ON PARAMETRIC H∞ OPTIMIZATION*

Pierre T. Kabamba¹ and Stephen P. Boyd²

ABSTRACT

The problem of optimizing the H^∞ norm of a rational transfer matrix with respect to a finite number of design parameters is considered. The H^∞ norm is characterized as a value of a parameter for which a certain Hamiltonian matrix has multiple eigenvalues. A coprimeness test for polynomials is used to algebraically characterize the H^∞ norm as an implicit function of the design parameters. In the case of a single design parameter, necessary conditions for optimality are obtained in the form of a system of two algebraic equations with two unknowns.

1. Introduction

The problem treated in this note is as follows. We are given affine real matrix functions of a real parameter vector $\boldsymbol{\xi}$:

$$(A,B,C,D): \Xi \in \mathbb{R}^{q} \to \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{p \times n} \times \mathbb{R}^{p \times m}: \xi \in \Xi \to \left(A(\xi),B(\xi),C(\xi),D(\xi)\right) = (A_{o},B_{o},C_{o},D_{o}) + \sum_{i=1}^{q} (A_{i},B_{i},C_{i},D_{i}) \xi_{i}. \tag{1.1}$$

We assume that Ξ is a compact subset of $|R|^q$ and that for all $\xi \in \Xi$, all the eigenvalues of the matrix $A(\xi)$ have negative real parts. Forevery $\xi \in \Xi$, we define the transfer matrix

$$H(s,\xi) = C(\xi) [sI - A(\xi)]^{-1} B(\xi) + D(\xi).$$
 (1.2)

The problem is then simply to find $\xi \in \Xi$ which minimizes the H^{∞} norm of $H(s,\xi)$, or formally:

$$\min_{\xi \in \Xi} J(\xi)$$
, (1.3)

where

$$J(\xi) \stackrel{\Delta}{=} \|H(s,\xi)\|_{\infty} \stackrel{\Delta}{=} \sup_{\omega \in \mathbb{R}} \overline{\sigma} (H(j\omega,\xi)), \qquad (1.4)$$

and $\bar{\sigma}(.)$ denotes the maximum singular value of a matrix.

2. Algebraic Viewpoint

For every $\gamma > 0$, not singular value of $D(\xi)$, define the $2n \times 2n$ Hamiltonian matrix

$$M(\gamma,\xi) = \begin{bmatrix} A(\xi) & 0 \\ 0 & -A^{T}(\xi) \end{bmatrix}$$

$$\begin{split} & + \begin{bmatrix} B(\xi) & 0 \\ 0 & -C^T(\xi) \end{bmatrix} \begin{bmatrix} -D(\xi) & \gamma I \\ \gamma I & -D(\xi) \end{bmatrix}^{-1} \begin{bmatrix} C(\xi) & 0 \\ 0 & B^T(\xi) \end{bmatrix} = \\ & = \begin{bmatrix} A(\xi) - B(\xi)R(\gamma,\xi)^{-1}D^T(\xi)C(\xi) & -\gamma B(\xi)R(\gamma,\xi)^{-1}B^T(\xi) \\ & \gamma C^T(\xi)S(\gamma,\xi)^{-1}C(\xi) & -A^T(\xi) + C^T(\xi)D(\xi)R^{-1}(\xi)B^T(\xi) \end{bmatrix} \end{split}$$

where

$$R(\gamma,\xi) = [D^{T}(\xi)D(\xi) - \gamma^{2}I], S(\gamma,\xi) = [D(\xi)D^{T}(\xi) - \gamma^{2}I].(2.2)$$

We also define the following polynomial function of s

$$\pi(s,\gamma,\xi) \triangleq \det\left(sI - M(\gamma,\xi)\right),$$
 (2.3)

which satisfies

$$\pi(s,\gamma,\xi) = \pi(-s,\gamma,\xi) \tag{2.4}$$

$$=\pi(s,-\gamma,\xi) \tag{2.5}$$

(2.1)

Notice that as $\gamma \to +\infty$, $M(\gamma, \xi) \to Block \, Diag(A(\xi), -A^T(\xi))$ which has no imaginary eigenvalue. Therefore for all $\xi \in \Xi$ we can define $\gamma^*(\xi) \stackrel{\Delta}{=} \inf \, \{ \gamma \ge \overline{\sigma} \, (D(\xi)) \mid M(\gamma, \xi) \, \text{has no imaginary eigenvalue} \}$

$$\stackrel{\triangle}{=}$$
 inf $\{\gamma \geq \overline{\sigma} D(\xi)\}$ $\pi(s,\gamma,\xi)$ has no imaginary s-root $\{2.6\}$

Proposition 2.1 [1] For all
$$\xi \in \Xi$$
, $||H(s,\xi)||_{\infty} = \gamma^*(\xi)$.

Proposition 2.2 Let $j\omega^*$ be an imaginary s-root of $\pi(s,\gamma^*(\xi),\xi)$. Then $j\omega^*$ must be a double root, i.e.

$$\pi(j\omega^*, \gamma^*(\xi), \xi) = 0$$
, (2.7)

$$\frac{\partial}{\partial s} \left. \pi(s, \gamma^*(\xi), \xi) \right|_{s = j\omega^*} = 0. \tag{2.8}$$

Propositions 2.1 and 2.2 are useful because they characterize $\|H(s,\xi)\|_{\infty}$ as a value of γ for which the polynomial $\pi(s,\gamma,\xi)$ has a double root, i.e., for which the two polynomials $\pi(s,\gamma,\xi)$ and $\partial \pi(s,\gamma,\xi)/\partial s$ have a common root. We may, therefore, use any number of coprimeness tests for polynomials to derive an algebraic characterization of $\|H(s,\xi)\|_{\infty}$.

Definition 2.1 The vector ξ is called *nondegenerate* if there exists $\gamma \in |\mathbb{R}|$ such that the matrix $M(\gamma, \xi)$ of (2.1) has 2n distinct eigenvalues. Otherwise it is *degenerate*.

Proposition 2.3 For every nondegenerate ξ , the function $\gamma^*(\xi)$ of (2.6) satisfies

$$P(\gamma^*(\xi), \xi) = 0$$
 (2.9)

where $P(\gamma,\xi)$ is the resultant [2] of the two polynomials in $s:\pi(s,\gamma,\xi)$ and $\partial\pi(s,\gamma,\xi)/\partial s$.

^{*}Supported in part by NSF under grant ECS-85-52465, ECS-8722244, ONR under N00014-84-K-0112, an IBM faculty development award, and Bell Communications Research.

¹Aerospace Engineering Dept., The University of Michigan, Ann Arbor, MI 48109-2140, (313) 763-6728.

²Electrical Engineering Dept., Stanford University, Stanford, CA.

Proposition 2.4 Suppose that

1. q = 1

2. The pair (γ^*, ξ^*) solves Problem (1.3)

ξ* ∈ Ξ and is nondegenerate

Then, either

$$\begin{cases} P(\gamma^*, \xi^*) = 0 , & (2.10.a) \\ \frac{\partial P(\gamma, \xi)}{\partial \gamma} \Big|_{(\gamma, \xi) = (\gamma^*, \xi^*)} = 0, & (2.10.b) \end{cases}$$

or

$$\begin{cases} P(\gamma^*, \xi^*) = 0 , & (2.11.a) \\ \frac{\partial P(\gamma, \xi)}{\partial \xi} \Big|_{(\gamma, \zeta) = (\gamma^*, \xi^*)} & = 0 . & (2.11.b) \end{cases}$$

3. Example

The simplest example to illustrate the concepts of Section 2 is possibly that of optimal zeroth order model reduction of a first order system. Given a first order transfer function $H_1(s) = 1/(s+1)$, we want to find the best zeroth order approximant $H_2(s,\xi) = \xi$ in the sense

$$\min_{\xi} J(\xi) = \left| \left| \frac{1}{s+1} - \xi \right| \right|_{\infty} . \tag{3.1}$$

Thus, $H(s,\xi) = [1-\xi(s+1)]/(s+1)$. Following the development of Section 2, we have

$$\pi(s,\gamma,\xi) = \left(1 - \frac{\xi^2}{\gamma^2}\right) s^2 + \frac{(1-\xi)^2}{\gamma^2} - 1$$
 (3.2)

The Routh table without division based on $\pi(s,\gamma,\xi)$ and $\partial \pi(s,\gamma,\xi)/\partial s$ yields the resultant

$$P(\gamma,\xi) = -\frac{\xi^2(1-\xi)^2}{\gamma^4} + \frac{[\xi^2+(1-\xi)^2]}{\gamma^2} - 1 \; , \eqno(3.3)$$

which has the following interpretation: for every ξ , $J(\xi)$ in (4.1) is a value of γ for which $P(\gamma,\xi) = 0$. For instance, if $\xi=0$, we recover the well known fact $||1/(s+1)||_{\infty} = 1$.

Since $P(\gamma,\xi)$ is a polynomial in γ^1 , it is more convenient to work with

$$P(\mu,\xi) = P(\gamma,\xi) \Big|_{\pmb{\xi} = \mu^{-1}}$$

$$=-\gamma^2(1-\xi)\mu^4+\left[x^2+(1-\xi)^2\right]\mu^2-1\ . \tag{3.4}$$
 Then Proposition 2.4 implies that the optimal design satisfies either

$$\overline{P}(\mu,\xi) = 0$$
(3.5.a)

$$\begin{cases} \frac{\partial \overline{P}}{\partial \mu} = -4\xi^2 (1 - \xi) \mu^3 + 2 \left[\frac{\xi^2}{\xi^2} + (1 - \xi)^2 \right] \mu = 0 \end{cases}$$
 (3.5.b)

$$\begin{cases} \overline{P} (\mu,) = 0 & (3.6.a) \\ \frac{\partial \overline{P}}{\partial \xi} = 2 (2\xi - 1) \left[\gamma^4 \xi (1 - \xi) + \gamma^2 \right] = 0 & (3.6.b) \end{cases}$$

If (3.5) hold, then the polynomials in μ (3.4) and (3.5.b) have a common root. A Routh table without division based on these two polynomials yields the resultant

$$\rho_1(\xi) = \xi^4 (1 - \xi)^4 (2\xi - 1)^2 \tag{3.7}$$

whose roots are candidate optimal designs. If, on the other hand, (3.6) hold, then the two polynomials in μ (3.4) and (3.6.b) have a common root. There also, a Routh table without division yields the

$$\rho_2(\xi)=\xi^2\left(1-\xi\right)^2\left(2\;\xi-1\right)^4\left(\xi^2-\xi+2\right)\;, \eqno(3.8)$$
 whose roots are also candidate optimal designs.

In this very simple example, it is easily seen that the unique optimal design is $\xi^* = 1/2$ yielding $\gamma^* = 1/2$, which is one of the candidates given by (3.7) and (3.8).

References

- S. Boyd, V. Balakrishnan, and P. Kabamba. "On Computing the H[∞] Norm of a Transfer Matrix," Proc. 1988 ACC, Atlanta, GA, June 1988, also to appear in Mathematics of Control, Signals and Systems.
- M. Bocher. Introduction to Higher Algebra, McMillan, 1930.