
GALOIS CONNECTIONS FOR INCIDENCE HOPF ALGEBRAS OF PARTIALLY

ORDERED SETS.

MARCELO AGUIAR AND WALTER FERRER SANTOS

Abstract. An important well-known result of Rota describes the relationship between the Möbius

functions of two posets related by a Galois connection. We present an analogous result relating

the antipodes of the corresponding incidence Hopf algebras, from which the classical formula can

be deduced. To motivate the derivation of this more general result, we first observe that a simple

conceptual proof of Rota’s classical formula can be obtained by interpreting it in terms of bimodules

over the incidence algebras. Bimodules correct the apparent lack of functoriality of incidence algebras

with respect to monotone maps. The theory of incidence Hopf algebras is reviewed from scratch, and

centered around the notion of cartesian posets. Also, the universal multiplicative function on a poset

is constructed and an analog for antipodes of the classical Möbius inversion formula is presented.

1. Introduction, notation and preliminaries

All posets to be considered are assumed to be locally finite. k is a fixed commutative ring, often
omitted from the notation. IP is the incidence algebra of the poset P over k:

IP = {ϕ : P × P → k / ϕ(x, y) = 0 if x 6≤ y} ;

with multiplication

(ϕ ∗ ψ)(x, y) =
∑

z∈P

ϕ(x, z)ψ(z, y) =
∑

x≤z≤y

ϕ(x, z)ψ(z, y)

and unit element δP ∈ IP , δP (x, y) =

{

1 if x = y,

0 if not
.

The zeta function of P is the element ζP ∈ IP defined by ζP (x, y) =

{

1 if x ≤ y,

0 if not
. Its inverse

µP ∈ IP always exists and is called the Möbius function of P .
Let P and Q be two posets. Letters x, y and z will usually denote elements of the poset P , while

for Q we will use u, v and w. A pair of maps f : P → Q and g : Q→ P is called adjoint if both f and
g are monotone and for any x ∈ P and w ∈ Q,

f(x) ≤ w ⇐⇒ x ≤ g(w) .

We will also refer to such a pair as a Galois connection between P and Q (even though this term is
often used in the literature for an adjoint pair between P and Qop, the opposite poset of Q). In this
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situation, the Möbius functions of P and Q are related by the following formula due originally to Rota
([Rot, theorem 1], or, for the formulation below [Gre, 5.4]):

(1) ∀ x ∈ P and w ∈ Q,
∑

y∈P
f(y)=w

µP (x, y) =
∑

v∈Q
g(v)=x

µQ(v, w) .

The main purpose of this note is to present a generalization of this formula to the context of Hopf
algebras. It will be convenient to first reinterpret Rota’s formula, as well as a simple extension of it
involving more general incidence functions, in terms of bimodules over the incidence algebras of P and
Q. This will be done in section 3.

Recall that if A and B are k-algebras and M an A-B-bimodule, then

a · (m · b) = (a ·m) · b ∀ a ∈ A, b ∈ B and m ∈M .

Rota’s formula can be seen as the following equality in a certain IP -IQ-bimodule Mf,g associated to
the Galois connection:

µP · (ζ · µQ) = (µP · ζ) · µQ ,

where ζ ∈Mf,g is the zeta function of the connection (section 3).
The incidence coalgebra of P will be denoted by IP , and the (standard) reduced incidence coalgebra

by RP . These definitions will be reviewed in section 4, where the basics of the theory of incidence Hopf
algebras will be discussed from scratch. This theory was initiated by Joni and Rota [J-R] and later
received further development and clarification in works of Schmitt [Sch1,2]. The main point is that
when a poset carries some additional multiplicative structure, its incidence coalgebra becomes a Hopf
algebra. Moreover, the Möbius function can be obtained from the antipode as the composite

µP = ζP ◦ SP .

Schmitt also finds an analog of Hall’s formula for Möbius functions [Sch2, theorem 4.1] that reads

(2) SP [x, y] =
∑

n≥0

(−1)n
∑

x=x0<x1<...<xn=y

[x0, x1] · . . . · [xn−1, xn] ;

from where the classical formula, giving µP as an alternating sum of numbers of chains, is recovered
simply by applying ζP .

It was suggested by Rota and Schmitt that there should be antipode analogues of other classic
formulas for the Möbius function (for a summary of these properties, see [Gre]). In this note we
present a very natural analog of Rota’s formula (1) for a Galois connection (theorem 5.4). It reads

∑

y∈P
f(y)=w

SP [x, y] ⊗ 1 =
∑

v∈Q
g(v)=x

1 ⊗ SQ[v, w] .

The above equality is between elements of the tensor product of the incidence Hopf algebras of P
and Q, over a certain algebra. This algebra is non-other than the dual version of the bimodule Mf,g

mentioned above. The classical formula is obtained simply by applying ζP⊗ζQ to both sides of this
equality.

In section 2 we construct a bimodule over the incidence algebras associated to any monotone map
between the posets. This bimodule replaces in some sense the morphism of algebras that the monotone
map in general fails to induce. In section 3 we use this construction to present the proof of Rota’s
formula (1) announced above. This approach to the classical case suggests the constructions and
results for the Hopf algebra case, that are carried out in section 5. The necessary background on
incidence Hopf algebras is discussed in section 4. Our presentation emphasizes the relevance of the
notion of cartesian posets to the construction of incidence Hopf algebras. We also discuss multiplicative
functions on arbitrary posets and construct the universal multiplicative function of a poset. In section
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6 we illustrate how one can use the notion of multiplicative functions as a bridge between classical
formulas for Möbius functions and their antipode analogues, through two examples: the formula for
Galois connections and the classical Möbius inversion formula. The analog of the latter reads

g(x) =
∑

y∈P
x≤y

[x, y] · f(y) ∀ x ∈ P ⇐⇒ f(x) =
∑

y∈P
x≤y

SP [x, y] · g(y) ∀ x ∈ P ,

where f and g are functions defined on P with values on a module over the incidence Hopf algebra of
P (corollary 6.4).

2. The bimodule associated to a monotone map

Let f : P → Q be a monotone map between posets. In general, f does not induce any morphism
between the incidence algebras of P and Q. This lack of functoriality can be corrected by considering
bimodules over the incidence algebras, as we now describe.

Recall that if A and B are k-algebras, then an A-B-bimodule is a k-space M together with k-linear
actions

A×M →M, (a,m) 7→ a ·m and M ×B →M, (m, b) 7→ m · b ,

that make M into a left A-module and a right B-module in such a way that

a · (m · b) = (a ·m) · b ∀ a ∈ A, b ∈ B and m ∈M .

Assume that f satisfies the following condition (to be implicitly assumed from now on): for any
x ∈ P and w ∈ Q, the set {y ∈ P / x ≤ y and f(y) ≤ w} is finite.

The space

Mf = {α : P ×Q→ k / α(x,w) = 0 if f(x) 6≤ w}

carries a natural IP -IQ-bimodule structure as follows. Take α ∈Mf , ϕ ∈ IP , ψ ∈ IQ and (x,w) ∈ P×Q.
We define

(ϕ · α)(x,w) =
∑

y∈P

ϕ(x, y)α(y, w) =
∑

x≤y
f(y)≤w

ϕ(x, y)α(y, w)(3)

(α · ψ)(x,w) =
∑

v∈Q

α(x, v)ψ(v, w) =
∑

f(x)≤v≤w

α(x, v)ψ(v, w) .(4)

Notice that if f(x) 6≤ w then both sums above are zero, so these assignments define elements ϕ ·α and
α · ψ ∈ Mf . The bimodule axioms are now straightforward. For instance, for the associativity axiom
for the left action of IP on Mf , we have

(ϕ1 ∗ ϕ2) · α(x,w) =
∑

y∈P

(ϕ1 ∗ ϕ2)(x, y)α(y, w)

=
∑

y,z∈P

ϕ1(x, z)ϕ2(z, y)α(y, w)

=
∑

z∈P

ϕ1(x, z)(ϕ2 · α)(z, w) = ϕ1 · (ϕ2 · α)(x,w) .

Similarly, the crucial axiom (ϕ · α) · ψ = ϕ · (α · ψ) holds because both sides evaluate on (x,w) to
∑

y∈P
v∈Q

ϕ(x, y)α(y, v)ψ(v, w) .
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Two extreme cases of this construction are as follows. First, for the identity map idP : P → P ,
MidP

= IP viewed as IP -bimodule via left and right multiplication. At the other end, if f : P → {•}
is the constant map, then

Mf = {α : P → k / α is any function }

with its usual left IP -module structure

(ϕ · α)(x) =
∑

x≤y

ϕ(x, y)α(y) .

Composition of maps corresponds to tensor product of bimodules. In this sense, the assignments

P 7→ IP and f 7→Mf

define a functor from the category of posets and monotone maps to the category of algebras and

bimodules (where composition is tensor product). Explicitly, if P
f
−→ Q

g
−→ R are monotone maps, then

Mgf
∼= Mf⊗IQMg as IP -IR-bimodules .

Moreover, if fi : P → Q are monotone maps for i = 1, 2 such that f1(x) ≤ f2(x) ∀ x ∈ P , then Mf2 ⊆
Mf1 as IP -IQ-bimodules. This means that this assignment is really a 2-functor between 2-categories,
but this terminology will not be needed here.

Proposition 2.1. Let f : P → Q be a monotone map. The map f ♯ : IQ →Mf ,

f ♯(ψ)(x,w) = ψ(f(x), w) ,

is a morphism of right IQ-modules.

Proof. Take ψ1, ψ2 ∈ IQ, then

f ♯(ψ1 ∗ ψ2)(x,w) =

(ψ1 ∗ ψ2)(f(x), w) =
∑

v∈Q

ψ1(f(x), v)ψ2(v, w) =
∑

v∈Q

f ♯(ψ1)(x, v)ψ2(v, w)

= (f ♯(ψ1) · ψ2)(x,w) .

�

Remarks 2.1.

(1) Consider the element δf = f ♯(δQ) ∈Mf . It follows from proposition 2.1 that for any ψ ∈ IQ,

f ♯(ψ) = δf · ψ .

Notice that δf (x,w) =

{

1 if f(x) = w

0 otherwise
. The analogous map IP → Mf , ϕ 7→ ϕ̃ := ϕ · δf (a

morphism of left IP -modules) is explicitly given by ϕ̃(x,w) =
∑

x≤y
f(y)=w

ϕ(x, y). We will not make

use of this map.
(2) One may consider linear maps f ♭ : Mf → IP and f∗ : IQ → IP given by f ♭(α)(x, y) =

α(x, f(y)) and f∗(ψ)(x, y) = ψ(f(x), f(y)) for x ≤ y in P . There is a commutative diagram
Mf

f♭

!!DD
DD

IQ

f♯ ==zzz

f∗

// IP

. In general, f ♭ fails to be a morphism of left IP -modules and f∗ a morphism

of algebras.
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(3) Graves has considered other type of bimodules over incidence algebras [Gra]. He also associates
a bimodule to a monotone map P → Q, but a IP -IP -bimodule instead of a IP -IQ-one. There
is no relation between his construction and the one presented here.

3. Rota’s formula for a Galois connection

Let f : P → Q, g : Q → P be a Galois connection, as defined in section 1. Thus both f and g are
monotone and for any x ∈ P and w ∈ Q,

(5) f(x) ≤ w ⇐⇒ x ≤ g(w) .

According to the construction of section 2, there are two bimodules associated to this situation

Mf = {α : P ×Q→ k / α(x,w) = 0 if f(x) 6≤ w}, an IP -IQ-bimodule,

and

Mg = {α : Q× P → k / α(w, x) = 0 if g(w) 6≤ x}, an IQ-IP -bimodule.

We may also regard g as a monotone map between the opposite posets gop : Qop → P op and therefore
consider

Mgop = {α : Qop × P op → k / α(w, x) = 0 if gop(w) 6≤op x}, an IQop-IP op -bimodule.

But this is not a new bimodule: under the obvious identification between Bop-Aop-bimodules and
A-B-bimodules, Mgop = Mf . In fact,

f(x) ≤ w ⇐⇒ x ≤ g(w) ⇐⇒ gop(w) ≤op x ,

hence the map

Mf →Mgop , α 7→ α̃, α̃(w, x) = α(x,w) ,

is an isomorphism of IP -IQ-bimodules. For this reason, we use the notation Mf,g for the bimodule
Mf = Mgop in this context.

Therefore, according to proposition 2.1, there are maps

f ♯ : IQ → Mf,g, f
♯(ψ)(x,w) = ψ(f(x), w), a map of right IQ-modules(6)

and

g♯ : IP →Mf,g, g
♯(ϕ)(x,w) = ϕ(x, g(w)), a map of left IP -modules.(7)

Consider the element ζ ∈Mf,g defined by

ζ(x,w) =

{

1 if f(x) ≤ w, or equivalently, if x ≤ g(w),

0 otherwise.

We call it the zeta function of the Galois connection. Notice that

(8) f ♯(ζQ) = ζ = g♯(ζP ) .

We claim that Rota’s formula (1) is precisely the following equality in Mf,g:

(9) µP · (ζ · µQ) = (µP · ζ) · µQ .

To see this, we need only compute each side of (9) separately. We have,

µP · (ζ · µQ)
(8)
= µP · (f ♯(ζQ) · µQ)

(6)
= µP · f ♯(ζQ ∗ µQ) = µP · f ♯(δQ) ,
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while

(µP · ζ) · µQ

(8)
= (µP · g♯(ζP )) · µQ

(7)
= g♯(µP ∗ ζP ) · µQ = g♯(δP ) · µQ .

Hence, for any x ∈ P and w ∈ W ,

µP · (ζ · µQ)(x,w) = µP · f ♯(δQ)(x,w)
(3)
=
∑

y∈P

µP (x, y)f ♯(δQ)(y, w) =
∑

y∈P

µP (x, y)δQ(f(y), w)

=
∑

y∈P
f(y)=w

µP (x, y) ,

and

(µP · ζ) · µQ(x,w) = g♯(δP ) · µQ(x,w)
(4)
=
∑

v∈Q

g♯(δP )(x, v)µQ(v, w) =
∑

v∈Q

δP (x, g(v))µQ(v, w)

=
∑

v∈Q
g(v)=x

µQ(v, w) .

Thus, the equality in (9) gives precisely Rota’s formula (1).
This approach to Rota’s formula suggests the following simple extension:

Proposition 3.1. Let f : P → Q and g : Q → P be a Galois connection as above. Let γP ∈ IP and
γQ ∈ IQ be two invertible functions such that

(10) ∀ x ∈ P and w ∈ Q, γP (x, g(w)) = γQ(f(x), w) .

Then,

(11) ∀ x ∈ P and w ∈ Q,
∑

y∈P
f(y)=w

γ−1
P (x, y) =

∑

v∈Q
g(v)=x

γ−1
Q (v, w) .

Proof. Hypothesis (10) means that g♯(γP ) = f ♯(γQ). Let γ ∈ Mf,g denote this common image. As
before, the result follows by computing separately each side of the equality

γ−1
P · (γ · γ−1

Q ) = (γ−1
P · γ) · γ−1

Q .

Using (6) and (7) we see that each of the sides above is respectively equal to γ−1
P ·f ♯(δQ) and g♯(δP )·γ−1

Q .

Now computing each of these on (x,w) ∈ P ×Q gives precisely (11). �

4. cartesian posets, multiplicative functions and incidence Hopf algebras

In this section we recall the definitions of incidence coalgebras [J-R] and Hopf algebras [Sch1,2] and
associated concepts. Only the most basic notions from Hopf algebra theory are needed, as found for
instance in [Mon]. We also discuss the notion of multiplicative functions on a poset, from a slightly
different point of view to the one in the literature. The universal multiplicative function on a poset is
constructed. The central notion will be that of a cartesian poset.

The incidence coalgebra of a (locally finite ) poset P is the k-space IP with basis

{(x, y) ∈ P × P / x ≤ y} ,
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comultiplication ∆P and counit δP defined by

∆P (x, y)
∑

z∈P
x≤z≤y

(x, z)⊗(z, y) and δP (x, y) =

{

1 if x = y,

0 if not
.

Notice that (IP )∗ = IP as k-algebras; in particular, the counit of IP is the unit δP of IP —this is the
reason for departing from the more usual ε-notation for counits.

An interval of P is a subset of the form

[x, y]P = {z ∈ P / x ≤ z ≤ y} ,

often viewed as poset in its own right with the order induced by that of P .
The reduced incidence coalgebra RP is the quotient of IP by the subspace

Span{(x, y) − (x′, y′) ∈ RP / [x, y]P ∼= [x′, y′]P } ,

where ∼= denotes isomorphism of posets (bijections φ such that φ(a) ≤ φ(b) ⇐⇒ a ≤ b).
The subspace in question is a coideal of IP and thus RP is indeed a coalgebra. The image of

(x, y) ∈ IP on RP is denoted by [x, y]. It follows that

[x, y] = [x′, y′] ⇐⇒ [x, y]P ∼= [x′, y′]P .

Definition 4.1. Let P be a poset and A a commutative k-algebra. A multiplicative function on P
with values on A is a k-linear map α : RP → A with the following properties

α[x, x] = 1 for any x ∈ P ,(12)

α[x, y]α[u, v] = α[a, b] whenever [x, y]P × [u, v]P ∼= [a, b]P as posets.(13)

Notice that, in general, the cartesian product of two intervals of P will not be isomorphic to another
interval of P . As first noted by Schmitt [Sch1], when the poset P does satisfy this property, its reduced
incidence coalgebra RP carries a natural structure of Hopf algebra, in such a way that multiplicative
functions are precisely morphisms of algebras RP → A. We turn our attention to this class of posets
now.

Definition 4.2. A poset P is called cartesian if given x, y, u and v ∈ P such that x ≤ y and u ≤ v,
there exist a and b ∈ P with a ≤ b and an isomorphism

[x, y]P × [u, v]P ∼= [a, b]P .

cartesian posets are called hereditary in [S-O] (definition 3.3.3). At first, the notion of cartesian
posets may seem too restrictive. For instance, it follows from the definition that a non-discrete cartesian
poset must be infinite. However, quite the opposite is true. For, first, “infinite versions” of several
familiar posets are indeed cartesian (cf. examples below), and second, and perhaps more importantly,
every poset embeds canonically into a universal cartesian poset (proposition 4.3 below). It is this
fact that allows us to derive a given classical formula for Möbius functions of arbitrary posets from
its counterpart for antipodes of Hopf algebras of cartesian posets. We will elaborate on this after
discussing the Hopf algebra structure on the reduced incidence coalgebra of a cartesian poset. First,
the announced examples.

Examples 4.1.
The following posets are cartesian:

(1) The poset of positive integers ordered by divisibility;
(2) The poset of finite subsets of a countable set;
(3) The poset of partitions of a countable set into a finite number of blocks;
(4) The cartesian product of two cartesian posets.
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A chain is not cartesian, unless it is trivial.

The following important result is due to Schmitt.

Proposition 4.1. Let P be a cartesian poset. Define a multiplication, unit element and antipode in
RP as follows. Given two basis elements [x, y] and [u, v], we choose a and b as in definition 4.2 and
set

[x, y] · [u, v] = [a, b] ∈ RP .(14)

Also, for any x0 ∈ P let

1 = [x0, x0] ∈ RP .(15)

Finally, the antipode SP : RP → RP is defined by induction on the length of [x, y]P by

SP [x, x] = 1 ∀ x ∈ P(16)

and

SP [x, y] = −
∑

z∈P
x≤z<y

SP [x, z] · [z, y] for x < y ∈ P .(17)

With this structure, the reduced incidence coalgebra RP becomes a commutative Hopf algebra.

Proof. The multiplication, unit element and antipode are clearly well-defined. The Hopf algebra axioms
are checked without difficulty. In the process one finds that SP also satisfies the recursion

SP [x, y] = −
∑

z∈P
x<z≤y

[x, z] · SP [z, y] for x < y ∈ P .

For more details see [Sch2, theorem 4.1]. �

When P is a cartesian poset, we refer to RP as the incidence Hopf algebra of P . Notice that, as
announced, a multiplicative function α on a cartesian poset P with values on A is precisely a morphism
of algebras α : RP → A. In order to obtain an adequate algebraic understanding of multiplicative
functions on arbitrary posets we are led to consider the following construction.

Definition 4.3. Let P be an arbitrary poset. The cartesian envelope of P is the poset:

P (∞) =
∐

n≥1

Pn = {x = (x1, x2, . . . , xn) ∈ Pn / n ≥ 1}

with the order

x ≤ y ⇐⇒ x, y ∈ Pn for some n and xi ≤ yi ∀ i = 1, . . . , n .

Remark 4.1. The cartesian envelope P (∞) is closely related to the poset denoted by Xw in [S-O, page
148]: the families of isomorphism classes of intervals of both posets coincide, so both posets serve the
same purpose from the point of view of reduced incidence coalgebras. Definition 4.3 has the advantage
of eliminating the choice of a base point in P , which is needed for Xw. However, Xw may be more
natural in some situations. For instance, if X is the chain of natural numbers and the base point is 0,
then Xw is identified with the poset of positive integers under divisibility.

For any poset P , its envelope P (∞) is clearly a cartesian poset (in particular, P (∞) is locally finite

if so is P , as we always implicitly assume). Therefore, RP (∞)

is a Hopf algebra. Moreover, the map

P →֒ P (∞), x 7→ x = (x) ∈ P 1 ⊆ P (∞) ,
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embeds P as a convex subposet of P (∞), and hence there is a corresponding morphism of coalgebras

θP : RP →֒ RP (∞)

that simply views an interval of P as an interval of P (∞). Clearly, θP is a multiplicative function

on P , with values on the commutative algebra RP (∞)

(definition 4.1). Proposition 4.3 below shows
that θP is actually the universal multiplicative function on P . This result shows the relevance of the
envelope construction. The proof is fairly simple, but some care is needed when dealing with isomorphic
factorizations of posets. To properly address these details we first state a lemma.

Recall that a poset P is called indecomposable if it is connected, P 6= {•} and P ∼= P1 × P2 implies
P1 = {•} or P2 = {•}.

Lemma 4.2. (1) Let [a, b]P be an interval of a poset P such that

[a, b]P ∼= P1 × . . .× Pn for some posets Pi .

Then each Pi is isomorphic to an interval of P .
(2) Let α be a multiplicative function on a poset P and xi, yi, a and b ∈ P be such that

[x1, y1]P × . . .× [xn, yn]P ∼= [a, b]P .

Then

α[x1, y1] · . . . · α[xn, yn] = α[a, b] .

(3) Each finite non-trivial connected poset admits a decomposition into a product of indecomposable
posets, which is unique up to order (and isomorphism).

Proof. (1) If φ : [a, b]P → P1 × . . . × Pn is an isomorphism, φ(a) = (x1, . . . , xn) and φ(b) =
(y1, . . . , yn), then

Pi
∼= [(x1, . . . , xi, . . . , xn), (x1, . . . , yi, . . . , xn)] ∼= [φ−1(x1, . . . , xi, . . . , xn), φ−1(x1, . . . , yi, . . . , xn)]P .

(2) Apply part 1 to P1 = [x1, y1]P and P2 = [x2, y2]P × . . .× [xn, yn]P .Then use equation (13) and
induction.

(3) This is a simple well-known result, which can be proved along the same lines as part 1. A more
general version is given in [Sch2, lemma 6.1].

�

Proposition 4.3. Let P be a poset and P (∞) its cartesian envelope.

(1) Let α : RP → A be a multiplicative function with values on a commutative algebra A. Then

there exists a unique morphism of algebras α̃ : RP (∞)

→ A such that

RP
θP //

α
##GGGG

GGG
GG RP (∞)

α̃

���
�
�

A

commutes.
(2) If A is a bialgebra and α a morphism of coalgebras, then α̃ is a morphism of bialgebras.

Proof. (1) Given x ≤ y ∈ P (∞) we define

α̃[x,y] =
∏

n≥1

α[xn, yn] .
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We must verify that α̃ is well-defined. Suppose [x,y]P (∞)
∼= [x′,y′]P (∞) , i.e. that

[x1, y1]P × . . .× [xn, yn]P ∼= [x′1, y
′
1]P × . . .× [x′m, y

′
m]P .(a)

We need to check that

n
∏

i=1

α[xi, yi] =

m
∏

j=1

α[x′j , y
′
j ] .(b)

Since α satisfies (12), we may assume that all factors above are non-trivial. Decompose each
factor [xi, yi]P and [x′j , y

′
j ]P into a product of indecomposables (lemma 4.2, part 3). By part

1 of the lemma, each of the new factors is again an interval of P , and hypothesis (a) holds for
the new factors. Also, by part 2 of the lemma, equality (b) is equivalent to the corresponding
equality for the new factors. In other words, we may assume that all intervals [xi, yi]P and
[x′j , y

′
j ]P are indecomposable. Then the uniqueness in part 3 of the lemma says that the same

factors appear on both sides of each (a) and (b), possibly in different orders. Since A is
commutative, (b) holds.

We prove now that α̃ is a morphism of algebras. First,

α̃(1)
(15)
= α̃[x,x] =

∏

n≥1

α[xn, xn]
(12)
= 1 .

Second, take elements x, y, u, v, a and v ∈ P (∞) as in definition (14), so that

[x,y] · [u,v] = [a,b] ∈ RP (∞)

.

From (14) we have an isomorphism

[x1, y1]P × . . .× [xn, yn]P × [u1, v1]P × . . .× [um, vm]P ∼= [a1, b1]P × . . .× [al, bl]P .

This means that the following two intervals of P (∞) are isomorphic:

[a,b]P (∞)
∼= [(x1, . . . , xn, u1, . . . , um), (y1, . . . , yn, v1, . . . , vm)]P (∞) .

Hence, since α̃ is well-defined,

α̃
(

[x,y] · [u,v]
)

= α̃[a,b] =
∏

h≥1

α[ah, bh] =
∏

i≥1

α[xi, yi]
∏

j≥1

α[uj , vj ] = α̃[x,y] · α̃[u,v] ,

proving that α̃ preserves multiplications.
By construction, α̃ ◦ θP = α. Since α̃ must be multiplicative, this commutativity uniquely

determines α̃. This completes the proof.
(2) Let ∆A and δA be the comultiplication and counit of A. Take x ≤ y ∈ P (∞). Then, since δA

is a morphism of algebras and α a morphism of coalgebras,

δAα̃[x,y] = δA
∏

n≥1

α[xn, yn] =
∏

n≥1

δAα[xn, yn] =
∏

n≥1

δP [xn, yn] = δP (∞) [x,y] .
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Also, since ∆A is a morphism of algebras and α a morphism of coalgebras,

∆Aα̃[x,y] = ∆A

∏

n≥1

α[xn, yn] =
∏

n≥1

∆Aα[xn, yn] =
∏

n≥1

(α⊗α)∆P [xn, yn] =

∏

n≥1

(α⊗α)
∑

zn∈[xn,yn]P

[xn, zn]⊗[zn, yn] =
∏

n≥1

∑

zn∈[xn,yn]P

α[xn, zn]⊗α[zn, yn] =

∑

z1∈[x1,y1]P

∑

z2∈[x2,y2]P

· · ·

[

(

α[x1, z1]⊗α[z1, y1]
)

·
(

α[x2, z2]⊗α[z2, y2]
)

· . . .

]

=

∑

z∈[x,y]
P(∞)

(

∏

n≥1

α[xn, zn]
)

⊗

(

∏

n≥1

α[zn, yn]
)

=
∑

z∈[x,y]
P(∞)

α̃[x, z]⊗α̃[z,y] = (α̃⊗α̃)∆P (∞) [x,y] .

This proves that α̃ is a morphism of coalgebras and completes the proof.
�

Remark 4.2. A similar result to proposition 4.3 is stated in [S-O, proposition 3.3.14]. We chose to
present a complete proof because a few details appear to be missing in this reference (in particular the
crucial assumption that α be multiplicative).

We close this section by reinterpreting the notion of multiplicative functions in algebraic terms. We
need to recall some basic facts from Hopf algebra theory.

If C is a coalgebra and A an algebra, the k-space Homk(C,A) of all linear maps becomes an algebra
under the convolution product

α ∗ β = mA ◦ (α⊗β)∆C

with unit element uA ◦ δC , where mA, uA, ∆C and δC are the structure maps of A and C. For instance
if C = IP and A = k then the convolution product on IP = Homk(IP , k) is the multiplication of
incidence functions (section 1).

If H is a Hopf algebra and A a commutative algebra then the set Algk(H,A) of all morphisms of
algebras is closed under the convolution product of Homk(H,A) and furthermore, a group; the inverse
of α ∈ Algk(H,A) being α ◦ SH .

Let G(P,A) denote the set of multiplicative functions on an arbitrary poset P , with values on a
commutative algebra A. It is easy to see directly from definition 4.1 that any multiplicative function
is invertible in Homk(RP , A), since we can view it as a triangular matrix with 1’s on the diagonal, by
condition (12). It is not so clear that its inverse should be multiplicative again. However, this is an
easy consequence of proposition 4.3, as we now explain. This can be seen as a generalization of the
product formula for Möbius functions [Gre, 3.1].

Corollary 4.4. Let P be a poset, A a commutative k-algebra and G(P,A) the set of multiplicative
functions.

(1) If P is cartesian, G(P,A) = Algk(RP , A), a group under convolution.
(2) For arbitrary P , G(P,A) is still a group under convolution

(α ∗ β)[x, y] =
∑

z∈P
x≤z≤y

α[x, z]⊗β[z, y] .

Moreover, G(P,A) is canonically isomorphic to G(P (∞), A) and the inverse of α ∈ G(P,A) is

α−1[x, y] =
∑

n≥0

(−1)n
∑

x=x0<x1<...<xn=y

α[x0, x1] · . . . · α[xn−1, xn] .
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Proof. We have already noted that if P is cartesian then G(P,A) = Algk(RP , A). Since in this case
RP is a Hopf algebra, part 1 follows. For an arbitrary poset P , proposition 4.3 says that there is a
bijection

G(P (∞), A)
∼=
−→ G(P,A)

given by restriction along θP : P →֒ P (∞). Since θP is a morphism of coalgebras, this bijection preserves
convolution products and units. In particular, any multiplicative function α on P is invertible and its
inverse is multiplicative. This proves that G(P,A) is a group, isomorphic to G(P (∞), A). The inverse
of β ∈ G(P (∞), A) is β−1 = β ◦ SP (∞) . It follows that the inverse of α ∈ G(P,A) is given by
α̃ ◦ SP (∞) ◦ θP . Using Schmitt’s analog (2) of Hall’s formula for the antipode of a cartesian poset, we
deduce that α−1[x, y] is as stated. �

Remarks 4.3.
Often in the literature, the case of a the Hopf algebra of a family of isomorphism classes of posets

is considered [Sch1,2, Ehr]. The family should be closed under subintervals and cartesian products in
order to obtain a Hopf algebra. This is really an equivalent point of view to the one adopted in this
note in terms of cartesian posets. In fact, given such a family F, the poset

PF =
∐

P∈F

P

obtained as the disjoint union of its members is cartesian and the corresponding Hopf algebra RPF is
the Hopf algebra associated to the family F by those authors.

In this note we have chosen to consider the case of incidence coalgebras reduced by the isomorphism
relation only. Other equivalence relations on the set of intervals of a poset can be considered, as studied
in detail by Schmitt [Sch1,2, S-O]. With some technical modifications, the constructions of this note,
including the statement and proof of the Galois connection formula (theorem 5.4) can be extended to
this context. This situation is more general but more cumbersome and it does not seem to add many
new examples of interest. For instance, the Faa di Bruno Hopf algebra is already obtained as the Hopf
algebra corresponding to the poset of partitions of example 4.1.

5. The formula for the antipodes

The derivation of Rota’s formula presented in section 3 should serve as a guide for the derivation of
the formula for the antipodes.

We start by describing the dual constructions and results to those of section 2.

Proposition 5.1. Let f : P → Q be a monotone map, satisfying the same finiteness assumptions as
in section 2.

(1) The k-space Mf with basis

{(x,w) ∈ P ×Q / f(x) ≤ w}

is an IP -IQ-bicomodule with structure maps

cP : Mf → IP
⊗Mf , (x,w) 7→

∑

y∈P
x≤y, f(y)≤w

(x, y)⊗(y, w)

and

cQ : Mf →Mf
⊗IQ, (x,w) 7→

∑

v∈Q
f(x)≤v≤w

(x, v)⊗(v, w) .

(2) The map f♯ : Mf → IQ, f♯(x,w) = (f(x), w) is a morphism of right IQ-comodules.
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Proof. The proofs are dual to those in section 2 and offer no difficulty. �

Remark 5.1. The map f♯ may be seen as the compositeMf cQ
−−→Mf⊗IQ δf⊗id

−−−→ IQ, where δf ∈ (Mf )∗ =
Mf is as in remark 2.1. Maps of these type (for arbitrary functionals in place of δf ) are sometimes
called coaction maps and are always morphisms of comodules.

Let f : P → Q and g : Q → P be a Galois connection between P and Q. As in section 3, the map
[x,w] 7→ [w, x] identifies Mf and Mgop

as IP -IQ-bicomodules. We use Mf,g to denote this bicomodule.
Therefore, according to proposition 5.1, there are maps

f♯ : Mf,g → IQ, f♯(x,w) = (f(x), w), a morphism of right IQ-comodules,

and

g♯ : Mf,g → IP , g♯(x,w) = (x, g(w)), a morphism of left IP -comodules.

We turn our attention now to reduced incidence coalgebras, since this is the framework where Hopf
algebras arise. First we check that the objects constructed above admit natural “reduced” versions.

Consider the following relation on the set B = {(x,w) ∈ P ×Q / f(x) ≤ w} (the k-basis of Mf,g):

(x,w) ∼ (x′, w′) if there exist order-preserving bijections

φQ : [f(x), w]Q → [f(x′), w′]Q and φP : [x, g(w)]P → [x′, g(w′)]P such that

[x, g(w)]P
φP //

f

��

[x′, g(w′)]P

f

��
[f(x), w]Q

φQ

// [f(x′), w′]Q

and [x, g(w)]P
φP // [x′, g(w′)]P

[f(x), w]Q

g

OO

φQ

// [f(x′), w′]Q

g

OO
commute.(18)

Clearly, ∼ is an equivalence relation on B. The equivalence class represented by (x,w) will be
denoted by [x,w], in agreement with our previous conventions. Let Rf,g be the k-space with basis
consisting of these equivalence classes. In other words, Rf,g is the quotient of Mf,g by the subspace

Kf,g = Span{(x,w) − (x′, w′) / (x,w) ∼ (x′, w′), for (x,w), (x′, w′) ∈ B} .

Let πP : IP → RP and πQ : IQ → RQ denote the canonical projections. They allow us to view Mf,g

as a RP -RQ-bicomodule.

Proposition 5.2. In the above situation:

(1) Kf,g is a RP -RQ-subbicomodule of Mf,g. Therefore, Rf,g is a RP -RQ-bicomodule with struc-
ture maps

cP : Rf,g → RP
⊗Rf,g, [x,w] 7→

∑

y∈P
x≤y≤g(w)

[x, y]⊗[y, w](19)

and

cQ : Rf,g → Rf,g
⊗RQ, [x,w] 7→

∑

v∈Q
f(x)≤v≤w

[x, v]⊗[v, w] .(20)

(2) The maps f♯ and g♯ factor through Kf,g yielding morphisms

f♯ : Rf,g → RQ, f♯[x,w] = [f(x), w](21)
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and

g♯ : Rf,g → RP , g♯[x,w] = [x, g(w)](22)

of right RQ-comodules and left RP -comodules respectively.

Proof. (1) We must show that (πP⊗id)cP (Kf,g) ⊆ RP⊗Kf,g (and similarly for RQ). Take two
equivalent elements (x,w) and (x′, w′) inB. Choose isomorphisms φP : [x, g(w)]P → [x′, g(w′)]P
and φQ : [f(x), w]Q → [f(x′), w′]Q as in 18. For each y ∈ [x, g(w)]P , φP induces isomorphisms

(a) [x, y]P ∼= [x′, φP (y)]P and (b) [y, g(w)]P ∼= [φP (y), g(w′)]P .

Also, φQ induces an isomorphism

(c) [f(y), w]Q ∼= [φQf(y), w′]Q = [fφP (y), w′]Q ,

the last equality in virtue of the commutativity of the first diagram in (18).
From (a), [x, y] = [x′, φP (y)] ∈ RP , and from (b) and (c), (y, w) ∼ (φP (y), w′), since these

isomorphisms commute with f and g by construction.
Therefore

(πP⊗id)cP

(

(x,w) − (x′, w′)
)

=
∑

y∈P
x≤y≤g(w)

[x, y]⊗(y, w) −
∑

y′
∈P

x′≤y′≤g(w′)

[x′, y′]⊗(y′, w′) =
∑

y∈P
x≤y≤g(w)

[x, y]⊗(y, w) −
∑

y∈P
x≤y≤g(w)

[x′, φP (y)]⊗(φP (y), w′)

=
∑

y∈P
x≤y≤g(w)

[x, y]⊗
(

(y, w) − (φP (y), w′)
)

∈ RP
⊗Kf,g ,

as needed.
(2) We need to check that πQf♯(K

f,g) = 0 (and similarly for g♯). But this is immediate from the
definitions: if (x,w) ∼ (x′, w′) then in particular [f(x), w]Q ∼= [f(x′), w′]Q, hence

πQf♯

(

(x,w) − (x′, w′)
)

= [f(x), w] − [f(x′), w′] = 0 ∈ RQ .

�

We consider now those Galois connections that are compatible with the multiplicative structure of
cartesian posets. It is for this type of connections that a formula for the antipodes can be stated and
proved. Examples of these connections will be discussed below.

Definition 5.1. A Galois connection f : P → Q and g : Q → P between cartesian posets is called
multiplicative if given x, y ∈ P and v, w ∈ Q such that f(x) ≤ w and f(y) ≤ v, there are z ∈ P and
u ∈ Q with f(z) ≤ u and isomorphisms

λQ : [f(x), w]Q × [f(y), v]Q → [f(z), u]Q and λP : [x, g(w)]P × [y, g(v)]P → [z, g(u)]P

such that

(23) [x, g(w)]P × [y, g(v)]P
λP //

f×f

��

[z, g(u)]P

f

��
[f(x), w]Q × [f(y), v]Q

λQ

// [f(z), u]Q

and [x, g(w)]P × [y, g(v)]P
λP // [z, g(u)]P

[f(x), w]Q × [f(y), v]Q
λQ

//

g×g

OO

[f(z), u]Q

g

OO

commute.

Examples 5.1.
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(1) Let P = Q be the poset of positive integers under divisibility. Then

f : P → P, px1
1 · . . . · pxr

r 7→ py1

1 · . . . · pyr
r where yi =

{

xi/2 if xi is even

(xi + 1)/2 if xi is odd

and

g : P → P, n 7→ n2

define a multiplicative Galois connection between P and itself.
(2) Let Q be again the poset of positive integers and P the poset of finite subsets of the set of

positive integers (example 4.1). Fix an enumeration {pi}i≥1 of the prime numbers. Then

f : P → Q, I 7→
∏

i∈I

pi and g : Q→ P, n 7→ { i / pi divides n }

define a multiplicative Galois connection between P and Q.

Given a multiplicative Galois connection as in definition 5.1, we define a multiplication and a unit
element in Rf,g as follows. Given two basis elements [x,w] and [y, v], we choose z and u as in (23) and
set

[x,w] · [y, v] = [z, u] ∈ Rf,g .(24)

Also, for any x0 ∈ g(Q) ⊆ P and w0 ∈ f(P ) ⊆ Q, let

1 = [x0, f(x0)] = [g(w0), w0] ∈ Rf,g .(25)

Proposition 5.3. In the above situation:

(1) The multiplication and unit element of Rf,g are well-defined and turn it into an associative
commutative k-algebra.

(2) cP : Rf,g → RP⊗Rf,g and cQ : Rf,g → Rf,g⊗RQ are morphisms of algebras
(3) f♯ : Rf,g → RQ and g♯ : Rf,g → RP are morphisms of algebras.

Proof. (1) Suppose (x,w) ∼ (x′, w′), (y, v) ∼ (y′, v′) and z′ and u′ are such that the conditions of
(23) hold for the triple (x′, w′), (y′, v′) and (z′, u′). Using (23) and (18) we build commutative
diagrams

[z, g(u)]P

f

��

[x, g(w)]P × [y, g(v)]P
λPoo

f×f

��

φP ×φP // [x′, g(w′)]P × [y′, g(v′)]P
λ′

P //

f×f

��

[z′, g(u′)]P

f

��
[f(z), u]Q [f(x), w]Q × [f(y), v]Q

λQ

oo
φQ×φQ

// [f(x′), w′]Q × [f(y′), v′]Q
λ′

Q

// [f(z′), u′]Q

and similar ones with g instead of f . These imply that (z, u) ∼ (z′, u′) and thus the multipli-
cation is well-defined.

Now take any x0 ∈ g(Q) and w0 ∈ f(P ). It follows from the definition of Galois con-
nection that then gf(x0) = x0 and fg(w0) = w0. Hence there are unique isomorphisms
φP : [x0, gf(x0)]P ∼= [g(w0), g(w0)]P and φQ : [f(x0), f(x0)]Q ∼= [fg(w0), w0]Q, and they com-
mute with f and g trivially. Thus (x0, f(x0)) ∼ (g(w0), w0) and the element 1 ∈ Rf,g is
well-defined.

Associativity for the multiplication is reduced to associativity for the cartesian product of
posets along the same lines as above. Commutativity is obvious. As for unitality, consider a
basis element [x,w] ∈ Rf,g, then

[f(x), w]Q × [f(x0), f(x0)]Q ∼= [f(x), w]Q and [x, g(w)]P × [x0, gf(x0)]P ∼= [x, g(w)]P ,
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and these bijections commute with f and g trivially, so [x,w] · 1 = [x,w].
(2) Let us prove the assertion for cP , the other follows by symmetry. Take basis elements [x,w]

and [x′, w′] of Rf,g and let [x,w] · [x′, w′] = [x′′, w′′]. Choose isomorphisms λP : [x, g(w)]P ×
[x′, g(w′)]P → [x′′, g(w′′)]P and λQ : [f(x), w]Q × [f(x′), w′]Q → [f(x′′), w′′]Q satisfying (23).
Then, for y ∈ [x, g(w)] and y′ ∈ [x′, g(w′)], there are induced isomorphisms

[x, y]P × [x′, y′]P ∼= [x′′, y′′]P(a)

and

[y, g(w)]P × [y′, g(w′)]P ∼= [y′′, g(w′′)]P and [f(y), w]Q × [f(y′), w′]Q ∼= [f(y′′), w′′]Q .(b)

From (a), [x, y] · [x′, y′] = [x′′, y′′] ∈ RP , while from (b) (since these isomorphisms commute
with f and g by construction), [y, w] · [y′, w′] = [y′′, w′′] ∈ Rf,g. Therefore,

cP [x,w] · cP [x′, w′] =
(

∑

x≤y≤g(w)

[x, y]⊗[y, w]

)

·

(

∑

x′≤y′≤g(w′)

[x′, y′]⊗[y′, w′]

)

=
∑

x≤y≤g(w)
x′≤y′≤g(w′)

[x, y] · [x′, y′]⊗[y, w] · [y′, w′]

=
∑

x′′≤y′′≤g(w′′)

[x′′, y′′]⊗[y′′, w′′] = cP [x′′, w′′] = cP

(

[x,w] · [x′, w′]
)

.

Finally,

cP (1) = cP [g(w0), w0] =
∑

g(w0)≤y≤g(w0)

[g(w0), y]⊗[y, w0] = [g(w0), g(w0)]⊗[g(w0), w0] = 1⊗1 ,

which completes the proof.
(3) These assertions follow immediately from definitions (24) and (25). For instance, for x, w, y,

v, z and u as in (24), we have [f(x), w]Q × [f(y), v]Q ∼= [f(z), u]Q, and hence

f♯[x,w] · f♯[y, v] = [f(x), w] · [f(y), v] = [f(z), u] = f♯[z, u] = f♯

(

[x,w] · [y, v]
)

.

�

Remarks 5.2.

(1) Propositions 5.2 and 5.3 say that Rf,g is a RP -RQ-bicomodule algebra, and also that f♯ and
g♯ are morphisms of comodule algebras.

(2) Recall the functional δf : Mf,g → k from remark 5.1. It is easy to see that it descends to
the quotient δf : Rf,g → k and that as such it is a morphism of algebras. Moreover, f♯ is

the composite Rf,g cQ
−−→ Rf,g⊗RQ δf⊗id

−−−→ RQ. g♯ can be expressed similarly in terms of the

functional δg : Rf,g → k, δg(x,w) =

{

1 if x = g(w)

0 otherwise
.

We are now ready to state our main result. Viewing RP and RQ as Rf,g-algebras via f♯ and g♯

respectively, we form the tensor product of commutative algebras

RP ⊗Rf,g RQ .
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Theorem 5.4. Let f : P → Q and g : Q→ P be a multiplicative Galois connection between cartesian
posets. Let SP and SQ be the antipodes of the reduced incidence Hopf algebras of P and Q. Then, for
any x ∈ P and w ∈ Q,

(26)
∑

y∈P
f(y)=w

SP [x, y] ⊗ 1 =
∑

v∈Q
g(v)=x

1 ⊗ SQ[v, w] ∈ RP ⊗Rf,g RQ .

Proof. Consider the composite

Rf,g cP−−→ RP
⊗Rf,g SP⊗f♯

−−−−→ RP
⊗RQ idP⊗uQδQ

−−−−−−→ RP
⊗RQ →→ RP ⊗Rf,g RQ ,

where uQ : k → RQ and δQ : RQ → k are the unit and counit of RQ and the last map is the canonical
projection. The image of [x,w] ∈ Rf,g under this map is computed below:

[x,w] 7→
∑

x≤y
f(y)≤w

[x, y]⊗[y, w] 7→
∑

x≤y
f(y)≤w

SP [x, y]⊗[f(y), w] 7→
∑

x≤y
f(y)=w

SP [x, y]⊗1 7→
∑

y∈P
f(y)=w

SP [x, y] ⊗ 1 .

Similarly, under the composite

Rf,g cQ
−−→ Rf,g

⊗RQ g♯⊗SQ
−−−−→ RP

⊗RQ uP δP⊗idQ
−−−−−−→ RP

⊗RQ →→ RP ⊗Rf,g RQ ,

the element [x,w] ∈ Rf,g maps to
∑

v∈Q
g(v)=x

1 ⊗ SQ[v, w] ∈ RP ⊗Rf,g RQ.

Therefore, equality (26) is equivalent to the commutativity of the boundary of the following diagram.
Below we finish the proof by proving this commutativity.

RP⊗Rf,g
SP⊗f♯ //

idP⊗cQ

��

(b)

RP⊗RQ
idP⊗uQδQ //

idP⊗∆Q

��

RP⊗RQ

�� ��>
>>

>>
>>

>>
>>

>>
>>

>>
>

RP⊗RQ⊗RQ
idP⊗idQ⊗SQ//

(d)

(c)

RP⊗RQ⊗RQ

idP⊗mQpppp

77pppp

Rf,g

cP

AA�����������������

cQ

��;
;;

;;
;;

;;
;;

;;
;;

;;
(a) RP⊗Rf,g⊗RQ

SP⊗f♯⊗idQmmmmm

66mmmmm

SP⊗id⊗SQ//

idP⊗g♯⊗SQ

QQQ
QQ

((QQQQQ

RP⊗Rf,g⊗RQ

idP⊗f♯⊗idQnnnnn

66nnnnn

idP⊗g♯⊗idQ

PPP
PP

((PPP
PP

(e) RP ⊗Rf,g RQ

RP⊗RP⊗RQ
SP⊗idP⊗idQ

//

(d)

(c)

RP⊗RP⊗RQ

mP⊗idQ

NNNN

''NNNN

Rf,g⊗RQ
g♯⊗SQ

//

cP⊗idQ

OO

(b)

RP⊗RQ

∆P⊗idQ

OO

uP δP⊗idQ

// RP⊗RQ

?? ??������������������

Diagram (a) commutes because Rf,g is a RP -RQ-bicomodule (proposition 5.2). Diagrams (b) com-
mute because f♯ and g♯ are morphisms of comodules (also by proposition 5.2). Diagrams (c) commute
by definition of antipode for the Hopf algebras RP and RQ. Diagrams (d) commute trivially. Fi-
nally, diagram (e) commutes precisely by definition of tensor product of algebras. This completes the
proof. �
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Remark 5.3. Equality (26) can also be written as
∑

y∈P
f(y)=w

SP [x, y] · [y, g(w)] ⊗ 1 =
∑

v∈Q
g(v)=x

1 ⊗ [f(x), v] · SQ[v, w] ∈ RP ⊗Rf,g RQ .

This is simply because by definition of tensor product we have, for each y and w with f(y) = w,

1⊗1 = 1⊗[f(y), w] = 1⊗f♯[y, w] = g♯[y, w]⊗1 = [y, g(w)]⊗1 ∈ RP ⊗Rf,g RQ ,

and similarly for the right hand side.

6. From antipodes to Möbius functions

In this section we illustrate, by means of two examples, the principle that a formula for antipodes is
essentially the same as a formula for multiplicative functions, and hence in particular one for Möbius
functions. The first example is for the case of Galois connections, the main topic of this paper. The
second is about Möbius inversion formula.

For any poset P , the zeta function is clearly multiplicative: ζP ∈ G(P, k). It follows from the general
considerations of section 4 that its inverse the Möbius function is then given by

(27) µP = ζP ◦ SP .

Given a multiplicative Galois connection between cartesian posets, one recovers Rota’s formula
formula (1) by applying ζP⊗ζQ to (26) and using (27). Notice that ζP⊗ζQ is well-defined on the tensor
product RP ⊗Rf,g RQ, because ζP ◦ g♯ = ζQ ◦ f♯. In fact, this holds precisely by definition of Galois
connection.

We will explain now how the general case of Rota’s formula (for arbitrary posets) can also be deduced
from the formula for the antipodes.

Lemma 6.1. Let f : P → Q and g : Q → P be a Galois connection between arbitrary posets P and
Q. Then f and g extend to a multiplicative connection

f (∞) : P (∞) → Q(∞) and g(∞) : Q(∞) → P (∞)

between the cartesian envelopes.

Proof. For x ∈ P (∞) and w ∈ Q(∞) set

f (∞)(x) = (f(x1), f(x2), . . .) ∈ Q(∞) and g(∞)(w) = (g(w1), g(w2), . . .) ∈ Q(∞) .

Then
f (∞)(x) ≤ w ⇐⇒ f(xn) ≤ wn ∀ n ⇐⇒ xn ≤ g(wn) ∀ n ⇐⇒ x ≤ g(∞)(w) ,

so f (∞) and g(∞) define a Galois connection.
In order to check the conditions in definition 5.1, take x, y ∈ P (∞) and v,w ∈ Q(∞) such that

f (∞)(x) ≤ w and f (∞)(y) ≤ v. It follows that x ∈ Pn and w ∈ Qn for some n, y ∈ Pm and v ∈ Qm

for some m and
f(xi) ≤ wi for i = 1, . . . , n and f(yj) ≤ vj for j = 1, . . . ,m .

Let z ∈ P (∞) and u ∈ Q(∞) be

z = (x1, . . . , xn, y1, . . . , ym) and u = (w1, . . . , wn, v1, . . . , vm) .

Then the identity maps define isomorphisms

λQ(∞) : [f (∞)(x),w]Q(∞) × [f (∞)(y),v]Q(∞) → [f (∞)(z),u]Q(∞)

and

λP (∞) : [x, g(∞)(w)]P (∞) × [y, g(∞)(v)]P (∞) → [z, g(∞)(u)]P (∞)
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and diagrams (23) commute trivially. Thus the Galois connection is multiplicative. �

Corollary 6.2. Let Let f : P → Q and g : Q → P be a Galois connection between arbitrary posets P
and Q. Let γP : RP → A and γQ : RQ → A be multiplicative functions on P and Q with values on a
commutative algebra A, such that

∀ x ∈ P and w ∈ Q, γP [x, g(w)] = γQ[f(x), w] .(28)

Then,

∀ x ∈ P and w ∈ Q,
∑

y∈P
f(y)=w

γ−1
P [x, y] =

∑

v∈Q
g(v)=x

γ−1
Q [v, w] .(29)

Proof. Consider first the case when both P and Q are cartesian and the connection is multiplicative.
In this situation, RP and RQ are algebras and γP and γQ are morphisms of algebras (corollary 4.4).
Hypothesis (28) says precisely that γQ ◦f♯ = γP ◦g♯. Hence γP⊗γQ descends to a morphism of algebras

γP ⊗ γQ : RP ⊗Rf,g RQ → A .

The result follows by applying this morphism to equation (26) and recalling that in this case γ−1
P =

γP ◦ SP and γ−1
Q = γQ ◦ SQ.

If P and Q are arbitrary then we extend the Galois connection to a multiplicative Galois connection
between P (∞) andQ(∞) as in lemma 6.1. According to corollary 4.4, γP and γQ extend to multiplicative

functions γP (∞) and γQ(∞) on P (∞) and Q(∞). Moreover, ∀ x ∈ P (∞) and w ∈ Q(∞),

γP (∞) [x, g(∞)(w)] =

γP (∞)

∏

n≥1

[xn, g(wn)] =
∏

n≥1

γP [xn, g(wn)] =
∏

n≥1

γQ[f(xn), wn] = γQ(∞)

∏

n≥1

[f(xn), wn]

= γQ(∞) [f (∞)(x),w] ;

so γP (∞) and γQ(∞) satisfy hypothesis (28). Hence (29) holds for them, by the case just proved.
Restricting to P and Q we obtain the result for γP and γQ as well. �

Remark 6.1. Taking γP = ζP and γQ = ζQ one recovers Rota’s formula (1) for Möbius functions.
Corollary 6.2 is actually a particular case of proposition 3.1. It was included as an illustration of how

one may rederive a classical formula for Möbius functions from a version for antipodes. In fact, it was
the result of that proposition that suggested the consideration of the tensor product RP ⊗Rf,g RQ. In
general, a result for the antipode of an incidence Hopf algebra will specialize to a result for multiplicative
functions (in particular, the Möbius function), but not for arbitrary incidence functions.

As a last application we present a Hopf algebraic version of the classical Möbius inversion formula.
This finds its natural place in the framework of cartesian posets and multiplicative functions discussed
in section 4—but is not related to the previous material on Galois connections.

We need to recall one more basic fact from Hopf algebra theory. Suppose C is a coalgebra, A an
algebra, M a left C-comodule via cM : M → C⊗M and N a left A-module via aN : A⊗N → N . Then
the convolution monoid Homk(C,A) acts on the space Homk(M,N); the action of α ∈ Homk(C,A) on
f ∈ Homk(M,N) is α · f ∈ Homk(M,N) defined as the composite

M
cM−−→ C⊗M

α⊗f
−−−→ A⊗N

aN−−→ N .
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Proposition 6.3. Let P be a poset such that for any x ∈ P , the set {y ∈ P / x ≤ y} is finite. Let α be
a multiplicative function on P with values on a commutative algebra A. Let f, g : P → N be arbitrary
functions with values on a A-module N . Then

g(x) =
∑

y∈P
x≤y

α[x, y] · f(y) ∀ x ∈ P ⇐⇒ f(x) =
∑

y∈P
x≤y

α−1[x, y] · g(y) ∀ x ∈ P .

Proof. Let M be the left IP -comodule arising from the map P → {•}, as in proposition 5.1—our
assumption on P guarantees that this is well-defined. Thus, M has a k-basis that can be identified
with the set P and the structure map is

M → IP
⊗M, x 7→

∑

y∈P
x≤y

(x, y)⊗y .

Composing with the projection IP → RP , we may view M as a left RP -comodule as well. Extend f
and g to linear maps M → N .

We know from corollary 4.4 that G(P,A) is a subgroup of the monoid Homk(RP , A). It follows from
the previous remark that G(P,A) acts on Homk(M,N) and that the action is as follows:

(α · f)(x) =
∑

y∈P
x≤y

α[x, y] · f(y) .

Thus the result boils down to the trivial assertion

g = α · f ⇐⇒ f = α−1 · g .

�

The classical inversion formula is obtained by specializing to A = N = k, α = ζP and (hence)
α−1 = µP . The analog for antipodes also follows immediately.

Corollary 6.4. Let P be a cartesian poset satisfying the same finiteness assumption as in proposition
6.3. Let N be a left RP -module and f, g : P → N arbitrary functions. Then

g(x) =
∑

y∈P
x≤y

[x, y] · f(y) ∀ x ∈ P ⇐⇒ f(x) =
∑

y∈P
x≤y

SP [x, y] · g(y) ∀ x ∈ P .

Proof. Apply proposition 6.3 to A = RP , α = id. �
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