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Optimal Throughput-Delay Scaling in Wireless
Networks – Part II: Constant-Size Packets

Abbas El Gamal, James Mammen, Balaji Prabhakar and Devavrat Shah

Abstract

In Part I we characterized the optimal throughput-delay trade-off in static wireless networks as D(n) =
Θ(nT (n)), where D(n) and T (n) are the average packet delay and throughput in a network of n nodes, respectively.
While this trade-off captures the essential network dynamics, packets need to scale down with the network size. In
this “fluid model”, no buffers are required. Due to this packet scaling, D(n) does not correspond to the average delay
per bit. This leads to the question whether the trade-off remains the same when the packet size is kept constant,
which necessitates packet scheduling in the network.

In this paper, we answer this question in the affirmative by showing that the optimal throughput-delay trade-off
is still D(n) = Θ(nT (n)), where now D(n) is the average delay per bit. Packets of constant size necessitate the
use of buffers in the network, which in turn requires scheduling packet transmissions in a discrete-time queueing
network and analyzing the corresponding delay. Our method consists of deriving packet schedules in the discrete-
time network by devising a corresponding continuous-time network and then analyzing the delay induced in the
actual discrete network using results from queueing theory for continuous-time networks.

I. INTRODUCTION

In their seminal work [4], Gupta and Kumar introduced a random network model for studying throughput scaling
in a static wireless network, i.e., when the nodes do not move. They showed that the throughput per source-
destination pair scales as Θ

(

1/
√

n log n
)

. They implicitly used a fluid model and later work by Kulkarni and
Viswanath [6] consolidated the result with an explicit constant packet size model.

In previous work [1], we studied the throughput-delay trade-off in wireless networks. A more complete treatment
is provided in part I [2] of this two-part paper. The optimal throughput-delay trade-off is established to be D(n) =
Θ(nT (n)) (see Figure 1). In this work, packet size needs to scale down with the number of nodes n in the network.
This leads to a fluid model for transmitting packets and allows us to obtain the essential trade-off by skirting the
issue of buffering and the resultant queueing delay at the nodes. The delay that is considered in [2] is the average
packet delay and since the packet size is allowed to scale down with n, it does not correspond to the average delay
per bit. This paper investigates the throughput-delay trade-off when the packet size remains constant, i.e., does not
scale down with n. This is an important question, since in real networks, packet sizes do not change when more
nodes are added to the network. Note that with the additional constraint that the packet size remains constant, the
throughput-delay trade-off can be no better than that in the fluid model. However, a priori, it is not clear whether
the same throughput-delay trade-off as in the fluid case can be achieved, since now, routing packets through the
network also involves the additional task of scheduling in the network. In this paper, we extend our previous work
to the case of wireless networks with buffers and constant-size packets and show that the optimal trade-off is still
D(n) = Θ(nT (n)) (as shown in Figure 1), where now D(n) is the average delay per bit.

The main contribution of this paper is to determine the exact order of delay by coupling the evolution of a discrete-
time queueing network with that of a continuous-time queueing network. This provides both a packet scheduling
policy (see item 6 of Policy Σn in Section II) and a method for analyzing the delay. Packets in a wireless network
have fixed routes depending on the source-destination pair to which they belong. The entire wireless network
then corresponds to a discrete-time, open queueing network with general customer routes, in the terminology of
queueing theory (e.g. see [5], [8]). In the case of continuous-time queueing networks, these are also known as
Kelly or BCMP networks and the equilibrium distribution is known to have a product form. Since packet size is
a constant and does not have an Exponential distribution, we use Preemptive LIFO to obtain a symmetric queue,
in order to have a product form equilibrium distribution. Then based on packet arrival times in a continuous-time
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Fig. 1. Throughput-delay scaling trade-off in the static random network model. The scales of the axes are in terms of orders in n.

queueing network with a Preemptive LIFO queue management at each server, we derive a scheduling policy for
the wireless network. Finally, using product form equilibrium results for continuous-time networks, we determine
the exact order of queueing delay in the discrete-time wireless network.

A. Model and Definitions

For the sake of completeness, we repeat the models and definitions already presented in [2]. Refer to [2] for a
more complete explanation of the model.

Definition 1 (Static random network model): The static random network consists of a unit torus in which n nodes
are distributed uniformly at random. These n nodes are split into n/2 distinct source-destination (S-D) pairs at
random. Time is slotted for packetized transmission. For simplicity, we assume that the time-slots are of unit length.

Definition 2 (Model for successful transmission): Under the Relaxed Protocol model, a transmission from node
i to node j in a time-slot is successful if for any other node k that is transmitting simultaneously,

d(k, j) ≥ (1 + ∆)d(i, j) for ∆ > 0

where d(i, j) is the distance between nodes i and j. During a successful transmission, nodes send data at a constant
rate of W bits per second.
With time-slots of unit length, this means that the size of packets transmitted in each slot is W bits.

Definition 3 (Scheme): A scheme Π, for a random network, is a sequence of communication policies, (Πn),
where policy Πn determines how communication occurs in a network of n nodes.

Definition 4 (Throughput of a scheme): Let BΠn
(i, t) be the number of bits of S-D pair i, 1 ≤ i ≤ n/2,

transferred in t time-slots under policy Πn. Note that this could be a random quantity for a given realization
of the network. Scheme Π is said to have throughput TΠ(n) if there exists a sequence of sets AΠ(n) such that

AΠ(n) =

{

ω : min
1≤i≤n/2

lim inf
t→∞

1

t
BΠn

(i, t) ≥ TΠ(n)

}

and P (AΠ(n))→1 as n→∞.
We use the term whp (with high probability) to denote this. That is, we say that an event An occurs with high
probability (whp) if P (An)→1 as n→∞.

Definition 5 (Delay of a scheme): The delay of a bit is the time it takes for the bit to reach its destination after
it leaves the source. Let Di

Πn

(j) denote the delay of bit j of S-D pair i under policy Πn, then the sample mean of
delay for S-D pair i under is

D̄i
Πn

= lim sup
k→∞

1

k

k
∑

j=1

Di
Πn

(j).

The delay for scheme Π is the average delay over all S-D pairs, i.e.,

DΠ(n) =
2

n

n/2
∑

i=1

D̄i
Πn

.
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When an equilibrium distribution exists under policy Πn, DΠ(n) is equal to the expected value of delay under the
equilibrium distribution when each S-D pair communicates at the same rate.

Definition 6 (Throughput-delay optimality): A pair (T (n), D(n)) is said to be Throughput-Delay (T-D) optimal if
there exists a scheme Π with TΠ(n) = Θ(T (n)) and DΠ(n) = Θ(D(n)) and ∀ scheme Π′ with TΠ′(n) = Ω(T (n)),
D(Π′)(n) = Ω(D(n)).

Definition 7 (Optimal througput-delay trade-off): The optimal throughput-delay trade-off consists of all the T-D
optimal pairs.

Note that in the definition of delay we used bit delay whereas in the scheme we present later, we refer to packet
delay. Since the packet size is constant, however, these two are of the same order.

In this paper, we use ci to denote constants that do not depend on n.
Our main result is as follows.
Theorem 1: The optimal throughput-delay trade-off in the static random network model is given by

T (n) = Θ (D(n)/n) ,

for T (n) = O
(

1/
√

n log n
)

.
The above result says that under a delay scaling constraint of D(n) the optimal throughput scaling is Θ(D(n)/n).

And this holds for T (n) = O
(

1/
√

n log n
)

, that is, the entire range of achievable throughputs in the static random
network model.

The rest of this paper is organized as follows. In Section II, we introduce Scheme Π and show that it achieves
the throughput-delay trade-off stated in Theorem 1. Finally we present a converse that shows that no scheme can
provide a better throughput-delay trade-off than Scheme Π, thus establishing Theorem 1.

II. THROUGHPUT-DELAY TRADE-OFF IN STATIC NETWORKS

Our trade-off scheme is a multi-hop, time-division-multiplexed (TDM), cellular scheme with square cells of area
a(n) so that the unit torus consists of 1/a(n) cells as shown in Figure 2. In the following analysis, we ignore the
edge effects due to 1/a(n) not being a perfect square. Before presenting the trade-off scheme, we present three
lemmas about the geometry of the n nodes on the torus divided into square cells of area a(n). See [2] for the
proofs.
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Fig. 2. The unit torus is divided into cells of size a(n) for Scheme Π. The S-D lines passing through the shaded cell in the center are shown.

Lemma 1: If a(n) ≥ 2 log n/n, then each cell has at least one node whp.
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We say that cell B interferes with another cell A if a transmission by a node in cell B can affect the success of a
simultaneous transmission by a node in cell A.

Lemma 2: Under the Relaxed Protocol model, the number of cells that interfere with any given cell is bounded
above by a constant c1, independent of n.
We say that a cell is active in a time-slot if any of it nodes transmits in that time-slot. A consequence of Lemma 2
is that, there exists an interference-free schedule where each cell becomes active regularly, once in 1+ c1 time-slots
and no cell interferes with any other simultaneously transmitting cell.

Let the straight line connecting a source S to its destination D be called an S-D line.
Lemma 3: The number of S-D lines passing through each cell is O

(

n
√

a(n)
)

, whp.

The above lemma shows that the number of S-D lines passing through each cell is ≤ c2n
√

a(n) whp, for an
appropriate choice of the constant c2.

Now we are ready to describe Scheme Π, which is parameterized by the cell area a(n) where a(n) = Ω(log n/n)
and a(n) ≤ 1. Recall that by definition, Scheme Π is a sequence of communication policies (Πn). For any particular
realization of the random network with n nodes, policy Πn differs based on the following two conditions.
Condition 1: No cell is empty.
Condition 2: The number of S-D lines through each cell is at most c2n

√

a(n).
If both the above conditions above are satisfied then Πn is the policy Σn, described below. Otherwise, Πn is a
time-division policy where each of the n/2 sources transmits directly to its destination in a round-robin fashion.

Policy Σn:

1) Divide the unit torus using a square grid into square cells, each of area a(n) (see Figure 2).
2) Each node generates packets according to a Poisson process of rate T (n) = Θ

(

1/n
√

a(n)
)

. The random
network is a discrete-time system whereas the packet generation is a continuous-time process. So if a packet
is generated at time t, it is available for transmission from time-slot dte onwards.

3) Each cell becomes active at a regular interval of 1 + c1 time-slots (see Lemma 2). Several cells which are
sufficiently far apart become active simultaneously. Thus the scheme uses TDM between nearby cells.

4) A source S sends packets to its destination D by relaying or hopping along the adjacent cells lying on its
S-D line as shown in Figure 2. Thus, in this scheme, direct transmission of packets is only between nodes
in adjacent cells.

5) One of the nodes in a cell acts as a relay by maintaining a buffer for the packets of all the S-D lines passing
through that cell. In each time-slot only one packet can be transmitted. However, a relay node may receive up
to four packets from its adjacent cells before it gets a chance to relay them. Moreover multiple packets may
be generated within the cell which will be available for transmission in the next time-slot. Hence a virtual
queue is formed in each cell which consists of packets generated within the cell as well as the packets to be
relayed through the cell.

6) When the cell becomes active, one packet from this queue (if not empty) is transmitted to an adjacent cell
according to a Last-In-First-Out (LIFO) type of queue service policy. However, the arrival times considered
by this policy are not the actual arrival times of the packets, but the arrival times that would occur in a
continuous-time network with the same arrivals and a PL (Preemptive LIFO) queue management at each
server. This is elaborated later in this section during the analysis of delay.

The point of trade-off at which Scheme Π operates is determined by the parameter a(n) and the dependence is
made precise in the following theorem.

Theorem 2: For a(n) = Ω(log n/n),

T (n) = Θ
(

1/n
√

a(n)
)

and D(n) = Θ
(

1/
√

a(n)
)

,

i.e., the throughput-delay trade-off achieved by Scheme Π is

T (n) = Θ (D(n)/n) .
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Throughput analysis: If the time-division policy with direct transmission is used, then the throughput is 2W/n and
delay of 1. But since it happens with a vanishingly low probability, as shown by Lemmas 1 and 3, the throughput
and delay for Scheme Π are determined by that of policy Σn.

When policy Σn is used, since Condition 1 is satisfied, each cell has at least one node. This guarantees that each
source can send data to its destination by hops along adjacent cells on its S-D line. From Lemma 2, it follows
that each cell gets to transmit a packet every 1 + c1 time-slots, or equivalently, the cell throughput is Θ(1). The
total traffic through each cell is that due to all the S-D lines passing through the cell, which is O

(

n
√

a(n)
)

since
Condition 2 is also satisfied. This suggests that

T (n) = Θ
(

n
√

a(n)
)

,

is achievable, if the average delay is finite.

Fig. 3. The torus on the left with has 16 cells and each cell contains at least one node. The circled node in each cell acts as a relay. The corresponding
queueing network of 16 servers, with each server corresponding to a cell in the wireless network, is shown on the right.

Delay Analysis: Next we analyze the average packet delay in the wireless network for Scheme Π when Conditions
1 and 2 are satisfied, i.e, when policy Σn is used. Dividing the unit torus into square cells of area a(n) results in
1/a(n) cells. One of the nodes in each cell maintains a buffer and acts as a relay for all the S-D lines passing
through that cell. These relay nodes are the circled nodes in Figure 3. The buffer in each cell corresponds to a
queue and the cell itself corresponds to a server that can transmit one packet from this queue once in 1 + c1

time-slots. This is because each cell becomes active once in 1+ c1 time-slots as described earlier. Since Scheme Π
restricts direct transmissions to be between adjacent cells, each cell can receive from or transmit to any four of its
adjacent cells. This determines the connectivity between the servers so that the entire wireless network corresponds
to a discrete-time queueing network of 1/a(n) servers, where each server is connected to four others as shown in
Figure 3.

Note that the time-division-multiplexing between cells is such that in the c1 slots before each cell becomes active
again each of its neighbors becomes active exactly once. Hence we can ignore the effect of cells becoming active
at regular intervals and instead consider a discrete-time network of queues ND where D signifies the discrete time
nature of this network. The actual delay in the wireless network would then be 1 + c1 times the delay in ND.
Queueing network ND: The discrete-time queueing network ND consists of 1/a(n) servers, each of which can
service one packet from its queue in a time-slot if it is not empty. Moreover, each server is connected to four others
as explained above. In the wireless network, packets travel from their sources to their destinations by hops along
adjacent cells on their S-D lines. Thus the route of a packet depends on the S-D pair to which it belongs. This
means that in ND there are n/2 customer routes corresponding to the n/2 S-D pairs. Recall that packets arrive
in the wireless network at the sources according to independent Poisson processes of rate T (n). These correspond
to exogenous arrivals at the queues in ND. The remaining arrivals at the queues are due to the departures from
other queues. In the terminology of queueing theory, ND is a discrete-time, open network of queues with general
customer routes (see Chapter 6.6 of [8]).
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Delay analysis for such discrete-time networks with general customer routes is not known, which prevents us from
using a simple First-In-First-Out (FIFO) order of service in ND. We leverage results known about continuous-time
networks to obtain the queue management policy for ND in such a way that the average delay can be computed.
Queueing network NC : Consider a continuous-time open network of 1/a(n) servers having the same connectivity
structure as ND and the same n/2 customer routes (see Figure 3). Let this network be called NC . Further, let the
exogenous arrivals in both the networks NC and ND are the same. And let the service requirement of each packet
at each server be deterministically equal to unit time. From the description until now, it is clear that NC is the
continuous-time analog of the discrete-time network ND. A Preemptive LIFO (PL) queue management is used at
each server in NC (see Chapter 6.8 of [8] for more details).

The queue size distribution for the continuous time network NC with PL queue management at each server has
a product form in equilibrium as shown in [5] (see Theorems 3.7 and 3.8 of Chapter 3) provided that the following
two conditions are satisfied. First, the service time distribution should be either phase-type or the limit of a sequence
of phase-type distributions. In our case the service time is constant and equal to 1. The second condition is that,
the total traffic at each server is less than its capacity, which is one in our case.

Consider the sum of n exponential random variables each with mean 1/n. This sum has a phase-type distribution
and in the limit as n tends to infinity, its distribution converges to that of a constant random variable. Thus the first
condition is satisfied.

In the wireless network the number of S-D lines passing through each cell is O
(

n
√

a(n)
)

and the arrival process

for each S-D pair is an independent Poisson process with rate T (n) = Θ
(

1/n
√

a(n)
)

. Therefore an appropriate
choice of constants guarantees that the total traffic at each server is less than 1, its service capacity, due to Condition
2 being satisfied.

Using the product form for the queue size distribution in equilibrium, it follows that the average queue size at
a queue with total traffic λ < 1 and unit mean service is of the form c3λ/(1 − λ) where c3 is some constant. By
Little’s law this implies that the average delay at each server is bounded above by a constant independent of n.
We summarize the above discussion in the lemma below.

Lemma 4: For the continuous-time open network NC with n/2 customer routes as described above the average
delay at each server is bounded above by a constant independent of n.
Packet Scheduling in ND using NC: However we cannot use this PL policy in the discrete time network ND

because of the following reasons:

1) Due to the discrete time nature of the network ND, a packet that is generated at time t becomes eligible for
service (i.e. next hop transmission) only at time dte.

2) A complete packet has to be transmitted in a time-slot, i.e. fractions of the packets cannot be transmitted.
This means that a preemptive type of service like PL is not allowed.

To address these problems for ND, we present a centralized scheduling policy derived from emulating in parallel,
the continuous-time network NC with PL queue management at each server. The exogenous arrivals in both NC

and ND are the same. Let a packet arrive in NC at some server at time aC and in ND at the same server at time
aD. Then it is served in ND using a LIFO policy with the arrival time considered to be daCe instead of aD.

Clearly such a policy can be implemented if and only if aD ≤ daCe for every packet at each server, i.e., each
packet arrives before its scheduled departure time. Let dC and dD be the departure times of a packet from some
server in NC and ND respectively. Then this is the same as saying that dD ≤ ddCe for each packet in every busy
cycle of each server in NC . In what follows, we show that for all packets in any busy cycle of any server, the
departures in ND occur at or before the departures in NC .

Lemma 5: Let a packet depart in NC from some server at time dC and in ND at time dD, then dD ≤ ddCe.
Proof: Fix a server and a particular busy cycle of NC . Let it consist of packets numbered 1, . . . , k with

arrivals at times a1 ≤ . . . ≤ ak and departures at times d1, . . . , dk . Let the arrival times of these packets in ND be
A1, . . . , Ak and departures be at times D1, . . . , Dk. By assuming that Ai ≤ daie for i = 1, . . . , k, we need to show
that Di ≤ ddie for i = 1, . . . , k.

Clearly this holds for k = 1 since D1 = dA1e + 1 ≤ daie + 1 = dd1e. Now suppose it holds for all busy cycles
of length k and consider any busy cycle of k + 1 packets.

If da1e < da2e, then because of the LIFO policy in ND based on times ai, we have D1 = da1e+1 ≤ da1e+k+1 =
dd1e. The last equality holds since in NC , the PL service policy dictates that the first packet of the busy cycle is
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the last to depart. And the remaining packets would have departures times as for a busy cycle of length k.
Otherwise if da1e = da2e then the LIFO policy in ND based on arrival times ai results in D1 = da1e+k+1 = dd1e

and the packets numbered 2, . . . , k depart exactly as if they belong to a busy cycle of length k. This completes the
proof by induction.

Thus we have shown that it is possible to use LIFO in ND based on the arrival times in NC instead of the actual
arrival times in ND. We are now ready to prove Theorem 2.

Proof: (of Theorem 2) Packets reach their destination with finite average delay, which shows that the throughput
is just the rate at which each source sends its data. This proves that the throughput T (n) = Θ

(

1/n
√

a(n)
)

.
Next we compute the average packet delay D(n). Lemma 5 also holds for the final departure of each packet from

the network. Therefore if Di
D is the delay of a packet of route i in ND (i.e. S-D pair i in the wireless network)

and Di
C is the delay of the corresponding packet in NC then Di

D ≤ Di
C + 1. Hence taking expectations it follows

that
E[Di

D] ≤ E[Di
C ] + 1, 1 ≤ i ≤ n/2.

Therefore delay averaged over all n/2 routes is given by

D(n) =
2

n

n/2
∑

i=1

E[Di
D] ≤ 2

n

n/2
∑

i=1

E[Di
C ] + 1. (1)

Since each hop in the wireless network covers a distance of Θ
(

√

a(n)
)

, the number of hops per packet for S-D

pair i is Θ
(

di/
√

a(n)
)

where di is the length of S-D line i. Now Di
C is the delay for a packet of route i, which is

equal to the sum of the delays along all queues on its route. But from Lemma 4, the average delay at each server
is bounded above by some constant independent of n. Therefore from (1), we obtain that

D(n) ≤ 2

n

n/2
∑

i=1

c2
E[di]

√

a(n)
+ 1 = Θ

(

1/
√

a(n)
)

since 2
∑n/2

i=1 E[di]/n = Θ(1).
The following theorem shows that the throughput-delay scaling trade-off provided by Scheme Π is optimal for

the static random network model. The proof follows easily from the converse for the fluid model (Theorem 2 in
[2]) and hence we do not provide the proof.

Theorem 3: Let the average delay be bounded above by D(n). Then the achievable throughput T (n) for any
scheme scales as O (D(n)/n).

III. CONCLUSION

The optimal throughput-delay trade-off for random wireless networks was determined in [1] with a more complete
treatment in part I [2] of this work. The analysis used a fluid model where the packet size needed to scale down
with the number of nodes n in the network. In this paper, we imposed the constraint that the packet size remains
constant and showed that the throughput-delay trade-off remains unchanged. This also provides a justification for
the simplifying fluid assumption made in [1] and [2], since it does not affect the essential network dynamics.

The next natural question to address would be scaling in the mobile random network model with packets of
constant size. In part 1, we showed that at throughput of Θ(1), (as in [3]), the optimal delay scaling is Θ(n log n).
Since the scheme used constant-size packets, this establishes the optimal delay scaling for the highest achievable
throughput. The optimal trade-off between throughput and delay for all lower throughputs, however, was achieved
using a fluid model.

In a related model, where the mobile network also has n static nodes along with n mobile nodes, the optimal trade-
off can be obtained for sufficiently low throughputs. We can show that for any throughput T (n) = Θ(1/n1/2+ε), ε >
0, the trade-off given by T (n) = Θ(D(n)/n) can be achieved. This is the same as the trade-off for the fluid model
in [2]. This establishes the optimal trade-off for this range of low throughputs. The scheme achieving this trade-off
uses the scheduling scheme given in this paper along with a randomization technique and chasing in a manner
similar to Scheme 3(a) in [2]. However the optimal trade-off for the mobile network with no static nodes remains
unknown.
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