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Shapley Value Estimation for Compensation of
Participants in Demand Response Programs

Gearóid O’Brien, Abbas El Gamal, and Ram Rajagopal

Abstract—Designing fair compensation mechanisms for
demand response (DR) is challenging. This paper models the
problem in a game theoretic setting and designs a payment
distribution mechanism based on the Shapley value (SV). As
exact computation of the SV is in general intractable, we pro-
pose estimating it using a reinforcement learning algorithm that
approximates optimal stratified sampling. We apply this algo-
rithm to a DR program that utilizes the SV for payments and
quantify the accuracy of the resulting estimates.

Index Terms—Economics, power system economics.

I. INTRODUCTION

DEMAND response (DR) refers to the increased flexibility
in usage of electricity due to the intentional adjustment

of end users’ consumption. Such flexibility helps to alleviate
many challenges with modern power systems by providing
an inexpensive source of capacity. Motivated by a number
of long-term considerations such as the growing number of
electric vehicles, the proliferation of renewable energy gener-
ated from nondispatchable sources, and the worrying trajectory
of climate change and its consequences, DR can play a role
in balancing electricity supply and demand by appropriately
adjusting the aggregate load profile.

Designing, implementing, and operating large-scale DR
programs is a nontrivial task and has been extensively inves-
tigated in the literature; see for example [1]. Several papers
have investigated mechanisms for various types of response
capabilities [2]–[7].

The administration of DR programs is often left to a third
party operator known as a “load serving entity” (LSE) or
“aggregator.” The LSE coordinates the participants, where
each participant may be a user or a user load if such granu-
larity is available. By employing an appropriate incentive, the
LSE can expect to adjust the aggregate consumption profile of
the participants. The net effect of DR (the difference between
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Fig. 1. Net effect of DR can be considered equivalent to electricity generation.

Fig. 2. LSEs participating in the wholesale electricity marketplace alongside
traditional generators.

the baseline and the new expected aggregate consumption pro-
file as illustrated in Fig. 1) may be considerably equivalent to
electricity generation, and so the LSE can participate in the
wholesale electricity marketplace.

Fig. 2 illustrates this concept. The figure depicts two LSEs
together with three generators, interacting with the whole-
sale electricity marketplace. The first LSE has n participants
(P1, P2, . . . , Pn) and the second has n′ participants (Pn+1,
Pn+2, . . . , Pn+n′ ).

There is an inherent uncertainty present in this formula-
tion, as net generation due to DR is contracted a priori but
measured and verified based on real-time metering. This may
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be manifested in two ways. First, the participants themselves
may agree to a certain level of load adjustment in advance,
but the real-time metering may well reveal a different level of
adjustment. Such a setup is often how DR schemes are cur-
rently operated. Second, the LSE may attempt to forecast the
aggregate load adjustment in order to determine the optimal
quantity to offer to the market. Actual adjustments are again
observed in real time. Such uncertainty increases the difficulty
and cost of integrating DR into the wholesale market. Electric
utility companies hold the LSE responsible for most of the pro-
gram details, including performance, marketing, enrollment,
and compensation to the participants.

This paper, which is a more complete and detailed version
of [8], focuses on the last problem, which is, how to appropri-
ately compensate the participants in a DR program. We model
the interaction between participants in a DR program as a
cooperative game and propose a payment distribution scheme
based on the Shapley value (SV) [9], a well-known concept
in cooperative games. Examining Fig. 2 again, participants in
each shaded area take part in cooperative games. Ensuring that
participants remain enrolled in a DR scheme—and that it is
also appealing to new participants—relies in part on a fair
and attractive compensation mechanism. The SV can often be
shown to be such a mechanism.

Compensation mechanisms based on game theory have been
investigated recently. Zhu et al. [10] and Saad et al. [11]
investigated schemes based on noncooperative games in which
consumers make choices independently under parameterized
utility functions. In this paper, we focus on cooperative games
in which groups of consumers work together to reach the goal
of the DR program. Haring et al. [12] also detailed an analysis
based on cooperative game theory where the authors pro-
posed to optimize the LSEs offering of daily reserve capacity
contracts. In contrast to their approach, we present a practical
method for distributing compensation to participants in DR
programs via the SV.

While noncooperative game theory is concerned mainly
with the moves participants should rationally make in response
to other participants, cooperative game theory is primarily
focused on interactions among coalitions of participants, the
value of each coalition, and especially how this value can
be distributed among the participants of such a coalition.
In general, cooperative games differ from noncooperative
games in that binding agreements are possible before the
start of the game. For DR programs, the LSE puts in place
such a binding agreement (i.e., the value function), hence,
the programs can be well modeled using cooperative game
theory.

The SV has been previously used in power systems to study
electrical energy generation and transmission. In [13], the SV
is used to allocate transmission service costs among network
users in energy markets. In [14], the aggregation of wind
power producers is studied using coalition game theory and
show that in this case, the nature of the resulting game does
not lend itself to use the SV.

The contributions of this paper are as follows.
1) In Section II, we introduce the concept of using the SV

as a method for LSEs to compensate DR participants.

TABLE I
LIST OF KEY SYMBOLS

2) As the SV can be difficult to compute, in Section III,
we propose a new method of estimating it using a
reinforcement learning algorithm. This is a general con-
tribution, and can be readily applied outside the realm
of DR schemes.

3) We apply our proposed SV estimation method to
an example of DR program that provides reserve in
Section IV. This also helps to demonstrate the effec-
tiveness of our method.

To help the reader, we provide definitions of the key vari-
ables used throughout this paper are shown in Table I. Random
variables are indicated by RV.

II. PROBLEM SETUP

Consider a set X = {1, 2, . . . , n} of n participants in a
DR scheme. For the set S ⊆ X , define the value function
(also known as the characteristic function) v(S) as a function
v : 2n → R. The function v(S) represents the total expected
payoff the participants in S achieve together. As an example,
assume the goal of the DR program is to provide reserve by
reducing load levels and let Xi ∈ R be the amount by which
participant i reduces its load. Then, the value function may be
taken as

v(S) = q
∑

i∈S
Xi (1)

where q ≥ 0 is a constant that converts energy into a dollar
value. This is only an illustrative example and a more practical
choice of the value function will be presented in Section IV.

The LSE wishes to distribute the total payoff v(X ) among
the n participants in a fair manner that depends on their con-
tribution to the goal of the DR scheme. We denote the payoff
assigned to participant i by φi(v). Hence, the total payoff is

v(X ) =
n∑

i=1

φi(v). (2)

Shapley proposed a solution to the distribution of the total
payoff that is both unique and fair [15]. Defining X−i to be the
set of all participants after removing participant i, the marginal
contribution of participant i to a coalition S, S ⊆ X−i, is

ρi(S) = v(S ∪ {i})− v(S). (3)
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Furthermore, we define R to be one of the n! permutations of
the participants in X , and PR

i to be the ordered set preceding
i in R. The SV is defined as the mean marginal contribu-
tion of that participant to all possible coalitions of the other
participants, that is

φi = 1
n!

∑

R
ρi

(
PR

i

)
. (4)

Remark 1: For brevity, we suppress the v and denote the SV
by φi. The value function should be clear from the context.

The SV is an intuitive concept as participants who contribute
more to the coalitions that include themselves should receive
a higher compensation. A cursory examination of the value
function in (1) shows that φi = qXi, although for nontrivial
value functions the SV is often intractable.

Understanding the advantage of using the SV when com-
pared to other conventional distribution methods is a key
contribution of this paper. The LSE, by participating in the
wholesale electricity marketplace, realizes a revenue stream
(or payoff) which must then be distributed fairly among the
participants. The SV solution concept provides a fair and
unique method for distributing this revenue. Fairness is defined
as satisfying the following four axioms, which a payment
distribution scheme could reasonably be expected to satisfy.

1) Efficiency: The entire payoff is divided among the
participants (no excess remains).

2) Symmetry: Two participants that contribute equally are
rewarded equally.

3) Null Player: Participants that do not contribute receive
no payoff.

4) Linearity: The total payoff rewarded for contributing to
two DR programs is the sum of the payoffs that would
be awarded for contributing to each of the two programs
individually.

Surprisingly, the SV can be shown to be the only payment
distribution method that satisfies these four axioms, with the
added benefit that the solution is unique.

It should be noted that although the SV is a fair method for
distributing the total payoff, it does not by itself address issues
of stability regarding the grand coalition of all n participants.
The set of all payoff vectors that results in a stable grand
coalition forms the core (note that the core can be empty).
To be precise, consider a payoff vector x where xi is the pay-
off participant i receives. If there exists a coalition S whose
combined payoff is less than what the coalition can achieve
by acting alone [i.e.,

∑
i∈S xi < v(S)], then the members of

coalition S will have a tendency to break away from the grand
coalition and form the set S. Therefore, the payoff vector x is
unstable and is not in the core.

When the cooperative game is convex, it can be guaran-
teed that the core is nonempty, that is, there exists a payoff
vector that results in a stable grand coalition. Intuitively, a
convex game means that the incentive for a participant join-
ing a coalition increases as the number of participants in the
coalition grows. The SV can be shown to be in the core for
convex games, hence, defines a stable payoff vector for such
games.

A. Shapley Value and Demand Response Schemes

In order to utilize the SV as the distribution mechanism
of a DR scheme, the scheme itself must be representable as
a value function. This function, defined over subsets of the
participants, returns the payoff that will be received by the
LSE. Value functions are particularly suited to schemes where
loads are controllable to some degree. The precise formulation
of the value function is left to the designer of the DR scheme.

When the SV is used to distribute a payoff to the partici-
pants, the value function must be supermodular. The corollary
is if the SV is used to distribute a penalty rather than a pay-
off, it must be submodular. Such a situation may arise if the
participants are given an ex-ante payment for joining the DR
program, from which a penalty for noncompliance is deducted.

The assumption is the SV is calculated after each DR event has
occurred. Since it is expected that such events will become more
frequent and will involve an increasing number of participants,
it is necessary to be able to efficiently compute the SV.

B. Computational Complexity

The most challenging aspect in utilizing the SV is its com-
putational intractability. For a DR program with n participants,
the value function may need to be evaluated n 2n times. A
modest DR program with n = 500 requires about 1.5× 10153

function evaluations. Approximation approaches that rely on
simple schemes to selectively perform function evaluations
have been proposed to mitigate this problem. Shapley pro-
posed a Monte Carlo random sampling technique [16], which
was subsequently extended in [17] and [18] to achieve desired
accuracy levels in polynomial time. Such mechanisms neither
exploit relevant properties of the value function nor enforce
important constraints such as the efficiency axiom. Section III
will detail a computationally efficient method for estimating
the SV via sampling.

III. ESTIMATING THE SHAPLEY VALUE

Before describing our algorithm for estimating the SV, we
need the following alternative formulation. Grouping the terms
in (4) in which the participants to the left of i are the same
gives the alternative form for the SV

φi =
∑

S⊆X−i

|S|!(|X |− |S|− 1)!
n!

ρi(S). (5)

Further grouping by the number of terms in S, defining
j = |S|, and recalling that n = |X | we obtain

φi =
n−1∑

j=0

∑

S⊆X−i
|S|=j

(
j!(n− j− 1)!

n!

)
ρi(S)

= 1
n

n−1∑

j=0

∑

S⊆X−i
|S|=j

(
(n− 1)!

j!(n− 1− j)!

)−1

ρi(S)

= 1
n

n−1∑

j=0

∑

S⊆X−i
|S|=j

(
n− 1

j

)−1

ρi(S).
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The inner sum can be considered as an expectation over a
uniform probability mass function, hence, we can write

φi = 1
n

n−1∑

j=0

E[ρi(S)]. (6)

This form of the SV suggests an estimation approach based on
stratified sampling [19]. For participant i ∈ {1, 2, . . . , n}, let
stratum j be the set of marginal contributions of that participant
to every subset S ⊆ X−i of size |S| = j. We randomly and
independently draw Ni

j samples ρi
1,j, . . . , ρ

i
Ni

j ,j
from each stra-

tum j. Define the sample mean for participant i as the random
variable

Ti = 1
n

n−1∑

j=0

1

Ni
j

Ni
j∑

k=0

ρi
k,j = 1

n

n−1∑

j=0

ρi
j (7)

where the random variable ρi
j is the sample mean of the data

drawn from stratum j. This sample mean is a linear, unbiased
estimate of φi and would be a reasonable estimate of φi except
for the fact that the sum of the estimates may not be equal
to the total budget v(X ), which would violate the efficiency
axiom of the SV. We, therefore, use the sample averages as
basis for computing the maximum likelihood (ML) estimates
of the SVs with the budget constraint as follows.

Assume that the number of samples from each stratum is
sufficiently large so that we can use the central limit theorem to
approximate the distribution of ρi

j by a Gaussian with mean
µj,i = E[ρi(S)] and variance σ 2

j,i. By independence of the
sample averages, it follows that the variance of Ti:

σ 2
i = 1

n2

n−1∑

j=0

σ 2
j,i

and Ti ∼ N (φi, σ
2
i ).

By independence of the sample averages f (Ti|φi), i ∈ X ,
the likelihood function can be written as

f (T1, . . . , Tn|φ1 . . . φn) =
n∏

i=1

f (Ti|φi). (8)

Since the sample averages Ti are Gaussian, we consider the
log likelihood function

n∑

i=1

log( f (Ti|φi)) = ζ −
n∑

i=1

(Ti − φi)
2

2σ 2
i

(9)

where ζ is not a function of φi. To obtain the ML estimates
of the SVs, we then need to solve the optimization problem

maximize
φi

ζ −
n∑

i=1

(Ti − φi)
2

2σ 2
i

subject to
n∑

i=1

φi = v(X ). (10)

This is a convex optimization problem and has the following
analytical solution.

Theorem 1: The ML estimates of φi are given by

φ̂i = Ti −
σ 2

i∑n
m=0 σ 2

m

(
v̂(X )− v(X )

)
(11)

where v̂(X ) = ∑n
i=1 Ti.

Note that all properties of the SV (efficiency, symmetry,
null player, and linearity [20]) hold in expectation in (11),
with the added benefit that the budget is always balanced, as
the constraint in the optimization problem (10) is satisfied.

A. Sample Allocation

We now turn our attention to the question of how many
samples we should select from each stratum. Suppose, we have
a total budget of N samples per participant, i.e.,

∑n−1
j=0 Ni

j = N
for every i ∈ X . How do we divide them among the strata?
One reasonable approach would be to allocate the samples
for each participant i to minimize the variance of the sample
mean Ti subject to

∑n−1
j=0 Ni

j = N. The following shows that
the optimal sample allocation is the Neyman allocation [19]
for equal weighting.

Lemma 1: The minimum variance of Ti subject to∑n−1
j=0 Ni

j = N is

σ 2
i,SD = 1

N
mean

(
σj,i

)2 (12)

where σj,i is the standard deviation of the population in stratum
j for participant i. The value of mean(σj,i) is calculated by
averaging over the n values of σj,i for participant i.

The values of Ni
j that achieve this minimum are

Ni
j = σj,i

∑n−1
m=0 σm,i

, j ∈ {0, 1, . . . , n− 1}.

The proof of this lemma is straightforward and hence is not
included.

It is interesting to compare the achievable variance of the
sample means using the above optimal stratified sampling to
the more commonly used uniform sampling. With uniform
sampling, we draw N samples independently at random from
the set of marginal contributions of participant i without taking
strata into consideration. The variance of the sample average
for this approach can be easily shown to be

σ 2
i,RS = 1

N

[
mean

(
σ 2

j,i

)
+ var

(
µj,i

)]
(13)

where µj,i is the mean value of the population in stratum j for
participant i. The value var(µj,i) is calculated as the variance
of the n values of µj,i for participant i.

Sampling according to the Neyman allocation (Lemma 1)
requires prior knowledge of the standard deviation of each
stratum for each participant, which is not realistic. A more
practical approach would be to sample equally from each of
the n stratum, i.e., Ni

j = N/n. With this allocation, it can be
easily shown that the variance of the sample average is

σ 2
i,ES = 1

N
mean

(
σ 2

j,i

)
. (14)

Comparing the variances for the above three allocation
strategies, we can clearly see that

σ 2
i,SD ≤ σ 2

i,ES ≤ σ 2
i,RS. (15)
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Hence, it is always better to sample in proportion to standard
deviations. In the following section we describe a rein-
forcement learning algorithm for estimating these standard
deviations during sampling.

B. Approximating Optimum Stratified Sampling

Implementing an approximation to SD sampling is a typ-
ical reinforcement learning problem in which the algorithm
seeks to exploit the information it has about the standard devi-
ations of the strata to sample correctly, but must at the same
time explore in order to accurately calculate these very stan-
dard deviations. In our setting, the goal is to sample a specific
(but unknown) number of times from each stratum. This dif-
fers from the usual reinforcement learning problems where the
goal is to converge on a single optimum action that maximizes
the total reward. This contrast means that some techniques
(such as ϵ-greedy, pursuit, and reinforcement comparison) are
not suitable, and other approaches must be altered to make
them suitable for the problem at hand, see [21] for infor-
mation on reinforcement learning. By comparison, stochastic
methods [21] which assign a probability to each action in
accordance with the expected reward (or standard deviation
in this case) are quite suitable to our setting.

Our proposed Algorithm 1 explicitly “explores” the prob-
lem space initially before gradually moving to an “exploit”
phase in which it uses the results of the exploration to improve
the sampling allocations. For participant i, the probability of
sampling from stratum j at sample t ≤ N is

πj,i(t) = ϵ(t)
1
n

+ (1− ϵ(t))
σ̂j,i

∑n−1
m=0 σ̂m,i

(16)

where σ̂j,i is the current estimate of the standard deviation of
stratum j. The choice of ϵ(t) is left to the user, but should be
a decreasing function of t with ϵ(0) = 1. We implemented
a number of such functions (including the stepped function
described in [22]) and found the most accurate to be the double
sigmoid function

ϵ(t) = κ − 1

1 + e−
t−γ N
βN

(17)

where κ is chosen to ensure ϵ(0) = 1. Increasing γ in the
above equation reduces the percentage of samples used for
exploration, and increasing β increases the transition time
from exploration to exploitation.

At each step t, Algorithm 1 chooses stratum j with probabil-
ity πj,i(t) for participant i. The probabilities are then updated
for the next iteration. The vector of standard deviations is
updated in each step using a numerically stable algorithm
from [23]. The algorithm returns the sample mean Ti for
participant i as well as the variance of that statistic, σ 2

i .
Once this has been calculated for all n participants, the MLE
can be computed using (11) to ensure that the budget is
balanced.

If σ 2
i,SD << σ 2

i,ES, then implementing Algorithm 1 will sig-
nificantly reduce the variance of the sample mean. If, however,
σ 2

i,SD ≈ σ 2
i,ES, then the benefit of the algorithm may well be

outweighed by the complexity involved in the implementation

TABLE II
OVERHEAD (IN SECONDS PER MILLION SAMPLES) OF EMPLOYING

EACH OF THE THREE METHODS DISCUSSED IN THIS PAPER

and time involved in its execution. Comparing σ 2
i,SD to σ 2

i,ES,
we have

σ 2
i,SD

σ 2
i,ES

= 1 +
var

(
σ 2

j,i

)

mean
(
σj,i

)2 . (18)

Hence, if var(σ 2
j,i)/mean(σj,i)

2 ≈ 0, sampling equally from
each strata would be preferable.

C. Computational Overhead

Employing the proposed learning algorithm adds an over-
head to the computation time needed to estimate the SV.
Table II quantifies this overhead for a dual core 2.1 GHz pro-
cessor. These times assume that the value function can be
calculated instantaneously, i.e., the times are independent of
the value function used.

Although the learning algorithm adds significant overhead
to the SV estimation time, it does not take into considera-
tion the estimation accuracy (i.e., variance) of the SV value.
In Section IV, we show that when accuracy is equalized
our learning algorithm requires much less samples and is in
fact much faster than the other estimation methods. Also, the
implementation of our learning algorithm can be optimized to
achieve much faster speed than reported in the table.

IV. DR PROGRAM PROVIDING RESERVE

In this example DR program, the LSE expects participant
i to reduce their load by Xi ∈ R+ (loads can be reduced for
example by dimming lights or controlling heating, ventilation,
and air conditioning in a building) during a DR event. The
LSE then offers a quantity M of “spinning reserve” to a utility
where

∑n
i=1 Xi ≥ M, M ∈ R+. This ensures that the program

has a leeway of *M = ∑n
i=1 Xi − M. When a DR event is

requested, each participant responds appropriately. There may
be a discrepancy between a participant’s actual reduction in
consumption, X̃i, and the expected reduction amount Xi. In this
example, we assume that if the aggregate DR meets or exceeds
the level M, the LSE receives a payoff according to an affine
function of the DR supplied, otherwise the LSE receives no
payoff. Hence, the value function for this DR program is

v(S) =

⎧
⎨

⎩

q
∑

i∈S
X̃i −M,

∑

i∈S
X̃i ≥ M

0, otherwise.
(19)

The form of this value function is motivated by the “weighted
voting” cooperative game, a classic problem in the literature
of cooperative game theory. A proof of the convexity of this
game is given in the Appendix. As an electricity marketplace
has a minimum bid quantity, such a value function could well
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Algorithm 1 Approximating SD Sampling
procedure STANDARDDEVIATIONSAMPLING(N, i)

t← 1
µ̂j,i ← 0 ◃ Estimate of µ ∈ Rn

σ̂j,i ← 0 ◃ Estimate of σ ∈ Rn

c← 0 ◃ Vector where cj is the number of samples taken from stratum j, c ∈ Rn

m2← 0 ◃ Vector of the sum of squared differences from the current mean of stratum j, m2 ∈ Rn

while t ≤ N do
πj,i(t)← ϵ(t) 1

n + (1− ϵ(t))
σ̂j∑n−1

m=0 σm,i
Choose stratum j at random, weighted by πj,i(t).
Choose a random coalition, S ⊆ X−i where |S| = j.
x← ρi(S) ◃ x is a sample from stratum j
cj ← cj + 1 ◃ Update the count for stratum j
*← x− µ̂j,i
µ̂j,i ← µ̂j,i + *

cj
◃ Online update for estimate of µj,i

m2j ← m2j + *(x− µ̂j,i)

σ̂j,i ←
√

m2j
cj−1 ◃ Online update for estimate of σj,i

end while
Ti ← mean(µ̂j,i)

σ 2
i = 1

n2
∑n−1

j=0 σ̂ 2
j,i

return Ti, σ 2
i

end procedure

Fig. 3. Mean (top) and standard deviation (bottom) for each stratum. A red
“x” indicates the final estimate from employing Algorithm 1 with N = 5000
samples.

model the LSEs DR program and is therefore justifiable in its
use. Using the SV as a means of determining compensation
is of great relevance to such LSEs.

To compare the performance of the sampling techniques we
discussed in Section III, we consider a small set of n = 20 par-
ticipants so that we can compute the exact SV (ground truth).

Fig. 3 plots the sample mean and standard deviation for each
stratum when using the value function (19) for a representative
participant i. As can be seen, our stratified sampling algorithm
which approximates sampling in proportion to the standard
deviations will show a significant improvement over both uni-
form and random sampling because strata 0–10 have zero
mean (and standard deviation) and as such do not contribute to
the SV and the samples taken from these strata in the uniform
and random sampling methods are wasted.

Remark 2: As mentioned in Section III-B, we imple-
mented the reinforcement learning algorithm using various ϵ(t)
functions. Fig. 4 plots the sample size against “regret,” defined

Fig. 4. Decrease in regret as sample size increases for various ϵ(t) functions.
The upper dashed line is the regret from uniform sampling and the lower
dashed line at zero regret corresponds to ideal sampling.

as the difference between the variance of the SV estimate for
a given ϵ(t) and that of the estimate calculated using exact SD
sampling. As can be seen, the sigmoid function (with γ = 0.2
and β = 0.075) which we use in all numerical results closely
approximates ideal sampling.

In Fig. 5, we compare the distribution of the differences
between the estimated and actual SVs for all participants,
i.e., the error distributions. The estimates of the SVs were cal-
culated using N = 5000 samples. It can be seen that employing
stratified sampling reduces the error significantly when com-
pared to both random sampling and equal sampling. In fact,
the distribution of errors for stratified sampling is approaching
that of ideal sampling.

We determine the accuracy of the sampling methods using
the mean squared prediction error (MSPE)

MSPE = E
[(

φi − φ̂i

)2
]
. (20)
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Fig. 5. Estimated densities of the error in the estimated SV, i.e., the difference
between the actual SVs for all participants and the values estimated using the
various sampling techniques. The estimates are calculated using N = 5000.

TABLE III
NORMALIZED MSPE FOR THE VARIOUS SAMPLING METHODS

TABLE IV
TOTAL TIME TAKEN TO ESTIMATE THE SV TO THE SAME LEVEL OF

ACCURACY FOR EACH OF THE THREE METHODS

For ease of comparison, we normalize the MSPE for each
method by the MSPE for σ proportional sampling (the ideal
method). Table III contains the comparison results. It is clear
that employing stratified sampling gives much better results
than simple random sampling. The learning algorithm signifi-
cantly outperforms uniform stratified sampling and approaches
the accuracy of ideal stratified sampling.

A. Time Taken to Calculate Estimates

Table II lists the number of samples required and the time
taken to ensure the accuracy (i.e., variance) of the SV estimates
are equivalent. The random sampling method calculated using
one million samples is used as a benchmark. As can be seen
from Table IV, the learning algorithm can estimate the SV
with significantly less samples and in considerably less time.

V. CONCLUSION

This paper proposes the use of the SV to distribute rev-
enue among the participants in a DR program. As the SV is
computationally intractable in general, we proposed a stratified
sampling technique that reduces the number of samples needed
to achieve a desired estimation accuracy while satisfying the
budget balance constraint. We found that optimal stratified

Fig. 6. Function v(S), as described in (21).

sampling requires prior knowledge of the standard deviations
of the strata, which may not be available. As such, we pro-
posed a reinforcement learning heuristic which estimates the
standard deviations and uses them to adjust the sample alloca-
tion among the strata. We demonstrated the use of the SV in
DR programs numerically, describing a scenario (DR provid-
ing reserve) where the reinforcement learning algorithm can
significantly reduce the variance of the estimate.

It should be also noted that our reinforcement learning
method is agnostic to the specifics of the characteristic func-
tion, and can therefore be used to estimate the SV for any
cooperative games, not only for DR programs. Also, this
method ensures that the “budget balancing” constraint is met.
To our knowledge, this constraint has not previously been con-
sidered in other research on estimating the SV using random
sampling techniques. Its importance is clear in DR programs
in which a given payoff needs to be distributed in its entirety
among participants.

The work in this paper can be extended in several impor-
tant directions, particularly regarding the choice of the value
function. The DR program presented in this paper may be
rather simplistic for practical use, as it does not capture
some aspects of real-world DR programs, such as multi-
ple thresholds. Furthermore, the difference between the load
changes promised by—or expected of—the participants and
the load changes delivered by them is not directly modeled in
the value function in (19). Including actual user behavior in the
analysis is a topic that will make this paper more relevant and
applicable. However, it should be noted that these points reflect
limitations in the choice of the value function, not in the suit-
ability of the SV to be used as a distribution scheme. As such,
there remains a significant opportunity to extend this research
by using more realistic value functions that either captures
existing DR programs or model new possibilities for DR.

APPENDIX

A. Convexity of the Game for the Example Value Function

The value function employed in this paper is reprinted here
for convenience, (21) and plotted in Fig. 6

v(S) =

⎧
⎨

⎩

q
∑

i∈S
X̃i −M,

∑

i∈S
X̃i ≥ M

0, otherwise.
(21)

We prove supermodularity by first noting that the value
function can be rewritten as

v(S) = −[min(XS , M)− XS ]
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where XS = ∑
i∈S X̃i. If v(S) is supermodular, then

−v(S) must be submodular, so it is sufficient to show that
min(XS , M)−XS is submodular. This is equivalent to showing
that min(XS , M) is submodular as the addition (or subtraction)
of a linear function from a submodular function does not
affect submodularity. Finally, the simple function min(XS , M)

is nothing more than a budget-additive function, well-known
to be submodular for M ≥ 0 and each X̃i ≥ 0 [24]. Therefore,
the value function v(S) is a supermodular function, and the
game is convex.
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