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Multiple Access Channels w ith 
Arbitrarily Correlated Sources 

THOMAS M . COVER, FELLOW, IEEE, ABBAS EL GAMAL, MEMBER, IEEE, AND MASOUD SALEHI, 
MEMBER,IEE 

Absrmcr-Let {(q, r$)}#L* be a source of independealt identicauy 
distributed (i.i.d.) disc&e random variables with joint probability mass 
function p(u,o) and common part w-f(u)=g(u) in the sense of 
Witsenbawn, Gacs, and Kkner. It is shown that such a source can be 
sent with arbitrarily small probability of error over a multiple access 
ChaMel (MAC) 

{Xl X~*9%P(Yl~,, X,)>> 

with allowed codes {q(u), x2(w)] if there exist probability mass functions 
P(S),P(X,lS, U),P(X,lS9 u)9 s’dl that 

H(UIV)<Z(X,;YIX,,~,S), 

H(VIU)<Z(X*;YIX,,U,S), 

H(U,VIW)<Z(X,,X,;YIW,S), 

H(u,~)<z(x,,x,;n 

P(s,u,u,x,,~z,Y)=P~~~P~~,~~P~~,l~,~~P~~*l~~~~P~Yl~,~~*~. 
‘zbls region inch&s the multiple aaxw channel region and the Slepian- 
Wolf data compression region as special cases. 

I. INTRODUCTION 

T HE MULTIPLE access channel (MAC) p(u Ix,, x2) 
has a capacity region [l], [2] given by the convex hull 

of all (R,, R,) satisfying, for somep(x,, x,)=p(x,)p(x,), 
the inequalities 

R, (1(X,; Ylx,), 
R,WX,; YIX,), 

R,+R,<z(X,,X,;Y). (1) 
Suppose now that the source U for X, and V for X, are 
correlated according to p(u, u). It follows easily that U 
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and I’ can be sent over the multiple access channel if, for 
some AxI, ~~)=Ax&(x2)~ 

H(U)<Z(X,; YIX,), 
fw)<Z(X,; YIXA 

H(U)+H(v)<z(X,, x2; Y). (2) 
In this paper, we increase this achievable region in two 

ways: 1) the left side will be made smaller’, and 2) the 
right side will be made larger by allowing X, and X, to 
depend on U and V and thereby increasing the set of mass 
distributions p(x,, x2). It will be shown (see Theorem 1 
for a precise and more general statement) that U and V 
can be sent with arbitrarily small error to Y if 

fwIV)ax,; YlX2,O 
H(VIU)<Z(X,; YIX,,U), 

wu, V)<W,, x2; Y), (3) 
for some p(u, 0, xi, x2, u) =A% ~MX,lU)P(X,l~) 
.p(ylx,, x2). This result can be further generalized to 
sources (U, V) with a common part W=j( U) = g( V). The 
following theorem is proved. 

Theorem 1: A source (V, V)NII~P(U~,U~) can be sent 
with arbitrarily small probability of error over a multiple 
access channel {%i xX2, 3, p(yIx,, x2)}, with allowed 
codes {x,(u), x2(u)} if there exist probability mass func- 
tionsp(s), p(x,]s, u), p(x,ls, u), such that 

H(UJV)<Z(X,; YJX;?,V, S), 

H(VIU)<I(X,; YIX,,U, S), 

fqUJqW)<W,, x2; YIW, a, 
H(U,V)<Z(X,, x2; Y), (4) 

where p(s, u, u, xi, x2, Y> =P(s>P(u, U)P(X,lUT s) 
*P(~,I~JlP(Yl~l~ 3). 

Remark I: The region described above is convex. 
Therefore no time sharing is necessary. The proof of the 
convexity is given in Appendix B. 

Remark 2: It can be shown that if error-free transmis- 
sion is possible, then in order to generate a random code 
for error-free transmission, it is enough to consider those 
auxiliary random variables S whose cardinality is bounded 
above by ~~~ll~~ll~II~211~II~II~. 

‘This improvement could be obtained from the results of Slepian and 
wolf 131. 
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Example for Theorem 1: Consider the transmission of 
the correlated sources (U, V) with the joint distribution 
p(u, u) given by 

“‘e 

over the mu ltiple, access channel  def ined by 

% l=%z={o,l) 

?4= (0, W}, 
Y=X, +x2. 

Here H(U, V) =log 3  = 1.58 bits. On  the other hand, if Xi 
and  X2 are independent,  

max 
P(-QPP(~z) 

Z(Y; Xl, X2)= 1.5 bits. 

Thus H(U,V)>Z(Y; X,, X2) for all p(x,)p(x,). Conse- 
quently there is no  way, even with the use of Slepian- W o lf 
data compression on  U and V, to use the standard mu lti- 
ple access channel  capacity region to send U and V 
reliably to Y. However, it is easy to see that with the 
choice Xi az U, and X2 z V, error-free transmission of the 
sources over the charnel is possible. This example shows 
that the separate source and channel  coding described 
above is not optimal- the partial information that each of 
the random variables U and V contains about the other is 
destroyed in this separation. 

To  allow partial cooperat ion between the two trans- 
m itters, we allow our codes to depend statistically on  the 
source outputs. This induces dependence between code- 
words. 

W e  note that, while there are 2nH(“) xi associated with 
the typical u  and 2nH(v) x2 associated with the typical u, 
there are only 2nH(“*V) pairs (x,(u), x2(u)) that are likely 
to occur jointly. 

Applications of Theorem 1  yield the following known 
results as special cases. 

Special Cases 

a) Slepian and Wolf Data Compression [3]: Let (U, V) 
be correlated according to p(u, u). To  obtain the data 
compression rate region, we set up  a  noiseless dummy 
channel  with Y = (Xl, X2). Let p(u, u, x1, x2) = 
p(u,u)p(x,)p(x,). Then the right side of (3) collapses, 
yielding the known rate region 

H(UlV)<Z(X,; yIx,,V)=H(X,) (=R,) 
H(vlu)<z(x,;ylx,,u>=H(X,) (=R2) 

H(U,V)<Z(X,,X,; Y)=H(X,)+H(X,) (=R, +R2). 

(5) 

b) Multiple Access Channel (Ahlswede [ 11, Liao [ 21): Let 
U and V be independent dummy sources with rates R, 
and R,, respectively. Choose p(u, u, x1, y) = 
P(u)P(u)P(xI)P(x2)P(y I x1, x2). Now both sides of (3) 

simplify to yield achievability of rates (R,, R 2) for the 
mu ltiple access channel  to 

H(U]V)=H(U)=R, <Z(X,; YIX,), 

H(VIU)=H(V)=R, <Z(X,; YIX,), 

H(U,V)=H(U)+H(V)=R,+R,<Z(X,,X,;Y).(6) 

c) Cooperative Multiple Access Channel Capacity: If both 
Xi and  X2 have access to the same source, we can find the 
cooperative capacity for the mu ltiple access channel  
p(ylx,, x2) as follows. Let U be a  dummy source with 
rate R, and let W= V= U. Choose p(u, s, x1, x2, y)= 

P(~lP(~lP(~lI~lP(~,I~)P(Y I x1, x2). Eliminating the triv- 
ial inequalities, we then have the achievability of rate R if 

R<Z(X,, X2; Y), (7) 

for some joint probability mass functionp(x,, x2). 
d) The Correlated Source Multiple Access Channel Capac- 

iw Region of Slepian and Wolf [4]: Following Slepian and 
W o lf [4] for the mu ltiple access channel  p(y I x1, x2), sup- 
pose that x1 sees a  source of rate R,, x2 sees a source of 
rate R,, and in addition, both x1 and x2 see a  common 
source of rate R,. All three sources are independent.  

To  obtain the desired region, let U’, V’, W  be indepen- 
dent dummy random variables with R, = H(U), R, = 
H(V’), R,=H(W). Let U=(U’,W) and V=(V’,W). 
Choose P(U, 0, s, xl, x2, Y> =P(u’>P(~‘>P(~~P(s~P(x~~s) 
-p(x2]s)p(yIxl,x2), where u=(u’,w), u=(u’,w). W e  then 
have achievability of (R,, R,, R,) if 

H(U(V)=H(U’)=R,<Z(X,; YlX,, S), 

H(VIU)=H(V’)=R,<Z(X,; YIX,, S), 

H(U,VIW)=H(U’)+H(V’) 

=R,+R,<Z(X,, X2; YlS), 

H(U,V)=H(U’)+H(V’)+H(W) 

=R,+R,+R,<Z(X,,X,; Y). 63) 

Theorem 1  shows that the mu ltiple access channel  
capacity region and the Slepian and W o lf data compres- 
sion region are special cases of a  single theorem. Also, 
mu ltiple source compression and mu ltiple access channel  
coding do  not seem to factor into separate source and 
channel  coding problems. The  work of Slepian and W o lf 
on  correlated sources with common rate R, and condi- 
tionally independent rates R, and R, can be  general ized 
to sources with common rate R, and conditionally depen-  
dent sources. F inally, as shown in Theorem 1, the depen-  
dence of U and V can be  used to create the appearance of 
cooperat ion in the channel  coding, even if U and V do not 
have a  common part. 

In the next section we shall give a  formal definition of 
the problem and outline the proof for the simple achieva- 
bility in (3). The  proof of Theorem 1  is given in Section 
III. An expression for source-channel capacity is given in 
Section IV but does not satisfy the “single-letter” condi- 
tions that we seek. 
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II. DEFINITION OF THE PROBLEM 

Assume we have two information sources U,, U,, * * * 
and Vi, I’,; *. generated by repeated independent draw- 
ings of a pair of discrete random variables U and I’ from 
a given bivariate distributionp(u, u). We shall require the 
following notion of the common part of two random 
variables. 

Definition: The common part W  of two random varia- 
bles U and V is defined by finding the maximum integer k 
such that there exist functions f and g 

f: ‘%x+(1,2,-,k} 

g: %={1,2;..,k} 
with P{f(U)=i}>O, P{g(V)=i}>O, i=1,2;--,k, such 
that f(U)=g(V) with probability one and then defining 
W=f(U) (=g(V)). 

With this definition, it is obvious that the observers of 
U and V can agree on the value of W  with probability 
one. Note that any pair of sources (U, V) has a trivial 
common part f(U) = g( V) = 1. Here k = 1 in the construc- 
tion that follows the definition. We shall say that U and V 
have a common part only if k > 2. 

Also, it can be shown [7] that the common part of 
sequence (y, 5) i.i.d.-p(u, v) is the sequence of the 
common parts I+$. The concept of the common part of 
two random variables will be used in Section III. 

We now define the communication problem over the 
multiple access channel in Fig. 1. This includes the defini- 
tion of block codes for sources, the definition of probabil- 
ity of error, and the definition of reliable transmission of 
sources over the channel. 

A block code for the channel consists of an integer n, 
two encoding functions 

x;: %!LL”+t?q, 

x;: Yn-2?q 

assigning codewords to the source outputs, and a decoding 
function 

d”: ‘% “-+‘?L” x’v”. (9) 
The probability of error is given by 

P,,=P{(U”,V”)#d”(Y”)} 

~P{d”(Y”)#(u”,u”)~(U”,V”)=(u”,o”)}. (10) 

where the joint probability mass function is given, for a 
code assignment {x&u”), x,(8)}, by 

P(“?u, Y)’ i Pt”i3 ui)P(.YilxIi(un)T xZi<v”>>* (11) 
i=l 

Definition: The source (U, V)-IIp(u,, ui) can be relia- 
bly transmitted over the multiple access channel (Xi x 
Xx,,%, p(yJx,, x2)) if there exists a sequence of block 
codes {x;(u”), x,“(8)}, d”( u”) such that 

P,=P{d’(Y’z)#(U”,V”)}+O. 
The notions of jointly r-typical sequences and the asymp- 
totic equipartition property as defined in [5] and [6] will 

Correlated 

*O"I“eS 

P(U.V) 

x,(u) Lx; Multiple u(y) / 11" 

acces5 y 6 Y" 

x,(v) ' x; 
channel - Decoder ^  

* P(YlX,.X$ 
V(Y) fJ" 

Fig. 1. Multiple access channel with arbitrarily correlated sources. 

Since the proof of Theorem 1, given in the next section, 
is rather long and technical we shall outline here a proof 
of the simpler case in which U and V have no common 
part. In this case, we must show that U and V can be 
reliably sent to Y if, forp(u, u)p(xl 1 u)p(x, 1 u)p(y Ix,, x2), 

H(UIV)<Z(X,; YIX,,V), 

H(VIU)<Z(X,; YIX,,U), 

ff(U, V) <Z(X,, x,; 0. WI 
The proof will employ random coding. We first describe 
the random code generation and encoding- decoding 
schemes and then analyze the probability of error. 

Generating Random Codes: Fix p(x,lu) and p(x,lu); 
for each u E Q” generate one x, sequence drawn according 
to II,“=,p(x,,lu,) and for each UEY” generate one x2 
sequence drawn according to II~=,p(x,,Iui). Call these 
sequences xi(u) and x2(u), respectively. 

Encoding: Transmitter 1, upon observing u at the out- 
put of source 1, transmits xi(u), and transmitter 2, after 
observing u at the output of source 2, transmits x2(u). 
Assume the maps x,(e), x*(e) are known to the receiver. 

Decoding: Upon receiving y, the decoder finds the only 
(u, u) pair such that (u, u, x,(u), x2(u), JJ)EA,, where A, 
is the set of jointly e-typical sequences. If there is no such 
(u, u) pair, or there exists more than one such pair, the 
decoder declares an error. A helpful picture is given in 
Fig. 2. 

Error: Suppose (u,,, ue) is the source output. Then an 
error is made if 

0 (uo, uoy xl(uo>~ xz(uo)~ YWG 
or 

ii) There exists some (u, u) # (u,, uo) such that 
(UT 0, x1(u), x*(u), Y)EA,. 

Then the probability of error P,, can be bounded as: 

p, =p{w39 v,, X,(v,h X,(Y,L Y)%} 

+p{qwJ)z(u,, KJ>:(u, u, 
wiu m  % } 

<e+ lx P(Uo9Uo) 
(HO> UO)EA, 

* x p{ (u, u, Xl(U), X*(u) 
u+uo, 
1)=00 

X,(u), X2(u), y) -,, 

, Y)%I(~O~UO>} 

* x P(UO?UO) x P{*> 
(uo, oo)EA, u=uo, 

O#Oo 

+ 2 P(UO~~O) z PF> 
(uo, vo)E‘& u+uo, 

O#Uo 
<,+2”(H(cllv)+~)2-n(r(x,;rlx,,v)-r) 

+2”(H(YI(I)+Z)2-n(l(x,;rlx,,ci)-c) 
+~~H(LI,V)~-~(~(XI,X~; I--c) (13) 

be used throughout this paper. Consequently P,, +O if the conditions in (12) are satisfied. 
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Codewords generated by typical v's 

Codewords 
5, (u.2) + 

t: 

. . . . 
generated 
by typical . . . 
".'S. 

. . 

Fig. 2. Picture of joint typicality for multiple access channel.  Dots 
correspond to jointly typical (X,, X,) pairs. Note that only 
2nH(u.y)(xI(u), x2(u)) pairs are likely to occur. 

III. PROOF OF THEOREM 1  

The encoding and decoding schemes for Theorem 1  will 
be  described; then the probability of error will be  analyzed. 

Generation of Random Codes: F ix the probability mass 
functions P(S), P(X, Is, u>, PC-Q Is, 0). 

i) For each WE%“, independently generate one s 
sequence according to lIi”,,p(q). Index them by s(w), 
WE%“. 

or 

F”< x p(u,u)P{errormadeat decoder ](u,u) 
(u, U)EA, 

is the output of the source} + 2  P(4 u>. 
(u. 1), w)6Q, 

(15) 
From the asymptotic equipartit ion property (AEP), for 
sufficiently large n, 

P, ((” “Ix,, Pku>P{ error made  at decoder I( II, u) 
,, < 

is the output of the source} + E. (16) 

Now we show that as long as (u, u, w) E A,, there exists 
an  upper  bound independent of (u, u) for the terms in the 
summation. To  show this, we assume that (uo, u,, wo)&4, 
and  let 33  denote the event that this special triple is the 
output of the source. W e  are interested in an  upper  bound 
for P{ error made  at decoder]  CB}. 

The  event E that an  error is made  at decoder is the 
union of two events E, and E,, 

E=EluEz, (17) 

ii) For each us%” find the corresponding w-f(u) where 
=(f(u,>,* * - 9  f(u,)) and independently generate one xi E,: the event that (uo, uo, wo, So, X,(u]S,), 
sequence according to IIin, Ip(x,ilui, si( IV)). Index the x1 X2(4%h Y) e4; 
sequences by x1( u  (s( f( u))) or for simplicity by x,(uJs), E2: the event that there exists some (u, u)#(~~,u~) 
HE%“, SES”, where u  and s are such that s=s(f(u)), as such that 
generated in i). The  same procedure, using (UP 0, w7 S(w), X,(ulS), X*(uIS), Y)EA,. 
n,“,lP(x2ilui? si(w))? is repeated for the u  sequences. These 
sequences are indexed by x2( u I s(g(u))) or for simplicity Note: Since we have generated our code randomly and 

by Q(u]s), DE?/“, SES”, where u  and s are such that we are averaging the probability of error over all coding 

s=sk(u>). 
schemes generated this way, S, Xi, X,, and  Y are the only 

Encoding: Upon observing the output u  of the source, 
random variables in the event E. 

transmitter 1  finds s( f(u)) and  sends x,(u Is). Similarly, It follows from the AEP that n can be  chosen large 

transmitter 2  sends x2( u  ] s), where s = s( g( u)). 
enough such that 

Note that every u  E % ” and every u  E Y” is mapped into P{E,l%} GE, (18) 
a codeword in % ; and xi, respectively. However, with 
high probability only 2nH(“3 V, codeword pairs (xi, x2) can 

and therefore by the union bound 

simultaneously occur. This fact is crucial in the proof of P{Eja} <P{E,I%}+r. (19) 
achievability. Using (16) and  (19) and  the definition of the event E we 

Decoding: Upon observing the received sequence y, the have 
decoder declares (ri, 6) to be  the transmitted source se- 
quence pair if (ri, 5) is the unique pair (u, u) such that ~3P{E,I?i3}+2e. (20) 

(UP 0, w, s(w), x,(uls>, x,(uls), Y) EA,, 
W e  decompose the event E, into 

where w =f( u). E, =4, u&z uE,, uE,, uE,,, (21) 

Error:, Suppose (uo, uo) was the source output pair, where 
then an  error is made  if E,,: the event that there exists a  u#u, such that 

0 (uo, uo, wo, so(ro), xl(uoIs), x2(uols), Y)EA,, (~,~0,~o~~O~~l~~I~O~~~2~~OI~O~~~~~~,~ nr 
ii) .there exists some (u, u) #  (uo, uo) such that 

(u, u, w, s(w), x,(uIs), -M+), Y)E& 
Analysis of the Probability of Error: Letting A, denote 

the appropriate set of jointly r-typical sequences (see [5] 
and  [6]), we have 

Fn= x p (u, u)P{ error made  at decoder I( u, u) 
(u,e)E‘?LL”Xv” 

is the output of the source}, (14) 

* E22* the event that there exists a  u#u, such that 

(uo, 0, wo, so, X,(u,lSo), X2blSo), Y)EA,; 

E23: the event that there exists a  u#u, and  a  u#u, 
such that 

f(u)=du)=wo 
and 

(u, u, ~0, So, X,(ulSo), X2(uISo), Y> -4. 
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E 24’ 

E25: 

the event that there exists a  u#u, and  a  u#uo 
such that 

w=f(~)=g(u)z~o, WW)+So 
and 

(UA w,S(w), X,(ulS), X2(uIs), Y>E& 

the event that there exists a  u#u, and  a  u#u, 
such that 

w=f(u)=s(u)+w,, WW)=So 
and 

By the union bound,  we have 
(u, u, w, S(w), X,(ulS), &(uls), YkA,. 

p{E21a} G,~Ip{E2il”81* (22) 

Now it remains to bound P{ E2i I ‘%} for i = 1,2,3,4,5. 
Boundfor P{E,,I%}: W e  have 

P{E,,~93}=P{3m%,: (u,~~,wo,So,X,(uISo), 

X2(~olSo), Y>EA,laW). (23) 
Therefore, 

p@2113J.) = z p((4 q), wo, so, X,(uIsJ)9 
U#UO: 

(u, 00. wo)EA 

X2(~o’ol~o),Y)=4,1~}. (24) 
From Appendix A (A13) we have for (u, u,, wo) EA,, 

~{~~~~o~~o~S,~~,~~l~o~~~2~~oI~o~~~~~~,l~} 
<2-“[I(X1;YIX2,V,S)--8rl. (25) 

Notice that this bound is independent of u  as long as 
(u, uo) EA,. Substituting (25) into (24), we have 

fYE2J3J~ ( 2 ~-“[~(X,;YIX~,V,S)--~C], (26) 
uzurJ: 

(u, 00, wo)EA, 
or 
P{E,,l%} <2- ~[~(X~;YIX,,V.S)--~l.II{u: (U,uO,WO)~A~}~~, 

(27) 
but typicality yields 

11 {u: (u, u,, wo) EAT} II< 2”[H(LI’vTw)+2L1. (28) 
From (27) and (28) and  using the fact that H(U I V, W) = 
H(U I V), we have 

PP2,I~~ G2 
n[H(UIV)-I(X,;YIX,,V,S)+lOc] (29) 

Thus if 
H(UIV)<I(X,; YIX,,V,S)- lOc, (30) 

then for large enough n, we have 
P{E,,@} GE. (31) 

Bound for P{ E,, I ‘%? I}: This case is parallel to the previ- 
ous case and it can be  shown similarly that if 

H(V(U)<I(X,;YIX,,U,S)-lOc, (32) 

then by choosing n sufficiently large, we have 

fv221533) GE* (33) 

Bound for P{ E,, I%}: Here we have 
P{E2,~~}=P{3u#uo,u#uo:f(u)=g(u)=woand 

(~,~,~o,SO,~~~~I~o~~~2~~I~o~,~)~~,l~}. (34) 

Therefore, 

P{E,,I33}= 2 P{(u,u,~,,So,X,(ulSo), 
u#ao, ofoo 
(u,u,wo)E4 

x2(uISo)9 Y>EA,l~} (35) 
Again, note that u, u, and  w, are fixed and So, Xl, X2, and  
Y are random variables. Using Appendix A (A17) we have 

P{ (us 0, w,, So, X,(ulSo), W44,h Y) Eda} 
<~-“[~(~~~X~;YIW,S)--~CI. (36) 

Substituting this bound into (35), and  noting that this 
bound is independent of (u, u), we have 

p{E,,ICj$} < 2  2-“tI(X,,X2;YIW.S)-srl, (37) 
uzuo, UPVO: 
cu. 0, wo)E‘%  

or 

w231533) <2- n[I(X,,X*; yIw,s)--8cl 

~Il{(u,u): (~,~,~o)~A~,uZuo,~Z~o)Il. (38) 
On  the other hand, we have 

{(u,u): (u,u,w,)-~, uZu,,uZu,} 

c{(u,d: b,~,q,)~A~}, (39) 
and  

Il{(u,u): (u,u,wO)~AI}II 4G2”[H(~‘,V’W)+2r1. (40) 

Using (38)-(40), we obtain 

pP231533) <2 
n[H(U,VIW)--I(X,,X,; YIW,S)+lOc] - (41) 

Thus if 
H(U,V,W)<I(X,,X,;YIW,S)-1Oq (42) 

then by choosing n large enough,  we can make 

P{E231333) (6. (43) 
Bound for P{ E23 I a}: Recall from the definition of E24 

that 
P{E24JB}=P{~U#Uo, U#Uo: 

w=f(u)=g(u)#wo,S(f(u))#Soand 

(u,u,w,S(w),S(f(u)),X,(ulS),X,(uIS),Y)~A,l~}, 

(4) 

from which we have 

p{E24i’3) = z P{S(w)#S, and 
U#Uo, o#oo: 

cu. 0, w)E-%, wzwo 

(u,~,w,S(W),X~(UIS),X~(~IS),Y)EA,~~}. (45) 
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But, by the chain rule, or 

P{S(w)#S,and (u,u,w,S(w), P{E,,(%} <2-n[l(X,,*,;Y)-88c1.(I{(U,Z)): (U,V)EAL}(I) 

XI(UlS)7 x,(uW Y)%IW (54) 

=Jv(~)+s,I~}~~( u, v, w,S(w), X*(ulS), but 

Xz(vlS),Y)~A,IS(w)fS,,~}. (46) Il{(u,u): (U,V)EA,}IJ <2n[*(u,Y)+rl. (55) 

Therefore Hence 

P{S(w)#S,and(u,v,w,S(w), pbww <2 n[H(U,V)-Z(X,,X*; Y)+9c] (56) 
From this inequality it follows that if 

H(U,V)<I(X,, x2; Y)-9e, 
then we can choose it sufficiently large that 

J’b%l~} <c. 

(57) 

(58) 
Bound for P{E,, I a}: Recall from the definition of E,, 

that 
P{E,,I%}=P{3u#u,, u#u,: 

w=f(u)=g(u)#wo,s(w)=s~, 

(UT 0, w, S(w), X,(+q7 X2(vlS)9 Y)EA,l93}. 

(59) 

Here, as in the previous cases, we can write, 
S’EA, 

where the last equality follows from the fact that for 
S’BA@ 

p{ (4 V? w, s’, XI(UlS’), &(vIs’), Y) EA&#s’, a} =o. 

From Appendix A (A20) for s’ EA,, we have 

p{ (4 0, w, s’, X,(uls’), &(vIs’), Y) EAeJSO#S’, a} 
<2-“tW,,Xz;Y)--8rla (49) 

% % l~3) = c P{S(w)=S, and 
uzuo, 0#00: 

(u,o,w)L4,, W # W O  

(u,u,~,s(~), X,blS), &(+P’)-,I~}~ (60) 
but by the chain rule we have 

P{S(w)=S,and(u,v,w,S(w),X,(uIS), 

X,(vIS),Y)EA,I~}=P{S(w)=S,l~} 
~~{(~,V,~~S(~)~X,(~ls>~ 
X,(VIS)> Y)~~,IS(~U)=So~ a.>. 

(61) 

Therefore It can be  easily seen that 

fy(V,~,S(W), ~w9=ww{( UT 0, w, S(w), &(ulS), 
X,(JJlW , X,(vI%  Y)~4IS(~)ZS,9 % } X,(~lS)~ Y)W lS(4=S,, % } 

< 2 2- n[Z(x,,x,;y)-8rl2-ntH(s)+~l. (50) 
S’EA, 

= ~,~~“P{s(w)=s’~s}P{s,=s’19} 

Using the fact that -~{(u,wv’, X,(uls’),X*(u(s’),Y)EA,IS,=s’,~}, 

11 {s’: S’EA,} 11 < 2nIH@)+rl, (51) (62) 

we have 
~{(vws(w), 

X,(ulS), X,(uIS), +A,IS(w)ZS,, a} 

but since s’ @A, we have 
P{(u,v,w,s’,X1(+‘),Xz(+‘),Y)~A,~S,=s’,~}=O. 

(63) 
<~-~[~(XI~XZ;Y)--~~I. (52) J-$ ere ore, f using this and  (60)-(62), we have 

Substituting this result into (46) and  then into (49) we 
have p{E251a} = “+“,~+“,: 

2  P{S(w)=s’l%} 
s’: s’EA 6 

+%‘% I~~ ( Iz 2-“IW,,Xz; V--8~1 (53) (u,o,w)EA,, W#Y, 

U#Uo, O#OO 
(u,*,w)EA,, w+wo d={So=s’I%}P;5 (64) 
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where if the conditions of Theorem 1 are satisfied. This com- 

P&=P{ (u, u, w, s’, pletes the proof of Theorem 1. 

x,(uls’), x2(vls’), Y)EA,IS~=S’, CB}. (65) 
IV. AN UNCOMPUTAFSLE EXPRESSION FOR THE 

By using Appendix A (A23), we can bound 
pi5 < 2-M(X,.% YIW--8rl 

On the other hand for ~‘64, we have 
P{S(w)=s’l~} <2-n[H(S)-rl, 

P;s by 

(0’) 

(66) 

,,-, 
region is computable in the sense that it can be calculated 
to any desired accuracy in finite time. The following 

CAPACITY REGION 

theorem exhibits the capacity region but does not lead to 
a finite computation. 

The previous theorem develops so-called single letter 
characterizations of an achievable rate region for corre- 
lated sources sent over a multiple access channel. This 

and 
p{s, =s’p)} <2--n[m)-rl. (68) 

Substituting this result in (64), we have 

w2,rw < 2 2 2- 
n[2H(‘s)-2rJ 

uzuo, uzoo: s’: s’EA  c 
(u, u, w)EA,,  w#wo 

.2-n[Z(X,,X2;YlS)--8cl. (69) 

or 

P@25IW <2- 
n[Z(X,, x,; Yp)+zzf(s)- IOr] 

Theorem 2 (Capacity Region): The correlated sources 
(U, V) can be communicated reliably over the discrete 
memoryless multiple access channel (% i x 
~2,~,p(y~x1,xz)) if and only if 

(H(UIO HVIU), fw~))~ 0 Ck, 
k=l 

where 
.ll{(u,u): (~,+%}Il~ll{~‘: s’EA,}II. (70) 

Substituting 
c,= {(R,, R,, R,): R, <;Z(X;; Yk(Uk, Xz”) 

. 
Il{(u,u): (U,V)EA,}JI <2n[H(u*V)+cl, (71) 

11 {s’: &A,} 11 < 2n[H(S)+cl. (72) 
into (70), we have 

w2aw <2 
n[zf(rJ,V)-Z(X,,X,; Y~.s)-H(.s)+12e] * (73) 

This shows that if 
H(U,V)<Z(X,,X,;YIS)+H(S)-12e, (74) 

then by choosing a sufficiently large n 

Jv2514~ <r* (75) 

Now we prove that inequality (57) dominates inequality 
(74), thus establishing the redundancy of condition (74). 
Expand the right side of (74): 

I(X,,X,;YJS)+H(S)-12~ 
=H(YIS)+H(S)-H(YIX1,X2,S)-126 

0 
=H(Y,S)-H(YIX,,X,)-126 

>H(Y)-H(YIX,,X,)-12~ 
=Z(X*, x2; Y)- 126, (76) 

where in step 0, we have used the fact that S and Y are 
independent given (Xi, X2). Using the fact that e is arbi- 
trary, this shows that if (57) is satisfied, then (74) is also 
satisfied. 

The bounds on P{E2, I a> for i= 1,2,3,4,5 show that if 
conditions (30), (32), (42), and (57) are satisfied, we will 
have (see (22)), 

P{E,)93} <5e. (77) 
Finally from (20) we see that 

p,<7c, (78) 

R,<;Z(X,k; Yk)Vk, X;) 
. 

for some 

R,<;Z(X;,X;;Yk) 

(79) 

ir PC”i9 ~i)P(xkluk)P(x*lvk~i~~P~~ilx~i~ x2i>}* 
i=l 

Remark I: It is easily seen that C, C C2k CC,, C * + . . 
In fact, C n+m I(m /(m+n))C, u(n/(m+n>)C,, for all 
m, n. Also, the sets C, are uniformly bounded above. 
Thus, from Gallager [ 1, Appendix 4A], u,“,,C, = 
lim  c k-toe k’ 

Remark 2: The existence of C= limk,,Ck suggests that 
C is computable. However, there are no evident bounds 
on the computation error, so,while we know Cz C,, we 
do not have an upper bound Ck, Cc ck, and hence do not 
know when C has been defined to sufficient accuracy to 
terminate the computation. 

Proof of Theorem 2: 
1) Achievability: Reliable transmission for H in C, 

follows immediately from Theorem 1 if we replace 
the channel by its k th extension. 

2) Converse: Given the two correlated sources 

((i?y)~z~~P(ui9vi) 

and a code book 
G?={(n,(u), x,(v)): ueLn, VECV”}, 

we construct the empirical probability mass func- 
tion on the set % “X~“X%~X%$X~” defined 
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by 
n 

P(“9v3 x1, x29 U)’ II ~P~“i~ui~P~xllu~P~x21v~ 
i=l 

* r~IP(YiIX~ir xzi>* (80) 

Now, applying Fano’s inequality, we obtain 

(81) 

where I(UI( and IIV(I are the respective alphabet 
sizes (assumed finite) of U and V. Thus if P,,+O, 
A, must converge to zero. Standard inequalities 
yield 

i) (l/n)H(UIV)=H(UIV) 

=(l/n>H(UlK X2) 

= U/n>Z(U; YlK X2) 

+(l/n)H(UIK Y, X2) 

<(l/n)Z(X,; YIK X,)+A,. 

(82) 
Similarly, 
ii) H(VIU)<(l/n)Z(X,;YIU,X,)+X,. (83) 
F inally, 
iii) H(U,V)<(l/n)Z(U,V; Y)+A, 

<(l/n)Z(X,, X2; Y)+&. (84) 
Now, if (U, V) is to be  transmitted reliably, then 
X,+0 as n-too. It follows from (82), (83), and  
(84), that 

(H(UIV), HWIU), H(U,f’))E lim  C,, n+m 
which proves the converse 

F inally, for m correlated sources, we have the following 
result. 

Theorem 3: The  correlated sources {U,, U,, - * * , U,} can 
be  communicated reliably over the MAC (%, X % , 
x . . . x96,,,, 9, p(y lx,, xz;. . , x,)) if and  only if there 
exists some k such that 

H(u(~>j~(~c>)<(l/k)Z(X(S); YlX(W ,u(S% 
(85) 

for all subsets SC { 1,2; * *, m}. 

In Theorem 2, as well as in the previous sections, we 
assumed that the observed number  of source symbols per 
unit time  was equal  to the number  of channel  transmis- 
sions per unit time. 

W e  now general ize the problem to allow the observa- 
tion of R source symbols per channel  transmission. 

Theorem 4: The  correlated sources {(q, I$)}: i, arriv- 
ing at the channel  at the rate R symbols per channel  use, 
can be  communicated reliably over the discrete memory-  
less mu ltiple access channel  if and  only if 

(H(UIV), H(vIU), H(u,v))c fi c,, 
n=l 

where 

C,, = {(R,, R,, R,): R, <LZ(X;; Yn,UtnR1, XT) 
1nRl 

Rz< Lni] 
-z( x,“; Y”, PRl, x;) 

R3< ,A, 
-zI(x;, x;; Y”) 

(86) 
for some 
[Rnl 
II P(Ui, ~i)p(x~(u’Rnl))P(~~(vlnni))i~~P(~ilx~i~ x2i)}’ 

i=I 

(87) 
Proof The proof follows easily from that of Theorem 

2  by choosing a  sequence of integers pi, qi such that 
pi/qi +R and breaking the (U, V) sequences into blocks 
of superletters of length pi and breaking the X sequence 
into blocks of superletters of length qi. 

APPENDIX A 
In this appendix, we shall bound  

~{(u~~~~,~(~),~,(~l~),~*(~l~),Y)~~,lQ}, 
under  the various assumpt ions of independence on  u, v, w, s, Xi, 
X2, and  Y that arise in the proof of Theorem 1. Recall that 
(uc, ue, w,,)E& where A, denotes the set of all jointly typical 
(u, v, w) sequences,  and  ‘33  denotes the event  that this particular 
(II,,, uc) is the output of the source. Our  bound  will hold uni- 
formly for each (ue, u,,) ~4,. 

F irst we prove a  lemma which is used repeatedly in the proof. 
Lemma:  Let (Z,, Z,, Zs, Z,, Z,) be  random variables with 

joint distribution p(z,, z2, zs, z4, zs). Fix (z,,z~)E& and  let 
Zs, Z,, Z, be  drawn according to 

p(z3=zj,&=z4, z5=z5lz,,zz) 

=,~,~(ZUlZli~Z2i)P(Z~i(Z3i~Z~i)P(Z5i/Z3i,Z~i). (Al) 

In other words Z3 depends  only on  Z,, Z,; Z, depends  only on  
Z3,Z2; and  Z, depends  only on  Z3, Z,. Then 

~{(z,,z2,5,~4,~5)~~,} 

(2-“1z(z,; z,lz,,z,)+z(z,; z,~z,Iz,,Z,)--8~1 ’ W)  

Proof Since (z,,z~)E& we have 

p{(z,,zz,5,z,,z,)~A,} 
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But from (Al) 

~{(5~z,~z,)=(z~~z~~z~)lz,1z2} 

=P{~~=z~~z,,z~}~P{Z~=~~~~~,~~}~P{Z~=Z~~~~,Z,}, (A4) 

and since (zi, zs, zs, zq, zs) EA,, we have from the AEP 
p{z3=z3~z,,z2} <2--nI~(Z3IZl,~2)+2.1, (A5) 
p{z,=z41z3,z2} <2-n[~(Z,IZ,.Z2)+2~1, 646) 
p{zS=zSIZ3,zl} <2-n[~(ZSIZ3.Z1)+2rl, @7) 

Using (A5)-(A7) and the bound on the cardinality of the set 
{(z3,z.,,z5): (z,,z2,z3,z4,z5)~~,}, we have 
P{(z,,z2,z~,z4,Z~)EA,} <2n~~(Z3,Z4rZ5’ZI,z2)-2~l 

.~-n~N~Z~lZ,,Z*~+2rl~-nI~~z~lz,.Z,~+2rl~-nI~~~,l~,.~,~+2~l~ 

(A9 

Substituting 

~(5,Z,,5lzl,z2)=~(5lZ,,Z2)+~(Z,IZ,,~2~5) 

+WZ,IZ,, Z2,5,&) (A9) 

into (A8) we have 

~{(z*,z2~51z4,ZS)~A,} 
~2-“[1(Z4;Z,IZ,,ZB)+I(Z,;Z,,Z,JZ,,Z,)--8~1 . (AIO) 

This completes the proof. 

Now we bound P((u, u, f(u), S<flu)), XdulS), X2(uIS), Y) 

EA, 1%) in different cases. Note that in all cases we are assum- 
ing (u, v, w) EA,. We now consider specific conditions. 

1) ufue, v=vo (therefore w=wo, S=S,). 

Here II, v, w, are fixed and T$,, Xi(ul&), X2(vI&), Y are 
random variables. We use Lemma 1 with Z, =( Vo, wo), z2=u, 
Z3=S,,, Z4=X,(ulS,,), Zs=(X2(vol$),Y). Note that the as- 
sumption of the lemma on the conditional distribution of 
5, Z,, Z, given z,,z2 are satisfied. In (AlO), we have 

I(&; Z,lG, Z,)=Z(X,; v, WIU, 9 

=H(XIIU,S)-H(X,IU,Y,W,S) 

=H(X,IU, S)-H(X,IU,S)=O, (All) 

where the last step follows from the fact that Xi and (V, IV) are 
conditionally independent given (U, S). 

We also have 

=~(X,,Yl~,S)-~(x,,ylu,~,x,,s) 

0 
= ff(X,lV, S)+H(YlX,,V,S) 

-H(X,lU,I/,X,,S)-H(YlX,,X,) 

0 
=H(X,IV,S)+II(YIX,,‘V,S) 

=Z(Y; X,lX,,V, S), (~412) 

where each equality is justified by the following reasoning: 

1) because W  is a deterministic function of V; 
2) from the chain rule for conditional entropy and the fact 

that Y and (U, V, S) are conditionally independent given 
(Xl> X2); 

3) from the fact that X2 and (U, X,) are conditionally inde- 
pendent given (V, S); 

4) from the fact that Y and (V, S) are conditionally indepen- 
dent given (Xi, X2). 

From (AlO)-(A12) it follows that 

~{~~~~0~~0~SO~~,~~ISO~~~2~1)OISO~~~~~~.I~} 
<~-“~‘(Y;X,I~Z,Y,S)--~~I. (~13) 

2) v#vo, u=uo (therefore w=wo, S=So). 

Again we assume (uo, 0, wg) ?A,. This case is similar to case 
(Al), and we obtain 

P{(v, 809 ~O~~~~,~~Ol~~~~2~~l~~~~~~~,l~} 
<~-~[~(Y;XZIXI.U,S)-~~I. (~14) 

3) u#uo, v#vo buf w=w, (hence S=S,). 

As usual we are assuming (u, v, &EA,. Here u, v, w, are 
fixed and $-,, X,(ul&,), X,(v ISe), and Y are random variables. 
We apply the lemma with z1 = wlj, z2 =(u, v), zj =sg, z, = 
(X,(ul&,), X2(01&,)), Z,,= Y. Again, witbthis choice, the condi- 
tions of the lemma on the joint distribution function of 5, Z4, Zs 
given z,, z2 are satisfied, and we can apply inequality (AlO). We 
have 

z(z,;z,Iz,,z~)=z(x,,x,;wIu,v,s)=o, 6415) 

because W  is a deterministic function of U and V. Also 

z(5;z2,~41z,,~3)=z(~;U,~,~~,~2l~,~~ 

a 
=H(YlW,S)-H(YlX,,X,,W,S) 

=Z(Y;X,,X,IW,S), (‘416) 
where @  follows from the conditional independence of Y and 
(U,V) given (X*,X,). From (AlO), (A15), and (A16) it follows 
that 

4) U#Uo, U#VlJ, Wf wo, &I zs’. 

Here u, v, w, s’ are fixed, Xi, X2, and Y are random variables, 
and we wish to bound P{(u, v, w, s’, X,(uls’), X2(vIs’), Y)E 
ACl&#s’,9}. It is assumed that (u,v,w)c~, and s’e.4,. 
Therefore by the independence of S from U, V, Wit follows that 
(u, v, w, s’) EA,. In the lemma, let 

z*=o, z2=(u,v,w,s’), z,=0, 

~4=(~,(~I~‘),~z(~I~‘), z,= Y. 

From the lemma, we have 

z(z,;z,Iz,,z~)=z(x,,x,;0~u,v,w,s)=o (A18) 
and 

z(5;z2,z~Iz,,z~)=z(y;~,v,w,s,x~,x2)=z(Y;x,,~2). 

(A19) 
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Hence and 

~Z,(~,,Xz;Y)+(l-~)Z,(X,,X,;Y)<Z(X,,X,;Y), (B3) 

5) u#uo, v#vo, W#Wi), s, =s’. 
where the subscripts on the Z refer to the conditional mass 
function used. 

Here, as in (A4), (II, v, w, s’) ~4, are fixed and X,, X2, and Y 
are random variables, and we wish to bound 

~{(U,v,W,S’,X,(u~s’),X2(vls’),Y)EA,I~=S’,~}. 

In the lemma, set 

z, =s’, z2=(u,v,w,s’), z,=0, 

Z4=(&(4s’), x2(+‘)), z,= Y, 

thus obtaining 

Define the independent random variable T, taking the value 1 
with probability a and 2 with probability 1 -a. let S’=(S, T) 
and observe that 

and 

(Bl)=Z(X,;YIX,,V,S’), 

(B2)=Z(X,;YIX,,U,S’), 

(B3)=Z(X,,X,; YlT)=~z(x,,&; 0 

z(z,;z,Iz,,z~)=z(x,,x,;sIu,v,w,s)=0 WI) 
and 

thus establishing convexity. 

z(z,;z,,z,Iz,,z~)=z(Y;u,v,w,s,x,,~,Is) 
a 
= myS)-w-IX,,%, 9 

-IV; X,,&lS), ww 
where step 0 follows from the conditional independence of Y 
and (U, V, W) given (Xi, X2). Again, from the lemma, we obtain 
the bound 
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