
A NOTE ON STRONGLY SEPARABLE ALGEBRAS

MARCELO AGUIAR

Abstract. Let A be an algebra over a field k. If M is an A–bimodule, we let

MA and MA denote respectively the k–spaces of invariants and coinvariants of

M , and ϕM : MA
→ MA be the natural map. In this note we characterize those

algebras A for which ϕM is a natural isomorphism as those separable algebras

for which the separability idempotent can be chosen to be symmetric, or as those

finite dimensional algebras for which the trace form is non-degenerate. These

algebras are called strongly separable. We also prove that the cotensor product of

C–bicomodules has a right adjoint if and only if the coalgebra C is cosemisimple,

and show that if C∗ is strongly separable then the adjoint is given by maps of

C–bicomodules.

1. Introduction

Let k be a field, G a group such that |G| 6= 0 in k and M a G–space. Then the
natural map between the spaces of G–invariants and G–coinvariants

MG = {m ∈ M / gm = m ∀ g ∈ G} →֒ M →→ MG = M/〈gm − m / g ∈ G, m ∈ M〉

is an isomorphism, since the map

MG → MG, m̄ 7→
1

|G|

∑

g∈G

gm

is clearly a well-defined inverse.
In this note we consider the generalization of this question to arbitrary algebras A.

In order to formulate the problem, one must consider A–bimodules M (there is no
essential distinction between modules and bimodules for group algebras). The space
of A–invariants of an A–bimodule M is

MA = {m ∈ M / am = ma ∀ a ∈ A}

and the space of A–coinvariants is

MA = M/[A,M ] , where [A,M ] = 〈am − ma / a ∈ A, m ∈ M〉 .

Here, and elsewhere, 〈S〉 denotes the k–subspace generated by the set S. Whenever
convenient, A–bimodules will be viewed as left Ae–modules, where Ae = A ⊗ Aop.

Let ϕM : MA →֒ M →→ MA be the obvious natural map. The purpose of this note
is to characterize those algebras A for which ϕ is an isomorphism for every M .
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A necessary condition is that A be projective as Ae–module. For, MA ∼= HomAe(A,M)
is a left exact functor of M , while MA

∼= A⊗Ae M is a right exact one; hence, if these
functors are naturally isomorphic, they are both exact, so

HH∗(M) = Ext
∗

Ae(A,M) ≡ 0 and HH∗(M) = Tor
Ae

∗ (A,M) ≡ 0 ,

that is, A is projective as left Ae–module and flat as right Ae–module. A result of
Villamayor [V, corollary 2] establishes that either of these conditions already implies
the other. When they hold, the k–algebra A is said to be separable.

We will show, however, that separability alone is not sufficient to guarantee that
ϕ be an isomorphism. For instance, we will show (corollary 3.1) that A = Mn(k)
does not have this property when chark divides n, even though it is separable. The
additional condition that is needed is that the separability idempotent can be chosen
to be symmetric (theorem 4.1). Such algebras have been studied before by Hattori [H],
and called strongly separable. We further show that these algebras are characterized
by the property that the trace form is non-degenerate (theorem 3.1). In the last
section we show that for coalgebras that are dual to strongly separable algebras,
the cotensor product of comodules has a right adjoint given by maps of comodules
(corollary 5.1). A more comprehensive study of separability and strong separability,
specially in connection to Hopf algebras, can be found in [KS].

2. Strongly separable algebras. Definition and examples

As already mentioned, a k–algebra A is called separable if A is projective as
Ae–module. This is equivalent to the existence of an element e ∈ Ae with the prop-
erties that

(a ⊗ 1)e = (1 ⊗ aop)e ∀a ∈ A(1)

µA(e) = 1(2)

where µA : Ae → A is µA(a ⊗ bop) = ab (e arises as the image of 1 ∈ A under
a splitting of µA). Such an element e is necessarily idempotent and is called a
separability idempotent for A. For this basic material the reader is referred to [P],
chapter 10. In general e is not unique. For instance if A = Mn(k) then the elements
ej =

∑n
i=1 eij ⊗ eji are separability idempotents for each j = 1, . . . , n (eij denote

the elementary matrices). Moreover, if chark does not divide n then e = 1
n

∑n
j=1 ej

is another separability idempotent. Unlike the others, this one has the additional
property of being symmetric:

τ(e) = e(3)

where τ : Ae → Ae is the antimorphism τ(a ⊗ bop) = b ⊗ aop.

Definition 2.1. A k–algebra A is said to be strongly separable if it possesses a
symmetric separability idempotent e ∈ Ae.

In particular such an algebra is separable. Explicitly, e =
∑

i ui ⊗ vi must satisfy
∑

i

aui ⊗ vi =
∑

i

ui ⊗ via ∀a ∈ A ,(1)
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∑

i

uivi = 1 and(2)

∑

i

ui ⊗ vi =
∑

i

vi ⊗ ui .(3)

Remark 2.1. An obvious consequence of the last two equations is
∑

i

viui = 1 .(4)

It turns out that conditions (1) and (4) suffice to imply the others. To prove this we
only need to show that (3) holds, for then (2) follows by symmetry. This is done as
follows

∑

i

ui ⊗ vi

(4)
=

∑

i,j

ui ⊗ vivjuj

(1)
=

∑

i,j

vjui ⊗ viuj

(1)
=

∑

i,j

vj ⊗ viuiuj

(4)
=

∑

j

vj ⊗ uj .

This shows that definition 2.1 coincides with Hattori’s [H]. Perhaps the terminology
symmetrically separable would be more descriptive.

Examples 2.1.

1. The discussion above shows that if A = Mn(k) and chark does not divide n
then A is strongly separable. We will show (corollary 3.1) that if chark divides
n then A is not strongly separable, even though it is separable.

2. If G is a finite group, A = kG and chark does not divide |G|, then A is strongly
separable with

e =
1

|G|

∑

g∈G

g ⊗ g−1 .

If chark divides |G| then A is not even separable, since it is not semisimple.
3. If X is a finite set and A = kX , then A is strongly separable with

e =
∑

x∈X

ex ⊗ ex ,

where ex(y) = δx,y ∀x, y ∈ X. More generally, according to remark 2.1, any
commutative separable k–algebra A is strongly separable, for in this case (4)
is just (2). Moreover, this shows that any separability idempotent for A is
symmetric. This, together with the uniqueness result in theorem 3.1 below,
prove that in a commutative separable algebra the separability idempotent is
unique (and symmetric).

4. If chark = 0, then a k–algebra A is strongly separable if and only if it is finite
dimensional and semisimple (see corollary 3.1).

We provide one more example of strongly separable algebras; it generalizes that of
semisimple group algebras. For background on the relevant material on Hopf algebras
the reader is referred to [S1, chapter V], [M, chapter 2] or [Sc, chapter 3]. Part 1
of the next proposition is well-known (cf. Maschke’s theorem for Hopf algebras, as
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in [Sc, thm. 3.2]), except perhaps for the fact that finite dimensionality is not a
necessary hypothesis but rather a consequence. We have learned from W. Nichols
that part 2 of the next proposition was obtained earlier by F. Kreimer (unpublished).
Similar results appear in [OS, section 3].

Proposition 2.1. Let H be a Hopf algebra.

1. H is separable if and only if H is semisimple. In this case, H is finite dimen-
sional.

2. If H is semisimple and involutory (i.e. if the antipode S satisfies S2 = idH),
then H is strongly separable.

Proof. 1. If H is separable, then it is semisimple and finite dimensional by general
results: [P], corollaries 10.4.b and 10.3.

Conversely, if H is semisimple then, first of all, it is finite dimensional by a
result of Sweedler [S2, p330]. Now, by Maschke’s theorem for Hopf algebras [M,
theorem 2.2.1], there is a left integral t ∈ H such that ǫ(t) 6= 0. Also, since H is
finite dimensional, S is bijective [M, theorem 2.1.3].

Let e = 1
ǫ(t)

∑
t2⊗S−1(t1) ∈ H ⊗H, where we have written ∆(t) =

∑
t1⊗ t2

as usual. Let us show that e is a separability idempotent for H.
First, since S−1 is an antipode for Hcop, condition (2) for e holds.
Second, for h ∈ H we have

S(h) ⊗ ∆(t) =
∑

S(h1) ⊗ ∆(ǫ(h2)t)

=
∑

S(h1) ⊗ ∆(h2t) =
∑

S(h1) ⊗ h2t1 ⊗ h3t2

⇒
∑

S(h)t1 ⊗ t2 =
∑

S(h1)h2t1 ⊗ h3t2 = t1 ⊗ ht2

⇒
∑

S−1(t1)h ⊗ t2 =
∑

S−1(t1) ⊗ ht2

⇒
∑

t2 ⊗ S−1(t1)h =
∑

ht2 ⊗ S−1(t1) ,

which gives condition (1) for e. Thus e is a separability idempotent for H. This
completes the proof of 1.

2. If in addition S2 = idH , then condition (4) holds, so by remark 2.1 e is a
symmetric separability idempotent.

Corollary 2.1. Let H be a finite dimensional Hopf algebra H over a field of char-
acteristic zero. The following conditions are equivalent:

1. H is involutory,
2. H is semisimple,
3. H is cosemisimple,
4. H is separable,
5. H is strongly separable.

Proof. Conditions 1,2 and 3 are equivalent by theorems of Larson and Radford [LR1,
theorem 4] and [LR2, theorem 4.4]. Conditions 1 and 2 imply 5 by proposition 2.1
(or simply by corollary 3.1 below). The implications 5 ⇒ 4 ⇒ 2 are trivial.
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Remark 2.2. Recently it has been shown by Etingof and Gelaki [EK] that any (finite
dimensional) semisimple and cosemisimple Hopf algebra is involutory, regardless of
the characteristic of the field. It follows from proposition 2.1 that any such algebra
is strongly separable.

It is conjectured [K] that any (finite dimensional) semisimple Hopf algebra is in-
volutory. This would imply that any semisimple Hopf algebra is strongly separable.

3. Strongly separable algebras and the non-degeneracy of the trace

In this section we characterize strongly separable algebras in terms of the trace
form.

Recall that for any finite dimensional k–algebra A the trace form Tr : A → k is
defined as Tr(a) = tr(l(a)), where l : A → Endk(A) is the left regular representation
and tr is the ordinary trace of a linear endomorphism. It gives rise to a symmetric
bilinear form T : A× A → k via T(a, b) = Tr(ab). When A = Mn(k), Tr(a) = ntr(a).
In particular Tr ≡ 0 if chark divides n. Similarly, when A = kG, Tr(

∑
g∈G agg) =

|G| · ae.
The connection between separability and the non-degeneracy of T is well-known

in the commutative case (e.g. [J] lemma on page 621). There is a more general result
as follows. First let us name one further condition

∑

i

ui ⊗ avi =
∑

i

uia ⊗ vi ∀a ∈ A ;(1)′

obviously (1) + (3) ⇒ (1)′.

Theorem 3.1. Let k be a field and A a k–algebra. Then the following are equivalent:

1. A is strongly separable.
2. A is finite dimensional and T : A × A → k is non-degenerate.

Moreover, if these conditions hold, then the symmetric separability idempotent is
unique.

Proof.
1 ⇒ 2. Let e =

∑
i ui ⊗ vop

i ∈ Ae be the symmetric separability idempotent. We will
show that

x =
∑

i

Tr(xui)vi ∀x ∈ A ,

from where it immediately follows that T is non-degenerate.
First recall that by a theorem of Villamayor and Zelinski ([P, corollary 10.3], or

[VZ, proposition 1.1]), any separable algebra is finite dimensional. Thus, the trace
form is defined.

We can assume that {ui / i ∈ I} is a k–basis for A. For each j ∈ I write

xuiuj =
∑

h

xi
jhuh, with xi

jh ∈ k .
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Then

∑

i

ui ⊗ ujvix
(1), (1)′

=
∑

i

xuiuj ⊗ vi =
∑

i,h

xi
jhuh ⊗ vi =

∑

h

uh ⊗
∑

i

xi
jhvi

Hence ujvhx =
∑

i x
i
jhvi for each j, h ∈ I. Thus

∑

i

Tr(xui)vi =
∑

i

∑

j

xi
jjvi =

∑

j

ujvjx
(2)
= x

as announced.
2 ⇒ 1. Let {ui / i ∈ I} be a k–basis for A and {vi / i ∈ I} its dual basis with

respect to T, so that

x =
∑

i

Tr(xui)vi ∀x ∈ A.(*)

We will show that e =
∑

ui ⊗ vop
i ∈ Ae is a symmetric separability idempotent.

Since T is a symmetric form, e is symmetric:

∑

j

uj ⊗ vj

(∗)
=

∑

i,j

Tr(ujui)vi ⊗ vj =
∑

i,j

vi ⊗ Tr(uiuj)vj

(∗)
=

∑

i,j

vi ⊗ ui ,

proving (3). Now,

∑

i

ui ⊗ via
(∗)
=

∑

i,j

ui ⊗ Tr(viauj)vj =
∑

i,j

Tr(viauj)ui ⊗ vj =

=
∑

i,j

Tr(aujvi)ui ⊗ vj

(3)
=

∑

i,j

Tr(aujui)vi ⊗ vj

(∗)
=

∑

j

auj ⊗ vj ,

proving (1). Recall that (1) + (3) ⇒ (1)′.
Finally, for each i, j ∈ I write

uiuj =
∑

h

ai
jhuh with ai

jh ∈ k .(**)

Then for each j ∈ I,

∑

i

ui ⊗ ujvi

(1)′
=

∑

i

uiuj ⊗ vi =
∑

i,h

ai
jhuh ⊗ vi =

∑

h

uh ⊗
∑

i

ai
jhvi ,

from where

ujvh =
∑

i

ai
jhvi ∀j, h ∈ I(***)

Hence

1
(∗)
=

∑

i

Tr(ui)vi

(∗∗)
=

∑

i,j

ai
jjvi

(∗ ∗ ∗)
=

∑

j

ujvj ,

proving (2) and thus completing the proof of the implication.



STRONGLY SEPARABLE ALGEBRAS 7

Notice also that the uniqueness of the symmetric separability idempotent has been
settled: it is the element of A⊗A corresponding to idA ∈ Endk(A) under the isomor-
phism t : A ⊗ A → Endk(A), t(a ⊗ b)(c) = Tr(ca)b.

Corollary 3.1. Let A be a k–algebra.

1. If chark = 0 then A is strongly separable if and only if it is finite dimensional
and semisimple.

2. If chark divides n and A = Mn(k) then A is not strongly separable.

Proof.

1. If A is separable then it is finite dimensional and semisimple by [P], cor.10.3
and 10.4.b. Conversely, assume that A is finite dimensional and semisimple.
Let K be an algebraic closure of k. Then

A ⊗ K ∼= Mn1
(K) × . . . × Mnr

(K)

by the Wedderburn-Artin theorem. It follows from the remarks preceding theo-
rem 3.1 that the trace form for A⊗K over K is non-degenerate, since charK = 0.
But the trace form is invariant under extension of scalars, so the same conclu-
sion holds for the trace form for A over k, and the theorem applies to conclude
that A is strongly separable.

2. As mentioned before, Tr ≡ 0 in this case, so the theorem applies.

Corollary 3.2. If K is algebraically closed field and A a strongly separable K–alge-
bra, then charK does not divide dimKS for any simple A–module S.

Proof. This follows from the proof of the previous corollary, since the dimensions of
the simple A–modules are precisely the numbers ni in that proof.

Remark 3.1. The previous result generalizes corollary 8 in [R], which is the particular
case when A is a Hopf algebra in the hypothesis of proposition 2.1.

4. Symmetrically separable algebras and the isomorphism between

invariants and coinvariants

Consider now A–bimodules M . These can be regarded as left Ae–modules via
(a ⊗ bop)m = amb. We will adopt either point of view as convenient. Recall the
definitions of MA, MA and ϕM from the introduction. For instance MA = {m ∈
M / am = ma ∀ a ∈ A} = {m ∈ M / (a ⊗ 1)m = (1 ⊗ aop)m}.

Lemma 4.1. Let A be a separable k–algebra, e ∈ Ae any separability idempotent and
M an A–bimodule. Then

(a) MA = eM , and
(b) [A,M ] = {m ∈ M / τ(e)m = 0} =: τ(e)r.

Proof.
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(a) ⊆: If m ∈ MA then em =
∑

i uimvi =
∑

i uivim
(2)
= m so m ∈ eM .

⊇: If m ∈ M and a ∈ A then aem = (a ⊗ 1)em
(1)
= (1 ⊗ aop)em = ema so

em ∈ MA.

(b) ⊆: τ(e)(am − ma) = τ(e)(a ⊗ 1 − 1 ⊗ aop)m = τ((1 ⊗ aop − a ⊗ 1)e)m
(1)
= 0 so

am − ma ∈ τ(e)r.

⊇: If τ(e)m = 0 then m = (1 ⊗ 1 − τ(e))m
(2)
= (

∑
i 1 ⊗ vop

i uop
i − vi ⊗ uop

i )m =∑
i(1 ⊗ vop

i − vi ⊗ 1)(1 ⊗ uop
i )m =

∑
i(mui)vi − vi(mui) so m ∈ [A,M ].

Theorem 4.1. Let A be a k–algebra. Then the following are equivalent:

1. A is strongly separable.
2. The natural map ϕM : MA → MA is an isomorphism for every

A–bimodule M .

Moreover, if e is the symmetric separability idempotent, then the map

MA → MA, m̄ 7→ em

is the inverse of ϕM .

Proof.
1 ⇒ 2. Let e be the symmetric separability idempotent for A. Then, by the lemma,

MA = eM and MA = M/er .

On the other hand, M = eM ⊕ (1 − e)M = eM ⊕ er obviously. Hence

ϕM : MA = eM →֒ M →→ M/er = MA

is an isomorphism. Moreover, it is clear that its inverse is as stated.
2 ⇒ 1. Let M = A ⊗ A, an A–bimodule under a(x ⊗ y)b = ax ⊗ yb (so M ∼= Ae).

Then MA = A ⊗ A/〈ax ⊗ y − x ⊗ ya〉 ∼= A ⊗A A ∼= A (under the switch followed by
the multiplication map of A). Let e ∈ MA be such that ϕM (e) = 1 ⊗ 1 ∈ MA, say
e =

∑
i ui ⊗ vi ∈ A ⊗ A. Since e ∈ MA we have

∑
aui ⊗ vi =

∑
ui ⊗ via ∀a ∈ A,

that is (1). Since e ∈ MA maps to 1 ∈ A (under ϕM and the map described above),
we have

∑
viui = 1, that is (4).

According to remark 2.1, e is a symmetric separability idempotent for A.

Examples 4.1.

1. Let A = kG, where G is a finite group with chark does not divide |G|, so that A
is strongly separable. Let M be a left G–space; view it as a kG–bimodule with
trivial G–action. Then

MG = {m ∈ M / gm = m ∀ g ∈ G} and MG = M/〈gm − m / g ∈ G, m ∈ M〉

are the usual spaces of G–invariants and coinvariants, and theorem 4.1 recovers
the well-known fact that MG ∼= MG under the present hypothesis.
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2. Let A be a strongly separable k–algebra and M = A with its usual A–bimodule
structure, a · m · b = amb. Then MA = Z(A), the center of the algebra A, and
MA = A/[A,A], where [A,A] is the k–subspace of A generated by all commu-
tators ab − ba. Therefore theorem 4.1 implies that if A is strongly separable
then

Z(A) ∼= A/[A,A] .

This observation already appears in [H].
Now suppose that A is actually a strongly separable bialgebra (as for instance

in proposition 2.1). Then (A/[A,A])∗ = Cocom(A∗), the space of cocommuta-
tive elements of the coalgebra A∗. We deduce that in this case

Z(A)∗ ∼= Cocom(A∗), in particular dimZ(A) = dimCocom(A∗).

A similar result is [R, corollary 4].

5. Symmetrically separable algebras and the cotensor product of

comodules

Let A be a strongly separable k–algebra, V a left A–module and W a right one.
Let M = V ⊗ W , with its obvious A–bimodule structure. Then

MA = V ⊗ W/〈av ⊗ w − v ⊗ wa / v ∈ V, w ∈ W, a ∈ A〉 ∼= W ⊗A V

under the switch map. On the other hand, let A∗ be the dual coalgebra of A (recall
that A is necessarily finite dimensional) and view V as a right A∗–comodule and W
as a left A∗–comodule as follows:

s : V → V ⊗ A∗ v 7→
∑

i

vi ⊗ fi iff av =
∑

i

fi(a)vi ∀a ∈ A

t : W → A∗ ⊗ W w 7→
∑

i

fi ⊗ wi iff wa =
∑

i

fi(a)wi ∀a ∈ A

For background on this material see [S1]. Recall that if C is a k–coalgebra and V and
W are right and left C–comodules via s and t as above, then the cotensor product
of V and W over C is defined as

V ⊗C W = Ker(V ⊗ W
s⊗idW −idV ⊗t
−−−−−−−−−→ V ⊗ C ⊗ W ) .

In the case when C = A∗ and V , W and M = V ⊗ W are as above, it follows
immediately that

V ⊗A∗

W = MA .

Thus theorem 4.1 above says that for a strongly separable algebra A with symmetric
separability idempotent e =

∑
uj ⊗ vj , there is a natural isomorphism

V ⊗A∗

W → W ⊗A V ,
∑

vi ⊗ wi 7→
∑

wi ⊗A vi ,

with inverse

W ⊗A V → V ⊗A∗

W , w ⊗A v 7→
∑

j

ujv ⊗ wvj .
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Elaborating on this observation we will now show that the cotensor product over
“strongly coseparable” coalgebras has a right adjoint.

Pondering on when this was true is what started us into the considerations of this
note.

Corollary 5.1. Let C, D, and E be k–coalgebras. Consider bicomodules as follows:
U a C–D–bicomodule, V an E–D–bicomodule and W an E–C–bicomodule. Assume
that C and E are finite dimensional, so that HomD(U, V ) carries a natural structure
of E–C–bicomodule as follows:

s : HomD(U, V ) → HomD(U, V ) ⊗ C T 7→
∑

j

Tj ⊗ cj

iff (idC ⊗ T )αU (u) =
∑

cj ⊗ Tj(u) ∀ u ∈ U ,

where αU : U → C ⊗ U is the left C–comodule structure on U , and

t : HomD(U, V ) → E ⊗ HomD(U, V ) T 7→
∑

i

ei ⊗ Ti

iff αV T (u) =
∑

i

ei ⊗ Ti(u) ∀u ∈ U ,

where αV : V → E ⊗ V is the left E–comodule structure on V .

Then, if C∗ is strongly separable, there is a natural isomorphism

HomE−D(W ⊗C U, V ) ∼= HomE−C(W,HomD(U, V )) .

Proof. Since C is finite dimensional, there is an equivalence of categories

{right C–comodules} ∼= {left C∗–modules}

([S1], chapter II). The comments preceding the corollary show that under the present
hypothesis we have W ⊗C U ∼= U ⊗C∗ W naturally. We combine these facts together
with the well-known adjunction for tensor products of modules over algebras to obtain

HomE−C(W,HomD(U, V )) = HomC∗−E∗(W,HomD∗(U, V )) ∼= HomD∗−E∗(U ⊗C∗ W,V )

= HomE−D(U ⊗C∗ W,V ) ∼= HomE−D(W ⊗C U, V ) .

The proof is complete.

Let U be a C–D–bicomodule. The functor

(−) ⊗C U : {E–C–bicomodules} → {E–D–bicomodules}

may have a right adjoint even if C∗ is not strongly separable. In fact, we will close
this note by characterizing these coalgebras. In particular, it follows from theorem
5.1 below that any group-like coalgebra C = kX has this property, while C∗ = kX

is strongly separable only when X is finite. However, it is only under these extra
assumptions that we are able to find an explicit description for the right adjoint
functor.
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Definition 5.1. A coalgebra C is called cosemisimple if every left C–comodule is a
direct sum of simple subcomodules, or, equivalently, if every short exact sequence of
left C–comodules splits.

Theorem 5.1. The following conditions are equivalent for any coalgebra C:

1. C is cosemisimple.
2. For any coalgebras D and E and C–D–bicomodule U , the functor

(−) ⊗C U : {E–C–bicomodules} → {E–D–bicomodules}

has a right adjoint.
3. For any left C–comodule U , the functor

(−) ⊗C U : {right C–comodules} → {k–spaces}

has a right adjoint.

Proof.
1 ⇒ 2. Since every short exact sequence of left C–comodules splits, the functor

HomC(−, U) : {left C–comodules} → {k–spaces}

is right exact. By a result of Takeuchi [T1, proposition A.2.1], this functor is right
exact if and only if so is the functor

(−) ⊗C U : {right C–comodules} → {k–spaces} .

It follows that the functor

(−) ⊗C U : {E–C–bicomodules} → {E–D–bicomodules}

is also right exact. Since it clearly preserves direct sums, it is cocontinuous (i.e.
preserves coequalizers and small coproducts). The result now follows from the special
adjoint functor theorem [ML, corollary V.8], since the category {E–C–bicomodules}
is well-powered, small cocomplete and skeletally small.

2 ⇒ 3. Obvious.
3 ⇒ 1. Since (−) ⊗C U has a right adjoint, it is right exact. This implies, as in

the proof 1 ⇒ 2, that C is cosemisimple.

Remark 5.1. On the other hand, it follows from another result of Takeuchi [T2,
proposition 1.10] that the functor (−) ⊗C U : {right C–comodules} → {k–spaces}
has a left adjoint if and only if U is finite dimensional.

The author thanks Stephen Chase for pointing out the relevance of separability in
relation to the questions of this note and Warren Nichols and the referees for useful
comments and corrections.
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