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ON PARAMETRIC H>* OPTIMIZATION*

Pierre T. Kabambal and Stephen P. Boyd2

ABSTRACT

The problem of optimizing the H* norm of a rational transfer
matrix with respect to a finite number of design parameters is
considered. The H™ norm is characterized as a value of a parameter
for which a certain Hamiltonian matrix has multiple eigenvalues. A
coprimeness test for polynomials is used to algebraically characterize
the H°° norm as an implicit function of the design parameters. In
the case of a single design parameter, necessary conditions for
optimality are obtained in the form of a system of two algebraic
equations with two unknowns.

1. Introduction

The problem treated in this note is as follows. We are given *

‘affine real matrix functions of a real parameter vector §: -

(AB.CD)ER 5R xR xR xR :EcE -
(a®.B®.c®.D®) =@, B, C,D,)
9
+Y (A, B,C, D). .1
i=1

We assume that £ is a compact subset of IR® and that for all e &,
all the eigenvalues of the matrix A() have negative real parts.
Forevery & € E, we define the transfer matrix
-1
H(s,§)=C(E) [sI - A®)] " B(&)+D(E). (1.2)
The problem is then simply to find § € Z which minimizes the H*

norm of H(s,£), or formally:
min J&) , (1.3)
Ee=

‘where

IE) & IHEE, & sup S (H Go.8) . (1.4)

and G(.) denotes the maximum singular value of a matrix.

2. Algebraic Viewpoint
For every Y > 0, not singular value of D(§), define the 2n X 2n
Hamiltonian matrix
AR O

M(1,8) =
0 -A"®
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. 2.1
where

R(E) = [D"EDE) - Y11, S@E) = DED @) - ¥ 1.22)

We also define the following polynomial function of s

n(spE) 2 det [ sI- M(Y,E.,)J, (2.3)

which satisfies
n(s,1,8) = T(-s,1.8) 2.4
= n(s,-1,§) 2.5)

Notice that as y — +ee, M(y,£) — Block Diag(A(%),-A()) which
has no imaginary eigenvalue. Therefore for all § € E we can define

v 2inf (Y25 (DE) | M) has no imaginary cigenvalue)
4 inf {72 S D(E)! 7(s,y,E) has no imaginary s-root} (2.6)

Proposition 2.1 [1] For all & e Z, IH(s, Ol = ¥*(&). 1

Proposition 2.2 Let jo* be an imaginary s-root of (s,y*(§).£).
Then jo* must be a double root, i.e.

G Y €8 =0, en

s} *
= T @B _ . =0 m)m

Propositions 2.1 and 2.2 are useful because they characterize
HEI(s,E)lleo as a value of ¥ for which the polynomial n(s,v,6) has a
double root, i.e., for which the two polynomials n(s,Y,5) and

on(s,y,£)/0s have a common root. We may, therefore, use any
number of coprimeness tests for polynomials to derive an algebraic

characterization of IH(s,£)l.
Definition 2.1 The vector § is called nondegenerate if there

exists Y € [R such that the matrix M(y,€) of (2.1) has 2n distinct
eigenvalues. Otherwise it is degenerare. N

Proposition 2.3 For every nondegenerate &, the function V() of

(2.6) satisfies

P (). =0 (2.9)
where P(y,£) is the resultant [&] of the two polynomials in
s : 7(s,Y,E) and on(s,Y.£)/0s. il
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Proposition 2.4 Suppose that

1. q=1
2. The pair (y*,£*) solves Problem (1.3)
3. E*e £ andis nondegenerate
Then, either
Py E) =0, (2.10.2)
OP(Y.E)
. =0, 2.10.b)
Y O=0mE) ¢
or
P(rE)=0, @.11.a) -
PR | L= (2.11.b)
€  wH=mr8)
IIh
3. Example

The simplest example to illustrate the concepts of Section 2 is
possibly that of optimal zeroth order model reduction of a first order
system. Given a first order transfer function Hj(s) = 1/(s+1), we

want to find the best zeroth order approximant Ha(s,£) = £ in the
sense

SR

3.1)

min IO = || 57
&

Thus, H(s,£) = [1-E(s+1)]/(s+1). Followmg the development of
-’

Section 2, we have
n(syE) =1 ——i 2+
s ¥

The Routh table without division based on n(s,’y,é) and 9n(s,y,£)/0s
yields the resultant

-1

3.2)

§(1-§) +[§ +(1-§)]
Y s
which has the following interpretation: for every &, J(§)in (4.1) isa

value of y for which P(y,§) = 0. For instance, if £€=0, we recover
the well known fact I11/(s+Dllee = 1.

P(Y8) =- -1,

(3.3)
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Since P(v,£) is a polynomial in y1, it is more convenient to
work with

P8 =P8 | .

[ 2 21
=-y .g)u4+[x +(1-8)] -1, (3.4)
Then Proposition 2.4 implies that the optimal design satisfies either

Bt =0 (3.5.2)
[ 1
P o1y 2|+ -0 u= (3.5.b)
or
Pu)=0 (3.6.2)

ag —2@t-nlrea-v+2]l =0 @eb)

If (3.5) hold, then the polynomials in p (3.4) and (3.5.b) have a
common root. A Routh table without division based on these two
polynomials yields the resultant

4 4 2
pE)=E(1-8) E-1) 3.7
whose roots are candidate optimal designs. If, on the other hand,

(3.6) hold, then the two polynomials in | (3.4) and (3.6.b) have a

common root. There also, a Routh table without division yields the-
resultant :

P& =8 (1-82QE- 1 E-E+2),

whose roots are also candidate optimal designs.

3.8)

In this very simple example, it is easily seen that the unique

optimal de51gn is £* = 1/2 yielding v* = 1/2, which i is one of the
candidates given by (3.7) and (3.8). .
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