rectangle. 

def 

Proof. By the theorem, ( U ,  U )  E Cl(R,(x, y ) )  im- 
plies that b,(u, U )  = b,(x, y ) ,  i.e., (U, U )  E R,(x ,  y ) .  
Thus Cl( R,( ,x ,  y ) )  C R , ( x ,  y ) .  However, R,(x,  y )  is 
always contained in Cl(R,(x, y)) .  Hence R , ( x ,  y )  = 

C1( R , ( x ,  y ) )  which is a rectangle. Q.E.D. 

This corollary has an intuitive “ near-proof.’’ Consider 
the set S of inputs that can result in a given sequence of 
messages. By the separate-transmissions property, when- 
ever P, transmits a message, he partitions this set into 
horizontal slices (sets of the form S n(A, x (0 ; .  ., n -1)) 
where the A ,  partition (0;. ., n - l}), one slice corre- 
sponding to each message. (Note that this would not have 
been the case without the separate-transmissions property.) 
Similarly, when P, transmits a message, he partitions S 
into uertrcul shces (sets of the form S n((0;. ., n -1) X 
Ay)) .  Since any horizontal (or vertical) slice of a rectangle 
is again a rectangle, it is clear, by induction, that R,(x ,  y )  
is a rectangle. The missing part in this “proof” is showing 
that different rectangles cannot correspond to the same 
concatenation of messages. This is the essence of 
Theorem 1. 

The second corollary states that the codewords associ- 
ated with the rectangles form a prefix-free set. Let 

be the set of rectangles over which + has a fixed codeword. 
Any input (x, y )  belongs to the rectangle R,(x ,  y ) ,  and 
any two intersecting rectangles in 9, coincide. Therefore, 
9, partitions (0,. . ., n - 1) x (0; . ., n - l }  into 19,l rect- 
angles where (SI denotes the cardinality of the set S .  For 
each rectangle R E 9+, define b,(R) to be the unique 
codeword that + assigns to all inputs in R.  Then Theorem 
1 implies the following. 

Corollary 2: { b,( R ) :  R E g,} is prefix-free, and its 
cardinality is 19,l. 

The third corollary combines the theorem with the sepa- 
rate-decisions property to show the following. 

Corollary 3: For all R E 9,, U ,  is constant over R .  

def 
9,= { R J x ,  y ) :  (x, y )  E (O; . . ,  n -1} X {O;. . ,  n -I}} 

Proof: Let (x, y ) ,  (x’, y ’) be two inputs in a rectangle 
R E 9,. From the theorem, (b,(x, y))lm_, = (b,(x’, y)),”,, 
= (b, (x  ’, y ’))?= ,. By the separate-decisions property, 
U&, y )  = U&’, y )  = U&’, y’).  Q.E.D. 
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In summary, the three corollaries show that every deter- 
ministic protocol + determines 

a partition 9+ of (0; . . , n - l}  into rectangles. We 
let R+(x, y )  denote the unique rectangle in 9+ that 
contains (x,  y ) ;  
a mapping b,: 9+ (0,1}* where b+( R) for R E 9+ 
is the unique codeword that cp' associates with all 
inputs in R. That is, for all (x, y )  E ( O , . . . ,  
n - I} x { O ; . . ,  n - 11, b,(x, y )  = b+(R+(x, y ) ) -  
The mapping b+ must satisfy several requirements; 
most germane to our purposes is that { b+( R): R E 
9+} is prefix-free with cardinality 19?+1, with the 
length of b+(R) denoted by I+(R); 
a mapping U+: 9+ + (0, l}  where .U+( R), for R E 9+, 
is the unique value that cp assigns to all the inputs 
(x,  y )  in R. That is, u+(x ,  y )  = u,(R+(x, y ) )  for all 
(x,  y )  E (0; . ., n - l} X (0; . -, n - 1). 

4 Before proceeding to prove the bounds, we need a 
lemma from information theory. A probability distribution 
is a set of nonnegative reals that add to one. To allow 
multiple equal probabilities, we regard probability distri- 
butions as multisets, but for lack of alternative notation we 
denote them, as sequences, by angled brackets. The en- 
tropy of a probability distribution (p (x ) :  x E S )  is de- 
fined as 

I 
def 1 

H ( p ( x ) :  X E S ) =  p(x)log-. 
X € S  P(X) 

The next information-theoretic lemma says that the num- 
ber of bits needed to describe the outcome of a random 
variable is at least the entropy of the underlying probabil- 
ity distribution. 

Lemma 1[8]: Let( p,: j = 1 , .  . ., J )  be a probability 
distribution and ( I,: j = 1; * , J )  be the lengths of code- 
words in a prefix-free code.' Then, 

J 

p,l,>H(p,: j = l ; . . , J ) .  
/ = 1  

B. Lower Bound on eRG 0) 

In this section we prove that for most functions, how- 
ever sparse, Las Vegas is not much better than determin- 
ism when worst case complexity is the measure. Slightly 
yo re  precisely, for all s > n,  most functions in 5 have 
CR(f ,O)  2 logn -4. 

As mentioned in Section 111, every randomized protocol 
can be regarded as a collection of deterministic protocols; 
the randomness is confined to the choice of the protocol. 
Given any error-free deterministic protocol + and any 
input (x,  y ) ,  an error-free deterministic protocol cp' exists 
that exchanges only two bits when the input is (x, y )  and 
at most two bits more than cp for every other input. It is 
therefore not clear a priori that there must be an input 

'A set of strings is traditionally called a code book or a code. Its 
elements are called codewords. 

with a large expected communication (L@(x, y) ) .  We prove 
the lower bound by demonstrating a set S of inputs over 
which every deterministic protocol must exchange a large 
number of bits on rhe auerage. 

over a 
set S G  (0; .  a ,  n - l > ~ ( 0 ; . . ,  n -1}  to be 

We define the average complexity of a protocol 

The definition applies of course also to deterministic 
protocols. If + is deterministic, 9+ (defined in Section 
V-A) induces a partition S,; e ,  S, of S such that each Si 
is the intersection of S with some rectangle R, E 9+. All 
inputs in each SJ have the same codeword-b+(Rj)z 
whose length we denote by lj. The next lemma relates L i  
to the sizes of the S,. 

Lemma 2: If S is partitioned by 9+ into SI;. e ,  S,, 
then 

LS> H ( ~ S , I / ~ S I :  j = 1 ; . - ,  J ) .  

Proof: 

but, from Lemma 2, I,, . . . , 1, are lengths of codewords in 
a prefix-free code. Hence by Lemma 1 

Q.E.D. 

The rest of the proof applies this lemma to most func- 
tions in 3, for every n I s I n 2 / 2 .  We divide the range 
n I s I n 2 / 2  into three intervals: n I s < 2n log n ,  2n log n 
I s < n 2 / S ,  and n 2 / 8  I s I n 2 / 2 .  The larger s, the more 
likely are functions in 3 to have high complexity. There- 
fore, the most interesting interval to prove is n I S  I 
2 n  log n .  We only prove this interval here and mention the 
stronger results pertaining to the other intervals of s in 
Corollary 4. 

The closure of a set T was defined in Section V-A to be 
def 

C1 ( T )  = { ( x ,  y ) : for some U and u in { 0; . , n - 1 } , 
b o t h ( x , u ) a n d ( u , y ) a r e i n  T } .  

If S ~ ( O ; ~ ~ , n - l } X ( O ; ~ ~ , n - l } , w e l e t  A? bethesize 
of the largest subset T of S such that f is constant over 
Cl(T):  

As/zfmax{lTI: T ~ S , a n d ( x , , y , ) , ( x , , y ~ )  E C ~ ( T )  

-f(X1?yl) =f(x2ry2)) .  
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(Note that C1 ( T )  does not have to be contained in S.)  The 
next theorem uses A; to upper-bound tke size of each SJ; 
then it uses Lemma 2 to lower-bound C,(f,O). 

Theorem 2: C,(f,O) 2 log~s~/As/ for all s _c (0; . ., 

Proof: Let S be any set in (0; . ., n - 1> x (0; . ., 
n - l}, @ be any error-free randomized protocol, and @ be 
any deterministic protocol in @ that occurs with nonzero 
probability. 

Consider the partition Si; . ., S, of S induced by 9+. 
By definition, each S, is contained in one rectangle of 9+; 
hence CI(S,) is also contained in that rectangle. From 
Corollary 3, u+(x ,  y )  must be constant over C1(Sj). How- 
ever, since @ is error-free and @ occurs with positive 
probability, @ must be error-free too. Hence f ( x ,  y )  must 
be constant over CI(S,). This implies that IS,~IA~. A 
simple calculation-can show that if ISJl I A; for all j ,  then 
H ( ~ S , ~ / ~ S ~ :  j = l ; - . , J )  >log(lSl/A>). Therefore, by the 
last lemma, 2 log( ISl/AS,). This is true for all positive- 
probability protocols @ E @; therefore, > log(ISI/As/). 
By definition of as an average, there must be an input 
(x, y )  E S such that z , ( x ,  y )  %log(lSI/Asf). Therefore, 
for every error-free protocol @, L, 2 log( ISl/AS,) and the 
theorem follows. Q.E.D. 

The next lemma uses a counting argument to show that, 
for s close to n ,  most functions in contain a large set S 
with A; I 2. 

Lemma 3: For all s 2 n 2 8, a fraction larger than 
1 -2(sY/ni2) of the functions in 3 contain a set S 1, 
of size n / 8  such that for all subsets T of S ,  IT\ 2 3 implies 
that C1 ( T )  g 1,. 

Proof: We define a square to be a product set of the 
form A ,  X A ,. where A , ,  A, .  C (0; . ., n - 1> are of equal 
size. We call J A Y /  (equivalently, / A , \ )  the side of the 
square. The proof proceeds with two claims. 

Claim I :  The fraction of functions f in 8 for whch 1, 
contains a square of side 3 is at most s9/ni2. 

Proof of Claim 1: Fix a 3 x 3 square in (0,. . ., n - 1> x 
(0; . ., n - l}. The number of sets of sizes s (thought of as 

1,) that contain this square, is n 2 - 9  . Hence the num- 
ber of sets of size s that contain any 3 X 3 square is at most 

(;)(;)($;:). The fraction of functions in 5 such 
that 1, contains a 3 X 3 rectangle is, therefore, at most 

n -1> x(0;. ., n -1}. 

( s - 9  1 

Claim 2: For all s 2 n ,  the fraction of functions f in 8 
such that 0, contains a square of side 2 7 n / 8  is at most 

Proof of Claim 2: As before, fix a square of side 7n /8 .  
The number of sets of size n2  - s (thought of as 0,) that 

1 /2“. 

contain this square is n 2  - ( 7 n / 8 )  . Therefore, the num- 

ber of sets of size n 2 - s  that contain any square of side 
i s  

n 2  
7n/8  is at most ( n 2 - ( 7 n / 8 ) 2 ) (  (7n,,8)j  . Hence the 

fraction of functions in E such that 0, contains a square 
of side 2 7 n / 8  is at most 

Combined, the two claims imply that for a fraction of at 
least 1 - 0.5” - (s9/n1*) 2 1 - 2(s9/ni2) of the functions f 
in %, the set 0, does not contain a square of side 7n/8,  
and the set 1, does not contain a square of side 3. 

To complete the proof, we need one more definition. 
Call a set S diagonal if no two of its elements are in the 
same row or column. (That is, (x, y ) ,  (x’, y ’ )  E S implies 
x # x’ and y # y’) .  It is easy to see that if 0, does not 
contain a square of side k (1 I k < n ) ,  then 1, contains a 
diagonal set of size n - k + 1. 

We can therefore deduce that for a fraction of at least 
1 - 2(~’ /n’~)  of the functions f in 3, the set 1, contains a 
diagonal set D, of size n / 8  but does not contain a square 
of side 3. D, is clearly the desired set because if T D, 
and IT( 2 3 then Cl(T) contains a square of side 3. This 
implies that C1 ( T )  1,. Q.E.D. 

The claimed bounds can now be proved easily: 
Corollary 4: For any s 2 n ,  a fraction of at !east 1- 

2[(210gn)’/n3] of the functions in 3 have C,(f,O) 2 

Proof: If n 216 the claim is trivially true. Otherwise, 
as mentioned before, we divide the proof into three inter- 
vals of s: n < s < 2 n l o g n ,  2nlogn1s<n~/8,  and n2/8 
I s 5 n2/2. We prove the result for the first interval and 
state the (stronger) results that can be proved for the 
others. 

n 2 s < 2n log n :  A fraction of at le!st 1 - 
2 [ ( 2 1 0 g n ) ~ / n ~ ]  of the functions in 3 have C,(f,O) 2 

log n - 4. 

log n - 4. 

Proof: According to Lemma 3, a fraction of at least 
1 - 2[(210g ~ ) ~ / n ~ ]  of the functions in 3 contain a set S 
of size n / 8  withAA: 5 2. Theorem 2 ensures that for all 
these functions, C,( f ,  0) > log[( n /8)/2] = log n - 4. 

2n logn < s I n2/8: A fr?ction of at least 1 -2/n3 of 
the functions in e have C,( f , O )  2 log n - 2. 

n2/8 I s 2 n2/2:  A fraciion of at least 1 -0.365“.n8 of 
the functions in ,q have C,(f,O) 2 logn - 2. Q.E.D. 

Example I :  Let d,”,(x, y )  denote the Hamming distance 
between the two N-bit sequences x and y .  For N 2 0  and 
0 I k I N ,  define the function H;: ( O , l > N  X ( O , l } N +  
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if d f f ( x , y )  = k  
otherwise. 

To determine the worst case Las Vega? complexity of H;, 
consider lHr (the set of inputs for which HF is 1). Its size 
is 2"( :). Yet, [9] showed that for 0 5 k I [N/2- m1, 
the largest rectangle contained in lHr is of size 

Taking S of Theorem 2 to be the union of lHL and any 
element subset of OH;, we obtain eR( H / , O )  2 Ilog(2"t- 1)1 
= N + 1; This clearly implies that for all k'3  in the above 
range, CR( H,N, 0) = N + 1. 

When n is a power o t2 ,  the equality function is equiva- 
lent to H,N. Therefore, CR(equ, 0) = N + 1 = log n + 1. 

C. Upper Bound on cDG 0) and eRg C) 

Section IV. It bounds the complexity in terms of the 
distribution of the ones and zeros (rather than just their 
number). For " non-regular'' distributions it is even lower 
than log(ll,l/n). 

For notational convenience we define log0 to be -1 
and define G ( f )  as follows: 

(i)- 
(9 

4 The upper bound proved is stronger tK& described in 

i 

1 

n 
G Y l x ( f ) ~ ' l + - m i n  logI{y: f ( x , y ) = l } ( ,  

number of ones (zeros) it contains to the complexity of the 
function. If a function has about the same number of ones 
in each row, then a protocol that requires about twice that 
many bits in the worst case can be obtained by generaliz- 
ing and refining the equality-function protocol of [lo] (see 
PI). 

Lemma 4: Let n 2 2 ,  m 2 1 ,  and f :  { O ; . . , n - l } ~  
{O;. . ,n- l}  + {0,1} satisfy I{y: f ( x , y ) = l } l l m  for 
all x E (0,. . -, n - l}. Then, for all 0 < E I 1/2, 

CR(f,i) I 2(1ogm +loglnn +log( l /E)+l ) .  

Proof: The trivial protocol @ that guesses wi;h proba- 
bility 2 , ~  and transmits all bits otherwise has E,(f) I E 

and L, I 1 + 2r + (1 - 2~)(log n + 2) = 3 - 26 + (1 - 
2 ~ ) l o g  n. For n I 60000, this is less than the upper bound 
for all E. Thus, from here on, we assume that n > 60000. 

For every x E (0; . ., n - l}, let m(x) = I{ y :  f (x ,  y )  
=1}1 and for i = l ; - . , m ( x ) ,  let y l ( x )  be the ith smallest 
integer in { y :  f (x ,  y )  =1}. Clearly, for all x E (0; -., 

dei 

n -I},  m ( x >  5 m and {ydx),. . * 7  Ym(,)(X)} = { Y :  f ( x ,  v )  
= l} .  

Let a E' a( m In n/c). Then n > 60000 implies U > 31.1 
so the number of primes between U and 2a is at least 
o/(&lna) and at most a/lna. That is, a / ( f i lna)  < 
IT(2a)- n(a) < a/lna where IT(x )  is the number of 
primes not exceeding x. The number of primes between U 

and 2a that divide any positive integer I n  is always at 
most log IT n . 

For brevity, let (x), denote x mod a. We show that the 
following protocol, denoted achieves the claimed 
bound. 

1) P,, picks at random a prime a such that U < a < 2a. 
He transmits a and ( y ) ,  to P,. 

2) P, computes and transmits 

e 

def . \O, otherwise. G (  f ) = m1n (G, ,x( f  ) ?  GXIY ( f )I .  
3) Both P, and P, accept g(x, a, (y ) , )  as the value of 

N o w , i f f ( x , y ) = l ,  then y = y l ( x ) f o r s o m e l ~ i s m ( x ) ,  
thus g(x, a, (y ) , )  =l. Hence P(V,,(x, y )  = O((x, y )  E lr) 
= 0. On the other hand, 

f(x3 Y ) .  
We show that for aN functions, cR( f ,  C) I (1 - 2c)(G( f )  
+ 6.31oglog n + 210g(l/c) + c) and use this result to estab- 
lish the upper bounds claimed in the introduction. 

One interpretation of this bound is that each row (col- 
umn) in the function table contributes about log of the 

P(V,,(X,Y) = I l ( x . y )  EO/) 
\ 

= P ( 3 i ~  { l , . . . , m ( x ) }  suchthat (y l (x ) ) ,= (y ) . l yZy , (x )  forall j E  { l ; . . , m ( x ) > )  
I N (  \ )  

I c P ( y - y l ( x ) ~ O ( m o d ~ ) l Y - y l ( x ) # O )  
I = 1  

nt (  ') number of primes between U and 2a dividing the nonzero integer ( y - yl ( x )) 

= c  I = 1  number of primes between U and 2a 
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The average number of bits transmitted is upper-bounded 

transmitting log (a/ln a )  I log m + log In n + 
transmitting y mod a:  l o g l . 7 ~  I log m + logln n + 
rounding off the above: 1 bit; 
transmitting g(x, a,  y mod a): 1 bit. 

by 
a :  

log(l/e)+O.5 -1ogln31.1 bits; 

log(l/c) + 0.5 + 0.77 bits; 

Hence the total communication is at most 2(log m + 
logln n +log(l /c)+l)  bits. Q.E.D. 

In the next example we use the lemma to improve the 
bound on a function defined in [ 5 ] .  

(0, 1}" (we index the sequences with superscripts because 
subscripts were used earlier to denote a bit in a sequence). 
If n = 2u2 ,  then each (x'; . ., x") can be identified with an 
integer in (0; . ., n - 1). The component equahty (CE) 
function is defined as 

Example 2: Let M 2 0, and x l ; . . , x M ,  y ' ; . .  , Y M E  

CE ( (  x'; . . , x"), ( y' ;  . . , y w ) )  

dcf - 1 
- l o :  otherwise. 

if  x'  = y' for some 1 I i I M 

It was shown in [ 5 ]  that cR( f , O )  I O ( M  log2 M ) .  By choos- 
ing e = logM/M in the lastAlemma, and proceeding as in 
the original proof, we get, C,( f, 0) 5 5M log M + e. 

However, to meet the lower bound, Lemma 4 needs to 
be improved even for functions with equally dense rows. 
The reason is that the protocol uses about as many bits 
describing the results of the random experiments as it does 
describing the values. One way around this, is using less 
randomization. The following lemma, proven in [4], shows 
that in the initial phases of the communication, determin- 
istic protocols can be efficient. 

Lemma 5: Let n 2 2 ,  m > l ,  and f :  {O; . . ,n - l )x  
{ O ; . . , n - l )  + {0,1} satisfy 

I { y :  f ( x , y )  = I }  I s m  forall X E  {0; . . ,n-1}.  

Then, there exists a partition B,; . ., B,cm,(lnn)~ l 1  of 
{0; , . ,n-1} such that for x=O; . . , n -1  and j =  
1,. . ., [cm/(ln n)' '1, 
where c is a constant independent of n ,  m ,  and f .  

Combined, Lemmas 4 and 5 yield the following. 
Lemma 6: For all n 2 2 ,  O<e11/2, and f :  {O;. . ,  

I {  y E B,: f(x, y )  = 1)  I < (In n)' 

n -1} x (0; .., n -1)  -3 {0,1}, 
1 c,( f. ;) I G ( f ) + 4.1 log log n + 210g - + c 
e 

where c is a constant independent of n ,  c,  and f .  

Proof: Without loss of generality assume that 
1 1 7 - 1  

G ( f )  = G Y , X ( f )  = -  c I o g I b  f ( x d  = I >  I .  
u = o  

def 
For I =  -1 ,0 ,1 , . . . , [ logn]  define A , = { x :  i - l <  

By Lemma 5 ,  for i = [log(ln n)'. '],.  . .,[lognl, there 
exists a partition { B, , / :  j =1;. . . [c(2l/(ln n)'.')]) of 
(O; . - ,n - l}  such that forall X E A ,  andall j ~ ( l ; . . ,  
[c(2'/(ln n) ' . ' ) ] ) ,  I{ y E B,/:  f(x, y )  =1)1 < (In n)l.' where 
c is a constant. 

P, and Pr agree on such a collection of partitions and 
conduct a protocol 

1) P,  transmits [logm(x)l to P,. (thereby telling him of 
the index of the set A ,  that x is in). 

2 )  If [log m ( x ) l =  - 1, they decide that the value of the 
function is zero and stop. If - 1 < [log rn(x)l < 
[log(In n)'-'l, they move to step 3. Otherwise, P,. transmits 
the index j of the set B,logm(x)l,, that contains y .  

From now on, they know that (x, y )  is in the general- 
ized rectangle A,lognl(.,v)l X B , l o g m ( x ) l ,  j. This rectangle has 
the property that each of its rows contains at most (In n)'.l 
elements of 1,. That is, I{ y E B,l,,,l,,,l, I :  f(x, y )  = 1} I < 
(In n)'.' for all x in A,lognl (x) l ,  

3) They use the protocol of Lemma 4 to find f ( x ,  y )  
over this rectangle with probability of error I c.  

The number of bits transmitted is upper-bounded by the 
following steps. 

Step 1 
Step 2 

defined as follows 

[log(log n + 2)1. 
0 bits if m ( x )  < (Inn)' ' and [log[c(2[logrn(x)] 

I [log( c.2m(x)/(ln n)'.')], otherwise. 
Step 3 0 bits i f  m ( x )  = 0, 2(logm(x)+logln n + 

log ( 1 / c )  + 1) if 0 < m ( x )  < (In n)", and 
2(log(ln n)'.' + logln n + log(l/c) + l) ,  other- 
wise. 

Hence for every (x,  y ) ,  the total number of bits trans- 
mitted is at most logm(x)+2log(l/e)+4.1logln n + c 
(where c is a new constant). The average, therefore, is 
I (l/n)Z::A log m ( x )  + 2 log (l/e) + 4.1 log In n + c = 

G( f ) + 2 log( l / e )  + 4.1 logln n + e. Q.E.D. 

Decreasing c in the lemma increases the complexity only 
moderately, so if  e is large, some bits can be saved by 
incurring an error smaller than e most of the time and just 
guessing the result in the rest, yielding the following. 

Theorem 3: For all n 2 2 ,  0 < c <1/2, and all f :  

/(In n )'.')ll 

(0;. ., n -1) x (0;. ., n -1} - {O,l), 

c,( f ,  6 )  I 2 +  (1 -2e) 
, ( G ( f ) + 6.3 log log H - 2 log (1,'~) + c ) 

where c is a constant independent of n ,  c,  and f .  
def 

Proof: Let 8%' min(e,(l/G(f)),l/lOl) and c '  = 

( e  - 6)/(1/2 - 8). The protocol O3 is defined as follows 
1) P,. performs a random experiment that is 1 with 

probability c '  and transmits the outcome to P,. 
2 )  If the outcome of the experiment is 1, P,, performs an 

unbiased binary experiment and transmits the result to P,. 
They both accept the outcome of this experiment as the 
value of f(x, y ) .  If the outcome of the experiment in the 
first Dhase is 0 (Drobabilitv 1 - 6'1, thev use protocol a, 

logm(x)  s i } .  Clearly, the sets A - , ,  A , ,  Al, . . . ,Al logn1 
partition (0;. ., n -1). 
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(Lemma 6) to compute f(x,  y )  with probability of error 
- < 6. 

The total probability of error is I c‘/2 + (1 - €’)a = 

~ ’ ( ( l / 2 )  - 6)  + 6 = E. The average communication length is 

= 1 +  E’ + (1 - E’) 

. ( G ( f ) + 4.1 log log n + 2 log (1/6) + c) 

I 2 + (1 - 2 ~ )  ( G ( f ) + 6.3 log log n + 2 log ( l / ~ )  + C) . 
Q.E.D. 

By the convexity of the log function, G ( f )  I log(llfl/n). 
We have therefore proved the upper bound for the average 
case. 

Corollary 5: For all n 2 2,O < c I 1/2, and all functions 
f: { 0 , ~ ~ ~ , n - l } x { O ; ~ ~ , n - 1 }  + {O, l} ,  

c,( f, ?) I 2 + (1 - 2r)(log ( llfl/n) + 6.310glog n 

+21,og(l/E)+ c ) .  
k 

For all s 2 n ,  most functions in 3 have about the same 
number of ones in every row and column. A quick analysis 
of Lemma 6 can show that the expected number of bits 
transmitted for every input is about the same (and, that 
step 1 can be skipped). Hence we have the following. 

Corollary 6: Let s 2 n 2 2 and 0 < E 11/2. For most 
functions f in 5, 

+ 5.31oglog n + 210g(l/c) + c). 

The protocol of Theorem 3 can incur an error only when 
its computed value is one. This happens with probability 
I E + ( llfl/n2). Verifying the result whenever that is the 
case, we obtain a randomized Las Vegas protocol with 
E ,  I log(llfl/n)+ 8.31oglogn + c. This, in turn, implies 
the existence of a deterministic protocol with the same 
average length. Thus we have the next corollary. 

Corollary 7: For all functions f: (0,  * *,  n - l} X 
(0; . -, n - 1> + {O,l}, 

C,(~,O) I log(l1~l/n)+8.3loglogn + c. 

Proof: If llfl/n2 > l/(log n)8.3, then log(llfl/n) + 
8.3 loglog n + c 2 log n + c. For c 2 2, this is more than 
the complexity of the trivial protocol. Else, let E = l/log n. 
Corollary 5 says that cR( f, ?) I log Ilfl/n + 8.31oglog n + 
c. The protocol used to derive this bound (a3) errs only 
when its computed value is one. Assuming a uniform 
probability distribution over the inputs, this happens with 
probability I E + ( llfl/n2) I 2/log n. By verifying the re- 
sult whenever this is the case, we add at most 2 bits on the 
average. Therefore, c,( f, 0) = cR( f, 0) 2 log( llfl/n) + 
8.3 loglog n + c. Q.E.D. 

Example 3: Consider HE !gain. Example 1 showed that 
for 0 I k I N/2 - m1, C,( HF, 0) 2 log N. The follow- 
ing protocol, whose main advantage is amenability to 
simple analysis, shows that the average complexity of H f  
is much smaller. 

def 

First, P, transmits x l , - . - , x k .  Then, starting with i =  
k + 1 and continuing with consecutive i’s, P, transmits x, 
and P, responds by transmitting 1 if the Hamming 
distance between (x1; . ., x,) and (y1; . 0 ,  y,) is k + 1, 
and transmitting 0, otherwise. To the Nth bit, Py responds 
by transmitting the value of H f .  They stop after Py 
either transmits a one or responds to x,. Let i, = min { { i: 
d,((x,;-.,x,), ( y , , - . . , y , ) ) = j } U { ~ ) }  andlet I, be the 
random variable whose value is i,. If L is the random 
variable denoting the length of the communication then, 
L = k + 2 ( I h + , - k ) = 2 1 k + , - k ,  - so theexpectedvalue of 
L i s  L = 2 1 k + l - k .  

The expected value of I,+, can be determined via a 
tedious calculation or by using an old trick. For j =  
l , - . . , k + l ,  let D , = I J - I J - l  (I,, is defined to be zero). 
Then each D, is distributed geometrically with parameter 
1/2. Therefore, the expected value of each D, is 2, and the 
expected value of is E(I ,+J = Ec;+tD,) = C;1:2 
= 2( k + 1). Hence 

Note that this protocol achieves a much smaller com- 
plexity than that promised by Corollary 7. The next sub- 
section, however, shows that this is a rare exception. For 
most functions, the upper bound of the corollary is quite 
tight. The reason for the discrepancy here is that 0,: 
contains unusually large generalized rectangles. 

def 

def 

= 3k + 4. 

D. Lower Bound on cRg ?) 
In Section V-B we defined the average complexity of a 

protocol over a set S C  { O ; ~ ~ , n - l } x { O ; ~ ~ , n - l } .  We 
now define the average error of CP over S to be 

The average error of @, E,(f), is defined to be the 
arithmetic average of the error over the zeros and the 
errors over the ones: E,(_f) = (E$( f ) +  E$( f))/2. 

Remark: In general,E,(f) can be taken as the maxi- 
mum of E/(f) and E$(f), or any weighted average of 
the two. Here we chose half-half weights. Other weights, 
though possible, yield an inferior lower bound. 

We can now define average-error complexitp in much 
the same way we did in the introduction. Two measures 
prove particularly useful. The average deterministic com- 
plexity with E average error is defined as 

def - 

def c,( f, c) = min { E,: + is deterministic 

and E,( f )  I E } ,  

and the average randomized complexity with E average 
error is defined as 

The next lemma shows that, although the average error is 
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defined in a peculiar way, c average error is still easier to 
achieve than c worst error. 

Lemma 7: For all functions f and c > 0, cR(f, t )  2 

C,(f? E) .  

Proof. 
- 
E $ ( f ) d C f 1  1 E,(x,y) 

l0,l (\.,.)EO, 

max { E&, y ) :  (x, Y 1 €0,) 

and 
- def 1 
J W f )  = - c E , b , Y )  

11,J ( \ . ) ) € I ,  

I m a x {  E,(x,y): (x,y) GI,} .  

Therefore, 

E d f )  =(@(f)+ G f ( f ) ) / 2  

I max ( E$ ( f ) , E$ ( f ) ) 
Imax(max{E,(x,y) :  (x,y) EO,}, 

max { E,(.> y ) :  (x ,  Y )  E 1,) j 
=max { E&, y ) :  (x ,  y )  

E (0;. ., n - I}  x (0; .., n -1)) 

=Edf 1. Q.E.D. 

Any lower bound for cR(f, E )  is therefore also a lower 
bound for c,( f, t) .  It then suffices to prove the result for 
average error. We begin by proving a lower bound for the 
deterministic complexity cD( f, F).  

Each rectangle R G (0; . ., n -1} X (0;. ., n -1} con- 
tains a certain proportion p,( R) of ones defined as 

(the number of ones in the rectangle divided by its size). 
For deterministic +, define 

to be the inputs covered by rectangles R E 9+ with p,( R )  
deviating from Jlf)/n2’by a factor of at most 1 + 6. 

We assumed in the beginning of Section IV that 11,1 I 
n2/2.  Therefore, if R E 9, satisfies R c R,,,(6), then 

IR no,l/lRI = ((RI- IR fl1fl)/lRl 

=1- P / ( R )  

11, I 21 - y ( l +  6 )  

IO, I 
2 (1-6)- 

n 2 .  

n 

( 3 )  

A similar calculation can show that IR n O,l/lR 
(1 + 6)10,1/n2. 

13 

- < 

J ” 

Intuitively, rectangles with proportion of ones similar to 
that of the original function table cannot reduce the uncer- 
tainty about the function’s value. The next lemma says 
that if the protocol errs with low probability, then R,,,(6) 
must be small. 

Lemma 8: For every deterministic protocol $, and all 
6 > 0, 

1 - 6  
2 S I & / ( 6 )  I .  

def 
Proof: Let O+ = R,,,(a)n {(x, y ) :  V,(x, y )  = 0) be 

the set of inputs in R, , , (S> that + declares zero, and 
1, = R,,,(G)n((x, y ) :  V,(x, y )  =l}-the set of inputs in 
R,,,(6) that c$ declares one. Clearly, 0, U1, = R,,,(6), 
and since + is deterministic, Et( f )  = I((x, y ) :  V+(x, y )  # 

def 

f(X, y I} I/ IS I. Therefore, 
1 

q 4 f )  = - EX{(,. ” ) :  v+(x.y)=o)(x~ Y )  
l1,l 1, 

1 
2- 1 c1 

( R E % + :  RCO,)  l f n R  

1 
= -(1- n2  ”>lo,[. 

We showed in (3) that all rectangles R E 9, that are 
contained in R,,,(6), satisfy J R  n0,J > JRJ(1- 6)(P,l/n2). 
Thus, we also have 

Combining the two, 

def 
Let r,(6) = max(lRI: IP,(R>-(l1,l/n2) > 6(l1,l/n2)} 

be the size of the largest rectangle in (0; . ., n - l} X 
(0,. . ., n - l} with proportion of ones deviating from 
( s / n 2 )  by a factor of more than 1 +_ 6. (r,(S) is indepen- 
dent of +.) Then, for all deterministic protocols +, if R is a 
rectangle in 9, and /RI > r,(S) then R must be contained 
in R, , , (S) .  From the last lemma, 

1 - 6  c 
( R E & + :  I R l > , i ( G ) )  

The inequality implies that the total area occupied by 
rectangles of size > r f ( 6 )  is small if E,(!) is small. (In 
Lemma 12, we show that for most functions r f ( 8 )  is also 
small.) The next simple lemma says that when t h s  is the 
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case (the larger probabilities occupy a small part of the 
probability space), the entropy is high. 

Lemma 9: If ( r l :  j = 1; . ., J) is a probability distri- 
bution such that E.(] ,,,,,rJ I A ,  then H(rJ)  

Proof: Compute the average number of bits needed to 
describe the events rl I r. Q.E.D. 

When Lemma 2 is applied to S = { O ; . - , n - l ) X  
(0 ; .  ., n - l}, it yields E ,  2 H(IRl/n2: R E 9,). Com- 
bining it with (4) and Lemma 9, we o.btain, for all @ and 
all 6 > 0, 

2 (1 - A)log(l/r). 

( 5 )  

Next, we need to relate r,(6) to 11,l. First, we use a basic 
result from probability theory to reduce the problem of 
functions in e that behave hypergeometrically to that of 
Bernoulli random variables which are easier to analyze. 

Lemma IO: Let H be distributed hypergeometrically 
with parameters N ,  s, and r .  That is, 

and let B be distributed binomially with probability S/N 
over r variables. That is, 

Then, ~ ( s / N )  is the expected value of both H and B,  and, 
for a I [ r ( S / N ) ]  I [ r ( s / N ) ]  I b, 

P ( U I H I ~ ) ~ P ( U I B I ~ ) .  

Proof: The lemma follows from a result of Uhlmann 
[ll] showing that for all N ,  s, and r, 

P ( 0  I H I  x)- P ( 0  I B I x )  

S N + 1  

N N 
2 0 ,  for x 2 -( r - 1)- 

S ~ + 1  r - 1  
for x I - ( r - 1) - - - 

N N N 

(the original result was phrased slightly differently). Note 
that ( s / N ) (  r - 1)(( N + 1 ) / ~ )  < (s/N)r, hence 

. \ I 0 ,  

P ( 0  I H I  b )  2 P(0  I B I b ) .  

Also, ($ /A’) (  r - I)(( N + 1 ) / N )  - ( r  - 1 ) / N  > (S/N)r - 1, 
hence 

P ( 0  I HI  a -1) I P ( 0 I  B I  a -1) 
and the lemma follows. Q.E.D. 

To bound the size of “nontypical” rectangles, we use 
Bernstein’s lemma. 

Lemma I1 [12]: Let X,; . e ,  X ,  be independent, 
Bernoulli-p, random variables, and let 6 < 1 - p.  Then, 

Therefore, if f is a random function in 3, the probability 
that a given rectangle of size > r will have a proportion of 
f-ones deviating from (s/n)2 by a factor of more than 
1 k 6 is < e-62rs/4.5n2. The probability that any rectangle 
of size > r will have a proportion of f-ones deviating from 
(s /n)2 by more than 6 is < 22n-e-62rs/4.5n2 . If r 2  9n3/ 
( s . a 2 ) ,  this probability tends to zero faster than (2/e)”. 
Therefore, a fraction of a least 1 - (2/e)” of the functions 
in E do not contain any rectangle R of size 2 9n3/s.cS2 
with a proportion of f-ones deviating from (s/n)2 by a 
factor of more than 1 k 6. We have thus proved the follow- 
ing. 

Lemma 12: For all s and 0 < 6 < 1  -(s/n)2, a fraction 
of at least 1 -(2/e)” of the functions in 3 have r,(6) I 
9n3/s. 6 ’. 

Substituting in (5) we get that for 0 < 6 < 1 - (s/n)2,  

We want results tight up to an additive term, so we can 
think of 6 as being very small (in fact, decreasing to 0). 
For 6 <1/2, 1/(1- 6)  <1+26,  and, for very small a’s, 
the difference (always less than 6 )  is negligible. Therefore, 
we approximate 

E,>  (1-2E,(f))log- S 6  -4GE,(f)bg- S6 
9n 9n 

S a 2  S 6  
> (1 - 2E,( f )) log - - 46 log - 

9n 9n 
S 

> (1 - 2E,( f )) log - + 2(1-2E,( 1)) 
n 

S 
*10g6-46log--4. 

n 

Since s I n2/2, this inequality is valid for all 6 < 1/2. The 
(negative) expression 2(1-2E,(f))log6 -46 log(s/n) is 
maximized for 6 = (1 -2E,(f))/2ln2.log(s/n). Substi- 
tuting, we obtain: 

n 
S 

Le > (1 - 2E,( f )) (log ; - 2 log log 

This result suffices to bound cD( f ,  i) for most functions. 
To bound cR( f ,  E ) ,  we return to the notations introduced 
at the beginning of the section. Note that for every ran- 

c 
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domized protocol @, This completes the proof of the lower bound. We con- 
dude  the paper by applying some of the techniques devel- 
oped to find a tight lower bound for the equality function. 

Example 4: Consider the equality function once more. 
Example 3 showed that C,(equ,O) I 4. Consequently, we 
can only expect high worst case lower bounds. In this 
example, we prove that C,(equ,-C) 2 [log(n/(l+2c(n - 
l)))] = log(l/c). First, we relate E,  to zb in determinis- 

Let + be any deterministic protocol. Then + induces the 
partition 9+ of (0; . ., n - l} x (0; . ., n - l} described in 
Section V-A. Let R,; . ., R, be the rectangles in 9, that 
have a nonempty intersection with lequ = { (O,O), . * . , 

should have a computed value of 0, so we concentrate on 

dcl  1 
-@(f) = - C E , ( x ,  Y )  

l0,l 0, 

del  1 
= - CP( V@(., Y )  f f ( X >  Y ) )  

l0,l 0, 

1% 0, + € @  

+ € @  lO/l 0, 

1 tic protocols. 
= - P ( + ) X { ( X . Y ) :  v + ( x . . v ) + ~ ( ~ , . Y ) J ( X ~  Y )  

1 
= e '(')- ex ' (" ' l ' ) :  V ~ ( X ' ~ v ) # f ( x ' ~ V ) J ( x '  

( n  - 1, n - 1)). To minimize the error, all other rectangles 

Similarly, 

Therefore, 

E,( f )  Zf ( E $ (  f ) + E$( f)),'2 

R,;  . . , R,. 
def 

For j = l ; . . ,  JdefineS, = RJnlequ.Then,C~=,ISJI=n 
and, since each R ,  is a rectangle and S is a diagonal, 
lS,I2 I IR,I. The average error over Oequ is 

and Incorporating these equations into the average error 
calculation yields 

Hence = c P ( + > L # ,  
+ E @  J c ( l ~ , l / l ~ c q u l ) 2 ~  (2E,(n - 1 ) + 1 ) / n .  

, = I  

Using the inequality 
1 

1 1  p (+) [ (1 - 2E,( f )) log t - 2loglog - - 9 > 
+ E @  

= (1 - 2E,( f )) log f - 2loglog - 9. H( p,: J = 1 ; . . , J )  2 log J , 

c p: n n 

We have proved the following. / = 1  
Corollary 8: For all 0 < c I 1/2, a fraction of at least we get 

- 
1 -(2/e)" of the functions in 3 satisfy 

L$qu2 H ( ~ S , ~ / ~ l e q u ~ :  j = l ; . . , J )  

n i 
c,( f, c) 2 c R (  f. E l )  

> (1 - 2r)(log ( s / n )  - 2loglog ( s / n ) )  - 9. 2 log 
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‘ +PE0 I 

n 
1+2E,(n -1) 

= log 

Therefore, C,(equ,i) 2 log(n/(l+2;(n -1)). To prove 
tightness we now describe a protocol whose ‘complexity is 
two bits more than the lower bound. Note, though, that 
the complexity of the protocol is computed under the 
shared random sources model. 

Let E > 0. Consider all partitions of (0; e ,  n - l }  into 
[n/(l+12c(n -1)j)l sets of size 11+2e(n-1) each. P, 
picks one such partition at random (all partitions being 
equally likely) and transmits the index of the set that 
contains x. By the model assumption, he need not transmit 
which partition was picked. P, then transmits 1 if y 
belongs to the same set in the partition and 0 otherwise. 

The number of bits transmitted is 1 +[log(n/[1+2~(n 
- 1))11. The error probability is clearly zero if x = y and, 
by symmetry or a more cumbersome argument, at most 26 
for x # y .  

As mentioned, the protocol relies heavily on the assump- 
tion that the random experiment is shared by P, and P,. 
There are far more than n partitions of (0; e ,  n - l} into 
sets of size 1 + 2cf n - 1). Thus. if P. has to sDecifv which 

4 

d 

REFERENCES 

H. Abelson, “Lower bounds on information transfer in distributed 
computations,” in Proc. 19th Annu. Symp. Foundutions of Com- 
puter Science, 1978. 
A. C. Yao, “Some complexity questions related to distributive 
computing,” in Proc. 11th Annu. ACM Symp. Theoy  of Comput- 
ing, 1979. 
C. H. Papadimitriou and M. Sipser, “Communication complexity,” 
in Proc. 14th Annu. ACM Symp. Theoy  of Computing, Apr. 1982. 
A. El Gamal and A. Orlitsky, “Interactive data compression,” in 
Proc. 25th Annu. Svmp. Foundations of Computer Science, Oct. 
1984. 
K. Mehlhorn and E. M. Schmidt, “Las Vegas is better then deter- 
minism in VLSI and distributed computing,” in Proc. 14th Annu. 
ACM Svnlp. Theory of Computing, Apr. 1982. 
A. Orlitsky and A. El Gamal, “Randomized communication com- 
plexity,” presented at the IEEE Int. symp. Information Theory, 
June 1985. 
B. Chor and 0. Goldreich, “Unbiased bits from sources of weak 
randomness and probabilistic communication complexity,” in Proc. 
-16th Annu. Svnip. Fouiidutions of Computer Science, Oct. 1985. 
C. E. Shannon, “A mathematical theory of communication,” Bell 
Svst. Tech. J., July 1948. 
K. F. Pang and A. El Gamal, “Communication complexity of 
computing the Hamming distance,” SIAM J .  Computing, to appear. 
M. 0. Rabin and A. Yao, unpublished manuscript (see [2]). 
W. Uhlmann, “ Vergleich der hypergeometrischen mit der Binomial 
Verteilung.” Metriku, vol. 10, 1966. 
A. Rinyi, Prohuhilirv Theory. Amsterdam, The Netherlands: 

, r l  I d  North Holland, 1970. 

. 


