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Abstract

We show how to use subgroups of the symmetry group of a reversible Markov chain
to give useful bounds on eigenvalues and their multiplicity. We supplement classical
representation theoretic tools involving a group commuting with a self-adjoint operator
with criteria for an eigenvector to descend to an orbit graph. As examples, we show that
the Metropolis construction can dominate a max-degree construction by an arbitrary
amount and that, in turn, the fastest mixing Markov chain can dominate the Metropolis
construction by an arbitrary amount.

1 Introduction

In our work on fastest mixing Markov chains on a graph [BDX03, PXBD04], we encountered
highly symmetric graphs with weights on the edges. Examples treated below include the
graphs shown in Figures 1-5. The graphs in Figures 2, 3, 4 and 5 have weights chosen so
that the stationary distribution of the associated random walk is uniform. We will show that
the walk in Figure 2 mixes much more rapidly than the walk in Figure 3, and that the walk
in Figure 4 mixes much more rapidly than the walk in Figure 5. For general graphs, we seek
good bounds for eigenvalues and their multiplicity using available symmetry.

Let a connected graph (V,E) have vertex set V and undirected edge set E. We allow loops
but not multiple edges. Let w(e) be positive weights on the edges. These ingredients define
a random walk on V which moves from v to a neighboring v′ with probability proportional
to w(v, v′). This walk has transition matrix

K(v, v′) =
w(v, v′)

W (v)
, W (v) =

∑

v′′

w(v, v′′). (1.1)
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Figure 1: Fmn with m petals, each a cycle of length n. All edges have weight 1.

PSfrag replacements

m

m

m−1

Figure 2: Fmn with all loops having
weight m−1, edges incident to the center
having weight 1, and other edges having
weight m (Metropolis weights).
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Figure 3: Fmn with all loops having
weight 2(m − 1), and other edges having
weight 1 (max-degree weights).
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Figure 4: Kn−Kn with center edge and
all loops of weight n− 1, and other edges
of weight 1.
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Figure 5: Kn−Kn with all edges and loops
of weight 1 (max-degree weights).
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The Markov chain K has unique stationary distribution π(v) proportional to the sum of the
edge weights that meet at v:

π(v) =
W (v)

W
, W =

∑

v′

W (v′). (1.2)

By inspection, the pair K, π is reversible:

π(v)K(v, v′) = π(v′)K(v′, v). (1.3)

Reversible Markov chains are a mainstay of scientific computing through Markov chain
Monte Carlo; see, e.g., [Liu01]. Any reversible Markov chain can be represented as random
walk on an edge weighted graph. Background on reversible Markov chains can be found in
the textbook of Brémaud [Bré99], the lecture notes of Saloff-Coste [SC97] or the treatise of
Aldous and Fill [AF03].

Define L2(π) = {f : V → R} with inner product 〈f1, f2〉 =
∑

v f1(v)f2(v)π(v). The
matrix K(v, v′) operates on L2 by

Kf(v) =
∑

v′

K(v, v′)f(v′). (1.4)

Reversibility (1.3) is equivalent to self-adjointness 〈Kf1, f2〉 = 〈f1, Kf2〉. It follows that K
is diagonalizible with all real eigenvalues and eigenvectors.

An automorphism of a weighted graph is a permutation g : V → V such that if (v, v ′) ∈ E,
then (gv, gv′) ∈ E and w(v, v′) = w(gv, gv′). Let G be a group of automorphisms. This
group acts on L2(π) by

Tgf(v) = f(g−1v). (1.5)

Since g is an automorphism,
TgK = KTg, ∀g ∈ G. (1.6)

Proposition 1.1. For random walk (1.1) on an edge weighted graph, the stationary distri-
bution π defined in (1.2) is invariant under all automorphisms.

Proof.

Tgπ(v) =
1

W

∑

u′

w(g−1v, u′) =
1

W

∑

u

w(g−1v, g−1u)

=
1

W

∑

u

w(v, u) = π(v)

It follows that L2(π) is a unitary representation of G.
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Example 1 (Suggested by Robin Forman). Let Fmn be the graph of a “flower” with m
petals, each a cycle containing n vertices, joined at the center vertex 0. Thus Figure 1 shows
m = 3, n = 5. If w(e) = 1 for all e ∈ E, the stationary distribution is highly non-uniform.
From (1.2),

π(0) =
1

n
, π(v) =

1

mn
for v 6= 0.

Our work in this area begin by considering two methods of putting weights on the edges
of Fmn to make the stationary distribution uniform. The Metropolis weights (Figure 2)
turn out to lead to a more rapidly mixing chain than the max-degree weights (Figure 3).
In [BDX03, PXBD04], we show how to find optimal weights that give the largest spectral
gap. For Fmn these improve slightly over the Metropolis weights. Our algorithms give exact
numerical answers for fixed m and n. In the present paper we give analytical results. All
the algorithms lead to weighted graphs with the same symmetries; see Figures 2 and 3.

Example 2 (Suggested by Mark Jerrum) Let Kn-Kn be two copies of the complete
graph Kn joined by adding an extra edge as in Figures 4 and 5 for n = 4. Here, the max-
degree weights (shown in Figure 5) are dominated by the choice of weights shown in Figure 4.
Our numerical results show that the optimal choice differs only slightly from the choice in
Figure 4.

In section two, we review the classical connections between the spectrum of a self adjoint
operator and the representation theory of a group commuting with the operator. Examples 1
and 2 described above are treated. We also review the literature on coherent configurations
and the centralizer algebra.

Section three gives our first new results. We show how the orbits of various subgroups
of the full automorphism group give smaller “orbit chains” which contain all the eigenvalues
of the original chain. A key result is a useful sufficient condition for an eigenvector of K
to descend to an orbit chain. One consequence is a simple way of determining which orbit
chains are needed.

In section four the random walk on Fmn is explicitly diagonalized. Using all the eigen-
values and eigenvectors, we show that order n2 logm steps are necessary and sufficient to
achieve convergence to stationarity in chi-square distance while order n2 steps are necessary
and sufficient to achieve stationarity in L1. In section five, all the eigenvalues for any sym-
metric weights onKn−Kn are determined. In section six, symmetry analysis is combined with
geometric techniques to get good bounds on the weighted chains for Fmn (Figures 2 and 3).
These show that the Metropolis chain is better (by a factor of m) than the max-degree chain.
As shown in [BDX03], this is the best possible.

For background on graph eigenvalues, automorphisms and their interaction, see Babai
[Bab95], Chung [Chu97], Cvetković et al [CDS95], Godsil-Royle [GR01], or Lauri and Scapel-
lato [LS03].

Acknowledgment

We thank Daniel Bump, Robin Forman, Mark Jerrum, Arun Ram and Andrez Zuk for
incisive contributions to this paper.
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2 Background in representation theory

2.1 Representation theory

The interaction of spectral analysis of a self adjoint operator with the representation theory of
a group of commuting operators is classical. Mackey [Mac78, pages 17-18], Fässler and Stiefel
[FS92, pages 40-43] and Sternberg [Ste94] are good references. Graph theoretic treatment
appears in Cvetković et al [CDS95, chapter 5]. The results of this section use the language
of elementary representation theory. The references above, or Chapter 1 of [Dia88], give all
definitions and many examples.

In present notation, forK, π defined in (1.1) and (1.2), let G be a group of automorphisms
and T the representation of G on L2(π). If λ is an eigenvalue of K with eigenspace Mλ =
{f | Kf = λf}, then

L2(π) =
⊕

λ

Mλ

where the sum is over distinct eigenvalues of K. Of course, L2(π) =
⊕

i Vi with Vi some
choice of irreducible representations of G. Since TgMλ = Mλ, these combine to give

L2 =
⊕

Mλ,i (2.1)

with the sum over distinct eigenvalues λ and then over irreducible representations of G, Mλ,i

— in the eigenspace Mλ.

Proposition 2.1 (Example 1, Fmn). For the “flower” Fmn defined in section one

(a) the automorphism group is Bm = Sm n Cm
2 , the hyperoctahedral group.

(b) for n odd,

L2(π) = L0

(n−1)/2⊕

i=1

(
Li0

⊕
Li1

⊕
Li2

)

with L0, Li0 copies of the one dimensional trivial representation, Li1 copies of the m−1
dimensional permutation representation, Li2 copies of the m dimensional reflection
representation of Bm.

(c) for n even,

L2(π) = L0

⊕
L∗

(n−2)/2⊕

i=1

(
Li0

⊕
Li1

⊕
Li2

)

with notation as in (2.3) and L∗ = L∗0
⊕

L∗1

Corollary 2.1. For any choice of invariant weights (with loops allowed), the corresponding
Markov chain on Fmn has
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• for n odd

1 + (n− 1)/2 one dimensional eigenspaces

(n− 1)/2 (m− 1) dimensional eigenspaces

(n− 1)/2 m dimensional eigenspaces

• for n even

1 + n/2 one dimensional eigenspaces

n/2 (m− 1) dimensional eigenspaces

−1 + n/2 m dimensional eigenspaces

Remark. Of course, in non-generic situations, some of these eigenspaces may coalesce
further. In section four, the chain with edge-weights all equal to one is explicitly diagonalized.

Proof. Label the vertices of Fmn as 0 (center) and (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n − 1. The
hyperoctahedral group Bm = Sm n Cm

2 is the group of symmetries of an m-dimensional
hypercube. Elements are written (π;x) with π ∈ Sm permuting the petals (i-variables)
and x = (x1, . . . , xm) with xi = ±1, reflections in the i-th petal. Thus (π;x)(0) = 0,
(π;x)(i, j) = (π(i), xij) with operations in the second coordinate carried out modulo n.
From this, (π;x)(σ; y) = (πσ;xσy) with xσ = (xσ(1), xσ(2), . . . , xσ(m)). This is a standard
representation of Bm. This proves (a). For background on Bm see James and Kerber [JK81]
or Halverson and Ram [HR96].

To prove (b) note that the symmetry group splits the vertex set into orbits. These are
the central point 0, the 2m points at distance one away, the 2m points at distance two
away and so on. If n is even, there are only m points at distance n/2. We focus on n odd

for the rest of the proof. Thus L2(π) = L0

⊕(n−1)/2
i=1 Li with L0 the one dimensional trivial

representation and Li the 2m-dimensional real vector spaces of functions that vanish off the
corresponding orbits. All of these Li, 1 ≤ i ≤ (n − 1)/2 are isomorphic representations of
Bm. To decompose into irreducibles, let e1, e2, . . . , e2m−1, e2m be the usual basis for R2m. The
group Bm acts on ordered pairs (e1, e2), (e3, e4), . . . , (e2m−1, e2m) by permuting pairs using π
and using ±1 to switch within a pair. Using this, the character χ2m on any of these Li is

χ2m(π;x) =
m∑

i=1

δiπ(i)(1 + xi),

where δij = 1 if i = j and zero otherwise. Indeed, χ2m is simply the trace of a permu-
tation representation. Now

∑
δiπ(i) is the number of fixed points of π. This is the usual

permutation character of the subgroup Sm extended to Bm. It splits into a one-dimensional
trivial representation (character χ0) and an m− 1 dimensional irreducible (character χm−1).
Finally,

∑
δiπ(i)xi is the character of the usual m-dimensional reflection representation of

Bm acting on R2m by permuting coordinates and reflecting in each coordinate. It is easy to
show this is irreducible, e.g., by computing its inner product with itself. Thus, as claimed,
χ2m = χ0 + χm−1 + χm. This holds for each Li proving (b). The proof of (c) is similar.
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Proposition 2.2 (Example 2, Kn-Kn). For two copies of the complete graph Kn joined
via an extra edge, defined in section one

(a) the symmetry group is G = C2 n (Sn−1 × Sn−1).

(b)

L2(π) = 2Lr

⊕
L2n−4

with Lr the two-dimensional regular representation of C2 extended to G and L2n−4 an
irreducible representation of dimension 2n− 4.

Corollary 2.2. For any choice of invariant weights (with loops allowed), the correspond-
ing Markov chain on Kn-Kn has at most five distinct eigenvalues with one eigenvalue of
multiplicity 2n− 4.

Proof. It is clear by inspection that the automorphisms are all possible permutations of the
two sets of n−1 vertices, distinct from the connecting edge, among themselves (this gives an
action of Sn−1×Sn−1) and switching the two halves (this gives an action of C2). The actions
do not commute and the combined action is the semidirect product C2 n (Sn−1×Sn−1). This
proves (a).

To prove (b), observe first that under G there are two orbits: the two points connected
by the extra edge and the remaining 2n − 2 points. The representation of G on the two-
point orbit gives one copy of the regular representation of C2. Let χ be the character of the
representation of G on the remaining 2n − 2 points. As a permutation character it is clear
that

χ(x;σ, ζ) = δ1x (FP(σ) + FP(ζ))

with δ1x being 1 or 0 as x is 1 or −1, and FP(σ) the number of fixed points in σ. Computing
the inner product of χ with itself gives

〈χ, χ〉 =
1

2((n− 1)!)2

∑

x,σ,ζ

(
δ1x (FP(σ) + FP(ζ))

)2

=
1

2((n− 1)!)2

∑

σ,ζ

(
FP2(σ) + 2FP(σ)FP(ζ) + FP2(ζ)

)

=
1

2
(2 + 2 + 2) = 3.

The second from last equality follows by interpreting the sum as an inner product of charac-
ters on Sn−1×Sn−1 and decomposing FP(σ) as a sum of two irreducibles. Thus χ decomposes
as a sum of three irreducibles of G. If χ1, χ−1 are the two characters of C2 extended to G,
computing as above gives 〈χ, χ1〉 = 〈χ, χ−1〉 = 1. It follows that what is left is a 2n − 4
dimensional irreducible of G. This proves (b).

Remark. The irreducible characters of Wreath products such as G are explicitly described
in James and Kerber [JK81, chapter 4]. For our special case the irreducible of G having
dimension 2n − 4 may be seen as induced from the n − 2 dimensional representation of
Sn−1× Sn−1. The eigenvalues for all invariant weightings of Kn-Kn are given in section five.
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2.2 Centralizer algebras

In our work we often begin with a single weighted graph or Markov chain, calculate its
symmetry group and use this to aid in diagonalizing the chain. As the examples of Figures 1-
5 show, there are often several chains of interest with the same symmetry group. It is natural
to study all weightings consistent with a given symmetry group. This brings us close to the
rich world of coherent configurations and distance regular graphs. To see the connection,
let V be a finite set and G a group of permutations of V . Let Ω1,Ω2, . . . be the orbits of G
operating coordinate-wise on V ×V . If Ai is a |V |× |V | matrix with (v, v′) entry one or zero
as (v, v′) ∈ Ωi or not, then the matrices Ai satisfy

(1)
∑
Ai = J (the matrix of all ones)

(2) there is a subset S with
∑

i∈S Ai = I (the identity)

(3) the set {Ai} is closed under taking transposes

(4) there are numbers pkij so that AiAj =
∑

k p
k
ijAk

A collection of zero-one matrices satisfying (1)-(4) is called a coherent configuration. Cameron
[Cam99, Cam03] gives a very clear development with extensive references and connections to
association schemes, distance regular graphs and much else. Applications to optimization are
developed by Gatermann and Parrilo [GP02]. From (4), the set of real linear combinations
of the Ai span an algebra, the centralizer algebra of the action of G on V .

The direct connection with our work is as follows: given a graph (V,E) with automor-
phism group G, the set of all labelings of the edges compatible with G gives a sub-algebra
of the centralizer algebra. The set of all non-negative weightings gives a convex cone in this
sub-algebra. The set of all G-invariant Markov chains with a fixed stationary distribution is
a convex subset of this cone.

We have not found the elegant developments of this theory particularly helpful in our work
— we are usually interested in non-transitive actions and use eigenvalues to bound rates of
convergence rather than to show a certain configuration cannot exist. An extremely fruitful
application of distance regular graphs to random walk is in Belsley [Bel98]. It is a natural
project to extend Belsley’s development to completely general coherent configurations. We
may also hope for some synergy between the coding and design developments of Delsrate
and the semi-definite tools of [BDX03, GP02].

To conclude this section on a more positive note we give

Proposition 2.3. Let V be a finite set with G a finite group acting on V . The set of all
Markov chains on V that commute with the action of G is a convex set with extreme points
indexed by orbits of G on (V × V ). Given such an orbit, the associated extremal chain is
constant in positions (v, v′) in the orbit and has ones on the diagonal of the other rows.

Proof. The only thing to prove is that the construction unambiguously specifies a stochastic
matrix. For this, consider rows indexed by v, v′ which have no diagonal entries. We show
that the number of non-zero pairs (v, w) in the orbit is the same as the number of non-zero
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pairs (v′, w′) in the orbit. Suppose the orbit is {gx, gy} for fixed x 6= y. Then v = gx,
v′ = g′x so g′g−1v = v′. It follows that if there are k non-zero entries in row v there are k
non-zero entries in row v′.

3 Orbit theory

LetK, π be a reversible Markov chain as in (1.1) and (1.2), withH a group of automorphisms.
Often, it is a subgroup of the full automorphism group. The vertex set V partitions into
orbits Ov = {hv : h ∈ H}. Define an orbit chain by

KH(Ov, Ov′) = K(v,Ov′) =
∑

u∈O
v′

K(v, u). (3.1)

Note that this is well defined (it is independent of which v ∈ Ov is chosen). Further,
the lumped chain (which just reports which orbit the original chain is in) is Markov, with
KH(Ov, Ov′) as the transition kernel. This follows from what is commonly called Dynkin’s
criteria (the lumped chain is Markov if and only if K(u,Ov′) doesn’t depend on the choice
of u in Ov). See Kemeny and Snell [KS60, chapter 3] for background. Finally, the chain
at (3.1) is reversible with π(Ov) =

∑
u∈Ov

π(u) as the reversing measure; as a check

π(O)KH(O,O
′) =

∑

v∈O

π(v)K(v,O′) =
∑

v∈O

∑

v′∈O′

π(v)K(v, v′) =
∑

v∈O,v′∈O′

π(v′)K(v′, v)

=
∑

v′∈O′

π(v′)K(v′, O) = π(O′)KH(O
′, O).

In this section we relate the eigenvalues and eigenvectors of various orbit chains to the
eigenvalues and eigenvectors of K. This material is related to material surveyed by Chan
and Godsil [CG97], but we have not found our results in other literature.

3.1 Lifting

Proposition 3.1. Let K, π be a reversible Markov chain with automorphism group G. Let
H ⊆ G be a subgroup. Let KH be defined as in (3.1).

(a) If f̄ is an eigenfunction of KH with eigenvalue λ̄, then λ̄ is an eigenvalue of K with
H-invariant eigenfunction f(v) = f̄(Ov).

(b) Conversely, every H-invariant eigenfunction appears uniquely from this construction.

Proof. For (a), we just check that with f as given

∑

v′

K(v, v′)f(v′) =
∑

O′

K(v,O′)f̄(O′) =
∑

O′

K(O,O′)f̄(O′) = λ̄f̄(O) = λ̄f(v).
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For (b), we just check that the only H-invariant eigenfunctions occur from this construction.
This is precisely the content of “the lemma that is not Burnside’s”, see Neumann [Neu79].
The representation of H on L2(π) is the permutation representation corresponding to the
action of H on V . An H-fixed vector f ∈ L2(π) corresponds to a copy of the trivial
representation. The character χ of the representation of H on L2(π) is χ(h) = FP(h) =
#{v ∈ V : hv = v}. “Burnside’s lemma” (or Frobenius reciprocity) says that

1

|H|
∑

h

FP(h) = #orbits.

The left side is the inner product of χ with the trivial representation. It thus counts the num-
ber of H-fixed vectors in L2(π). The right side counts the number of eigenvalues in the orbit
chain. Of course, any H-invariant eigenfunction of K projects to a non-zero eigenfunction
of the orbit chain (see Proposition 3.2 below).

Remark. We originally hoped to use the orbit chain under the full automorphism group
coupled with the multiplicity information of section two to completely diagonalize the chain.
To see how wrong this is, consider a graph such as the complete graphKn with automorphism
group operating transitively on V . Then the orbit chain has just one point and one G-
invariant eigenfunction corresponding to eigenvalue one. For the flower Fmn, with edge
weights one, the Cm

2 action collapses each petal into a path (with a loop at the end if n is
odd) and then the Sm action identifies these paths. It follows that the orbit chain corresponds
to unweighted random walk on the path shown in Figure 6

PSfrag replacements

0 1 n−1
2

Figure 6: The orbit chain of Fmn.

It is easy to diagonalize this orbit chain and find the 1 + (n− 1)/2 eigenvalues cos(2πj/n),
0 ≤ j ≤ (n− 1)/2 (see section 3.3). These appear with multiplicity one for generic weights.
As shown in section four, for weight one, there are non G-invariant eigenvectors with these
same eigenvalues, and many further eigenvalues of the full Markov chain K.

3.2 Projection

As above, G is the automorphism group of a reversible Markov chain, H ⊆ G is a subgroup
and KH(O,O

′) is the orbit chain of (3.1). We give a useful condition for an eigenfunction
of K to project down to a non-zero eigenfunction of KH . Several examples and applications
follow.

Proposition 3.2. If f is an eigenfunction of K with eigenvalue λ, let f̄(x) =
∑

h∈H f(h
−1x).

If f̄ 6= 0, then f̄ is an eigenfunction for KH with eigenvalue λ.
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Proof. For any H-orbit O write f̄(O) for the constant value of f̄ . For x ∈ O, yi ∈ Oi,

∑

i

K(O,Oi)f̄(Oi) =
∑

i

(
∑

y∈Oi

K(x, y)

)
∑

h

f(h−1yi) =
∑

h

∑

i

∑

y∈Oi

K(x, y)f(h−1y)

=
∑

h

∑

y

K(x, y)f(h−1y) = λ
∑

h

f(h−1x) = λf̄(O).

Warning. Of course, f̄ can vanish. If, e.g., the original graph is the cycle C9 and H = C3

acting by Ta(j) = j + 3a, for a ∈ C3 = {0, 1, 2}. There are 9 original eigenvalues with
eigenfunctions fj(k) = e2πijk/9 (here i =

√
−1). Using f̄j as in the proposition above

f̄j(k) = e2πijk/9 + e2πij(k+3)/9 + e2πij(k+6)/9

= e2πijk/9
(
1 + e2πi3j/9 + e2πi6j/9

)

= 0 if j is relatively prime to 9.

In proposition C in section 3.3 below we give examples where several different eigenfunc-
tions coalesce under projection. The following proposition gives sufficient conditions for an
eigenvalue of K to appear in a projection.

Proposition 3.3. Let H be a subgroup of the automorphism group G of a reversible Markov
chain K. Let f be an eigenfunction of K with eigenvalue λ. Then λ appears as an eigenvalue
in KH if either of the following conditions holds

(a) H has a fixed point v∗ and f(v∗) 6= 0.

(b) f is non-zero at v∗ that is in a G-orbit containing an H fixed point.

Proof. For (a), f̄ defined in Proposition 3.2 satisfies f̄(Ov∗) 6= 0 because f̄(Ov∗) = |H|f(v∗).
For (b), since f(v∗) 6= 0, let g map v∗ to v∗∗ an H-fixed point. Then (Tgf)(v

∗) 6= 0.

Example 1 (Fmn). Let H = Bm−1, the subgroup of Bm fixing the first petal. The orbit
graph is a weighted lollipop Ln (see Figure 7). The weights are determined from (3.1), which
specifies π(O) and K(O,O′). The weight on edge (O,O′) is then π(O)K(O,O′) (see (1.2)
and (1.3)). We claim all the eigenvalues of the weight one random walk on Fmn occur as
eigenvalues of Ln. Indeed, if f is an eigenfunction of Fmn with f(0) 6= 0, then we are done
by (a) of Proposition 3.3. If f(0) = 0, then f(v) 6= 0 for some other v. We may map v to
the first petal (fixed by H). We are done by (b) of Proposition 3.3.

PSfrag replacements

1
1

1
1

1
M

M M

PSfrag replacements

1

1
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1

1

M M M

Figure 7: The weighted lollipop graph Ln: n odd (left) and n even (right); M = 2(m− 1).
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Figure 8: The weighted orbit chain of Kn-Kn under the group action Sn−2 × Sn−1.

Example 2 (Kn-Kn). Consider the subgroup Sn−2 × Sn−1 ⊆ C2 n (Sn−1 × Sn−1). The
orbit graph is shown in Figure 8. Arguing as above, we see all eigenvalues of the unweighted
walk appear.

It is natural to ask which orbit chains are needed to get all the eigenvalues of the original
chain K. The following theorem gives a simple answer.

Theorem 3.1. Let G be the automorphism group of the reversible Markov chain (K, π).
Suppose V = O1 ∪ . . . ∪ Ok as a disjoint union of G-orbits. Represent Oi = G/Hi with Hi

the subgroup fixing a point in Oi. Then all eigenvalues of K occur among the eigenvalues of
{KHi

}ki=1. Further, every eigenfunction of K occurs by translating a lift of an eigenfunction
of some KHi

.

Proof. Say f is an eigenfunction of K with eigenvalue λ. Let f(v) 6= 0, say v ∈ Oi
∼= G/Hi

with Hi = {h | hvi = vi} for a prechosen vi ∈ Oi. Choose g with g−1v = vi and let f1 = Tgf .
Then, f1 has λ as an eigenvalue and a non-zero Hi-invariant point. The result follows from
proposition (3.3).

Remarks. Observe that if H ⊆ J ⊆ G, then the eigenvalues of KH contain all eigenvalues
of KJ . This allows disregarding some of the Hi. Consider Example 1 (Fmn) with n odd.
There are 1 + (n− 1)/2 orbits O0 ∪O1 ∪ . . . ∪O(n−1)/2. The corresponding Hi are G for O0

and Bm−1 for all the other Oi. It follows that all the eigenvalues occur in the orbit chain
for Bm−1, this is the lollipop Ln described above. Similarly, for Kn-Kn, there are two orbits:
the two central points (with H1 = Sn−1 × Sn−1) and the remaining 2n − 2 points (with
H2 = Sn−2 × Sn−1). Since H2 ⊆ H1, we get all eigenvalues from this quotient, as discussed
just above Theorem 3.1.

There remains the question of relating the orbit theory of this section with the multiplicity
theory coming from the representation theory of section two. We have not sorted this out
neatly. The following classical proposition gives a simple answer in the transitive case.

Proposition 3.4. Let G be the automorphism group of the reversible Markov chain (K, π).
Suppose G acts transitively on V . Let L2(π) = V1

⊕
. . .
⊕

Vk be the isotropy decomposition
with Vi = diWi and Wi distinct irreducible representations. Suppose V ∼= G/H. Then
the H-orbit chain has

∑k
i=1 di distinct eigenvalues generically, with di eigenvalues having

multiplicity Dim(Wi) in the original chain K. These eigenvalues may be determined as
follows: set Q(y) = K(H, yH)/|H|. This is an h-bi-invariant probability measure on G

12



(Q(h1gh2) = Q(g)). Let ρi be a matrix representation for Wi with basis chosen so that the

first di basis vectors are fixed by H. Then Q̃(ρi) =
∑

gQ(g)ρi(g) is zero except for the upper
left di × di block. The eigenvalues of this block are the di eigenvalues, each with multiplicity
Dim(Wi).

Proof. This is standard in the multiplicity free case [Dia88, chapter 3]. Dieudone [Die78,
section 22.5] covers the general case.

Remarks.

1. In the transitive case, L(V ) = IndGH(1). The H-orbit chain is indexed by H-H double
cosets. By the Mackey intertwining theorem [CR62, 44.5], the number of orbits is∑
d2
i . Thus the H-orbit chain, which has only

∑
di distinct eigenvalues, has the di

eigenvalues each occuring with multiplicity di.

Example. Consider the hypercube Cn
2 . The automorphism group is G = Bn, the

hyperoctahedral group. This operates transitively with Cn
2 = G/H for H = Sn.

Further L2(π) =
⊕n

i=1Wi with Dim(Wi) =
(
n
i

)
. As is well known, random walk on

Cn
2 has eigenvalues 1 − 2i

n
, 0 ≤ i ≤ n with multiplicity

(
n
i

)
. See [Dia88, page 28] for

background.

2. In the non-transitive case, Arun Ram has taken us a step closer to connecting the
orbit theory to the representation theory. Suppose that, as a representation of G,
L2 =

∑
λ dλV

λ, with V λ irreducible representations of G occurring with multiplicity
dλ. Let H = EndG(L

2) be the algebra of all linear transformations that commute
with G. Then L2 is a (G,H) bi-module and basic facts about double commutators
([Mac78, pages 17-18]) give

L2 =
⊕

λ

V λ
⊗

W λ, as a (G,H) bi-module. (3.2)

In this decomposition G only acts on V λ. The dλ dimensional space W λ is called a
multiplicity space. Dually, H (and so K) only acts on W λ and each eigenvalue of K
on W λ occurs with multiplicity Dim(V λ). Usually, the action of K on W λ (or even an
explicit description of W λ) is not apparent.

If X = G/H1 ∪ G/H2 ∪ . . . ∪ G/Hr is a union of G orbits, Theorem 3.1 says we need
only consider the Hi orbit chains. By standard theory, the Hi lumped chain KHi

may
be seen as the action of K on

L(Hi \ X ) ∼=
⊕

λ

(
V λ
)Hi

⊗
W λ. (3.3)

Here, (V λ)Hi is the subspace of Hi-invariant vectors in the representation of G on V λ.

13



Figure 9: Left: the simplest graph with no symmetry. Right: orbit graph with Cn symmetry.

The point is that (as in the examples), we may be able to calculate all the eigenvalues
of KHi

. Further, we know these occur with multiplicity Dim
(
(V λ)Hi

)
. These numbers

are computable from group theory, independently of K. If they are distinct, they allow
us to identify the eigenvalues of K on W λ. For λ allowing Hi-fixed vectors, the action
of K on W λ is the same in (3.2) and (3.3). With several Hi, the possibility of unique
identification is increased.

3. An example of Ron Graham shows that we should not hope for too much from sym-
metry analysis. To see this, consider the simplest graph with no symmetry (Figure 9,
left). Take n copies of this six vertex graph and join them, head to tail, in a cycle.
This 6n vertex graph has only Cn symmetry. The orbit graph is shown on the right
in Figure 9. By Proposition 3.1, each of the six eigenvalues of this orbit graph occur
with multiplicity one in the large graph. We have not found any way to get a neat
description of the remaining eigenvalues. The quotient of the characteristic polynomial
of the big graph by that of the orbit graph is often irreducible for small examples. Of
course, we can get good bounds on the eigenvalues with geometric arguments as in
section six. However, symmetry does not give complete answers.

3.3 Three C2 actions

We now illustrate the orbit theory for three classical C2 actions. The results below are
well known, see Kac [Kac47] or Feller [Fel68]. We find them instructive in the present
context. Further, we need the very detailed description we provide to diagonalize Fmn.
Pinsky [Pin80, Pin85] gives a much more elaborate example of this type of argument.
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Figure 10: Three path graphs with n vertices.

Consider the three graphs in Figure 10, each on n-vertices. It is well known that the near-
est neighbor Markov chain on each can be explicitly diagonalized by lifting to an appropriate
circle.
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Case A

Consider C2(n−1). For example, Figure 11 shows the case with n = 4. Label the points
of C2(n−1) as 0, 1, . . . , 2(n − 1) − 1. Let C2 act on C2(n−1) by j → −j. This fixes 0, n − 1
and gives (n − 2) two-point orbits. The orbit chain is precisely the loopless path of case A
in Figure 10. The eigenvalues/functions of C2(n−1) are

1 / constant

−1 / cos
(

2π(n−1)k
2(n−1)

)
= cos(πk)

cos
(

2πj
2(n−1)

)
/ cos

(
2πjk

2(n−1)

)
, sin

(
2πjk

2(n−1)

)
, 1 ≤ j ≤ n− 2

Using Proposition 3.2, relabeling vertices of the path as 0, 1, . . . , n− 1, we have

Proposition 3.5. The loopless path of length n has eigenvalues cos
(

πj
n−1

)
with eigenfunction

fj(k) = cos
(
πjk
n−1

)
, 0 ≤ j ≤ n− 1.

Note. Here −1 is an eigenvalue of the loopless path; all eigenvalues are distinct and

cos
(

πj
n−1

)
= − cos

(
π(n−1−j)

n−1

)
.
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Figure 12: Case B, n = 4.

Case B

Consider C2n−1. For example, Figure 12 shows the case with n = 4. Again C2 acts on C2n−1

by j → −j. This fixes 0 and there are n− 1 orbits of size two. The orbit chain is the single
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loop chain of case B in Figure 10. The eigenvalue/function pairs of C2n−1 are:

1 / constant

cos
(

2πj
2n−1

)
/ cos

(
2πjk
2n−1

)
, sin

(
2πjk
2n−1

)
, 1 ≤ j ≤ n− 1

Proposition 3.6. The single loop path of case B has eigenvalues cos
(

2πj
2n−1

)
with eigenfunc-

tion fj(k) = cos
(

2πjk
2n−1

)
, 0 ≤ j ≤ n− 1.

Note. Here −1 is not an eigenvalue, and all eigenvalues have multiplicity one.
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Figure 13: Case C, n = 4.

Case C

Consider C2n. For example, Figure 13 show the case with n = 4. Map C2n → C2n with
T (k) = 2n − 1 − k = −(k + 1), 0 ≤ k ≤ 2n − 1. Clearly T 2(k) = k and T sends edges to
edges. There are n orbits of size two. The orbit chain is the double loop chain of case C in
Figure 10. The eigenvalue/function pairs of C2n are

1 / constant

−1 / cos(πk)

cos
(

2πj
2n

)
/ cos

(
2πjk
2n

)
, sin

(
2πjk
2n

)
, 1 ≤ j ≤ n− 1

Summing over orbits gives

Proposition 3.7. The double loop path of length n has eigenvalues cos
(
πj
n

)
with eigen-

function fj(k) = cos
(
πjk
n

)
+ cos

(
πj(k+1)

n

)
, 0 ≤ j ≤ n − 1, 0 ≤ k ≤ n − 1. Using

cos(x) + cos(y) = 2 cos(x+y
2
) cos(x−y

2
), we see that fj(k) is proportional to cos

(
πj
n
(k + 1

2
)
)
.

Remarks. In this example, we may also write fj(k) = sin
(
πjk
n

)
− sin

(
πj(k+1)

n

)
, 0 ≤ j ≤

n− 1. Note

sin
(
πjk
n

)
− sin

(
πj(k+1)

n

)
=
(
cos
(
πjk
n

)
+ cos

(
πj(k+1)

n

)) (
− tan

(
πj
2n

))
.

This shows another way that eigenfunctions can collapse. On C2n we may choose the pairing
T (k) = a− k, for any odd a (even a leads to fixed points).
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4 Simple random walk on Fmn

In this section we give an explicit diagonalization of the random walk on the “flower” Fmn

with all edge weights one. We have two motivations: first, to give an illustration of the
theory developed in a two parameter family of examples; second, the analysis of rates of
convergence of the random walk to stationarity needs both eigenvalues and eigenvectors. It
clears up a mystery that was troubling us in comparing different weighted walks on Fmn.
Our careful analysis allows us to show the walks have different rates of convergence in L2

and L1 — n2 logm vs n2. We first give the diagonalization, then the L2 analysis, then the
L1 analysis. We note that the graph Fm3 is thoroughly studied as the “friendship graph”;
see [ERS66].

4.1 Diagonalizing simple random walk on Fmn

This walk K(v, v′) and stationary distribution π(v) were introduced in section one. We
suppose throughout this section that n ≥ 3 is odd and m ≥ 2 is arbitrary. The state-space
has |V | = 1 +m(n− 1).

Proposition 4.1. For n ≥ 3 odd and m ≥ 2, let K(v, v′) be simple random walk on the
flower Fmn with points 0, (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n. The walk is reversible with
stationary distribution π(0) = 1

n
, π(i, j) = 1

mn
. The eigenvalues λ and an orthonormal basis

of eigenvectors f(i, j) are

1 / constant

cos
(

2πa
n

)
/
√
2 cos

(
2πaj
n

)
, 1 ≤ a ≤ n−1

2

cos
(

2πa
n

)
/
√
2m sab(i, j), 1 ≤ a ≤ n−1

2
, 1 ≤ b ≤ m

cos
(
π(2a+1)

n

)
/
√
2m
√

b
b+1

fab(i, j), 0 ≤ a ≤ n−3
2
, 1 ≤ b ≤ m− 1

where

sab(i, j) =

{
sin
(

2πaj
n

)
if i = b

0 if i 6= b

fab(i, j) =





1
b
cos
(
π(2a+1)

n

(
n
2
− j
))

if 1 ≤ i ≤ b

cos
(
π(2a+1)

n

(
n
2
+ j
))

if i = b+ 1

0 if b+ 1 < i ≤ m

Remarks. This gives 1+ (n− 1)/2+m(n− 1)/2+ (m− 1)(n− 1)/2 = 1+m(n− 1) pairs
λ/f . Comparing with the Corollary (2.1), we see the multiplicities check but the eigenvalues
for the one-dimensional spaces sometimes equal the eigenvalues for the m − 1 dimensional
eigenspaces. In section six, with weights on the edges to force a uniform distribution, all
these “accidents” disappear. To evaluate the eigenfunctions at zero use the expressions given
with j = 0.
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Proof. We lift eigenvalues from two distinct orbit chains — a cycle Cn (with H = Sm) and
a path with loops (with H = Sm−1 n Cm

2 ). The argument breaks into the following cases:

• vectors coming from the circle Cn not vanishing at zero;

• vectors coming from the circle Cn vanishing at zero and their shifts;

• vectors coming from a path and their shifts.

The results are developed in this order.

a) Vectors coming from Cn. The symmetric group Sm acts on Fmn and the orbit chain
is the simple random walk on Cn. This has eigenvalues/vectors

1 / constant

cos
(

2πa
n

)
/ fa(j) = cos

(
2πaj
n

)
, sin

(
2πaj
n

)
, 1 ≤ a ≤ n−1

2
.

We lift these eigenvectors up to Fm,n in two ways:
(a1) The eigenvectors cos(2πaj/n) are lifted to Fmn by defining them to be constant on

orbits of Sm. This gives (n − 1)/2 eigenvectors, each associated with a distinct eigenvalue.
Note since cos(2πaj/n) = cos(−2πaj/n) for all j, these are in fact Bm invariant and exactly
the eigenvectors accounted for by Proposition 3.1. By an elementary computation

λa = cos
(

2πa
n

)
, fa(i, j) =

√
2 cos

(
2πaj
n

)

are orthonormal eigen pairs.
(a2) The eigenvectors sin(2πaj/n) vanish at j = 0. Because of this, we may define m

distinct lifts by installing sin(2πaj/n) on the bth petal (1 ≤ b ≤ m) and define it as zero
elsewhere. Thus define

sab(i, j) =

{
sin
(

2πaj
n

)
if i = b,

0 if i 6= b.

It is easy to check that this works: for i 6= b, j 6= 0, with K the transition kernel of Fmn,

Ksab(i, j) = 0 = cos
(

2πaj
n

)
sab(i, j).

For i = b, j 6= 0,
Ksab(i, j) = cos

(
2πaj
n

)
sab(i, j).

Finally at 0,

Ksab(0) =
1

2m

∑

i

(sab(i, 1) + sab(i,−1))

=
1

2m
(sab(b, 1) + sab(b,−1)) = 0 = cos

(
2πaj
n

)
sab(0).

This gives m(n− 1)/2 further eigenvectors which have been normalized in the statement.
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b) Vectors coming from a path. In section §3.3, Case C, we diagonalized simple ran-
dom walk on a path of length n with two loops (Figure 13). We now lift the eigenvalues

cos
(
π(2a+1)

n

)
, 0 ≤ a ≤ n−3

2
and eigenfunctions fa(k) = cos

(
π(2a+1)

n

(
k + 1

2

))
, 0 ≤ k ≤ n− 1

up to Fmn.
We first show the case m = 2. In this case, we lift fa from a path to fab (b = 1) on two

petals as shown in Figure 14, with fa assigned symmetrically on the two halves of the petal.
Here fa is indexed by k = 0, 1, . . . , n − 1 from top to bottom. In terms of fa1 indexed by
(i, j) on the petals, this is equivalent to

fa1(i, j) =





fa
(
n−1

2
− j
)
= cos

(
π(2a+1)

n

(
n
2
− j
))

if i = 1 (the upper petal)

fa
(
n−1

2
+ j
)
= cos

(
π(2a+1)

n

(
n
2
+ j
))

if i = 2 (the lower petal)

It is easy to check that fab(i, j) = fa1(i, n−j), which means that fab is symmetric on the two
halves of each petal as desired. We also notice that fa1(1, j) = −fa1(2, j), so the eigenvector
is “skew-symmetric” on the two petals.

For m > 2, we lift fa up to the graph Fmn in m− 1 ways, indexed by b = 1, . . . ,m − 1.
For each b, we assign 1/b of the first half of fa, {fa(0), . . . , fa(n−1

2
)}, on petals i = 1, . . . , b,

and assign the second half {fa(n−1
2

+ 1), . . . , fa(n − 1)} on petal i = b + 1. The rest petals
are assigned zero. In other words, we have

fab(i, j) =





1
b
fa
(
n−1

2
− j
)
= 1

b
cos
(
π(2a+1)

n

(
n
2
− j
))

if 1 ≤ i ≤ b

fa
(
n−1

2
+ j
)
= cos

(
π(2a+1)

n

(
n
2
+ j
))

if i = b+ 1

0 if b+ 1 < i ≤ m

As before, fab is symmetric on the two halves of each petal. Because of this symmetry, we
need only consider Fmn with each petal flattened into a path of length n+1

2
, all m such paths
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Figure 15: Construction of orthogonal eigenvectors on a spider graph with m = 5 legs.

being joined at an end point. The sign pattern (considering the first half of fa as a unit)
when m = 5 is illustrated in Figure 15. We will refer to this graph as a spider with m legs.

It is easy to see that fab, 1 ≤ b ≤ m− 1 are eigenfunctions with eigenvalue cos
(
π(2a+1)

n

)
;

see the remark below. We claim they are mutually orthogonal. Prove this inductively in b.
If fa1, . . . , fa(b−1) are mutually orthogonal, the inner product of fab with any of these has its
negative part dotted with zero. Of the remaining parts, all of the legs of fab have positive
sign. For any faj, j ≤ b − 1, one of the legs is negative and the others are positive divided
by j. The sum of the inner products is zero. For Fmn, the non-uniform stationary probability
doesn’t affect things because fab(i, 0) = 0.

Remark. Implicit in the above manipulations is the following diagonalization of random
walk on a weighted path with end loops. Consider a path with n vertices, with n odd, and
weights a, b > 0 on the edges as shown in Figure 16.
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Figure 16: A path with different weights on the left and right

The nearest neighbor random walk on this graph has stationary distribution

π
(
n−1

2

)
=

a+ b

n(a+ b)
=

1

n
, π(i) =

{
2a

n(a+b)
, 0 ≤ i < n−1

2

2b
n(a+b)

, n−1
2
< i ≤ n− 1.

If a = b, the walk is symmetric; the eigenvalues and eigenvectors were determined in case C
of §3.3:

λj = cos
(
jπ
n

)
, fj(k) = cos

(
jπ
n

(
k + 1

2

))
, 0 ≤ j, k ≤ n− 1. (4.1)

Proposition 4.2. For any odd n ≥ 3 and a, b > 0, the Markov chain K̂ on the weighted
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path of Figure 16 has eigenvalues λ̂j = λj = cos( jπ
n
), 0 ≤ j ≤ n− 1. The eigenvectors are

j even f̂j(k) = fj(k), 0 ≤ k ≤ n, see (4.1)

j odd f̂j(k) =





fj(k), 0 ≤ k < n−1
2

0, k = n−1
2

a
b
fj(k),

n−1
2
< k ≤ n− 1

Proof. Because the fj’s are eigenvectors for the stated eigenvalues when a = b, we need only
check them at k = n−1

2
. For j even,

K̂f̂
(
n−1

2

)
=

a

a+ b
f̂j
(
n−1

2
− 1
)
+

b

a+ b
f̂j
(
n−1

2
+ 1
)

=
a

a+ b
cos
(
jπ(n−2)

2n

)
+

b

a+ b
cos
(
jπ(n+2)

2n

)

=

(
a

a+ b
+

b

a+ b

)
cos
(
jπ
n

)
cos
(
jπ
2

)
= λ̂j f̂j

(
n−1

2

)
.

The next to last equality used cos(x+ y) = cos(x) cos(y)− sin(x) sin(y). For j odd,

K̂f̂
(
n−1

2

)
=

a

a+ b
fj
(
n−1

2
− 1
)
+

b

a+ b

a

b
fj
(
n−1

2
+ 1
)

=
a

a+ b

(
fj
(
n−1

2
− 1
)
+ fj

(
n−1

2
+ 1
))

= 0 = λ̂j f̂j
(
n−1

2

)
.

Remark. If n (the number of vertices in one petal) is even, a similar result holds for
the path of length n + 1 without loops (the orbit chain under H = Sm−1 n Cm

2 ). From
Proposition 3.7 in §3.3, when a = b, this graph has eigenvalues λj = cos( jπ

n
) and eigenvectors

fj(k) = cos( jkπ
n
), 0 ≤ j, k ≤ n. For general a, b > 0, the eigenvalues are λ̂j = λj, 0 ≤ j ≤ n

and

j even f̂j(k) = fj(k), 0 ≤ k ≤ n

j odd f̂j(k) =





fj(k), 0 ≤ k < n
2

0, k = n
2

a
b
fj(k),

n
2
< k ≤ n.

4.2 Rates of convergence

Theorem 4.1. There exist positive constants A,B,C such that if K(v, v ′) denotes the tran-
sition matrix of simple random walk on the unweighted graph Fmn, with m ≥ 2, n ≥ 3 odd,
for all v and l ≥ 1

Ae−Bl/(n
2 logm) ≤

∑

v′

(K l(v, v′)− π(v′))2

π(v)
≤ Ce−Bl/(n

2 logm).
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Remark. The result shows that order n2 logm are necessary and sufficient to achieve
stationarity in the L2 or chi-square distance. The constants A,B,C are independent of
m,n and explicitly computable. Results in section 4.3 below show that order n2 steps are
necessary and sufficient for L1 or total variation convergence. We only know a handful of
examples where the L1 and L2 rates differ. See, e.g., Stong [Sto91] or Diaconis, Holmes, Neal
[DHN00].

Proof. Let fk, λk, 1 ≤ k ≤ m(n− 1) denote the non-constant eigenfunction, eigenvalue pairs
of Proposition 4.1. By a standard identity (see, e.g., Diaconis and Saloff-Coste [DSC93])

∑

v′

(K l(v, v′)− π(v′))2

π(v)
=

m(n−1)∑

k=1

f 2
k (v)λ

2l
k .

Using the known values given in Proposition 4.1, this sum equals

(n−1)/2∑

a=1

2 cos2
(

2πaj
n

)
cos2l

(
2πa
n

)
+

(n−1)/2∑

a=1

2m sin2
(

2πaj
n

)
cos2l

(
2πa
n

)

+

(n−3)/2∑

a=0

2m
m− 1

m
cos2

(
πa
n

(
n
2
+ j
))

cos2l
(
π(2a+1)

n

)
.

In forming the last sum, we note that although the construction of the m − 1 eigenvectors
fab is nonsymmetric across the m petals (see Figure 15), the sum

∑m−1
b=1 f 2

ab(i, j) is the same
for every i = 1, . . . ,m. In particular, for each a, we have

m−1∑

b=1

f 2
ab(i, j) = f 2

a(m−1)(m, j) = 2m
m− 1

m
cos2

(
πa
n

(
n
2
+ j
))

which is independent of i that labels the petals.
For the lower bound, discard all terms except the a = 0 term in the final sum. The L2

distance is bounded below by
2(m− 1) cos2l(π/n).

This clearly takes l of order n2 logm to drive it to zero.
The upper bound proceeds just as for simple random walk on n point circles. See Diaconis

[Dia88, page 25] or Saloff-Coste [SC03] for these classical trigonometric inequalities. Further
details are omitted.

4.3 L1 bounds

Let K(v, v′) be the simple random walk on the unweighted “flower”Fmn. This is reversible
with unique stationary distribution π(0) = 1/n, π(i, j) = 1/(mn). In this section we show
that the L1 or total variation relaxation time has order n2, independent of m. Recall that

‖K l
v − π‖1 =

1

2

∑

v′

|K l(v, v′)− π(v′)| = max
S⊆V

|K l(v, S)− π(S)|. (4.2)
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Proposition 4.3. There are universal constants A1, B1, B2, C1 such that for every starting
state v, and all l

A1e
−B1l/n2 ≤ ‖K l

v − π‖1 ≤ C1e
−B2l/n2

. (4.3)

Proof. The argument uses standard results from random walk on an n-point circle. For the
lower bound, the walk started at the center has vanishingly small probability of being in the
top half of a petal after εn2 steps. The walk started inside any petal has a vanishingly small
chance of being in the top half of any of the other petals after εn2 steps. In either case, there
is a set S with π(S) ≥ 1/10 and K l(v, S) < 1/10 for l ≤ εn2 for suitable ε independent of n
or m. These statements combine to give the lower bound in (4.3).

For the upper bound, we construct a strong stationary time T as in [DF90]. If X0, X1,
X2, . . . denotes the random walk (with X0 = v), T is a stopping time such that P{XT ∈
S | T = t} = π(S), for all t such that P (T = t) > 0. Such stopping times yields

‖K l
v − π‖1 ≤ P (T ≥ l).

Let T1 be the first hitting time of the walk started at v to the state 0. Let T2 be a strong
stationary time for the image of the walk started at 0. An explicit construction of such a
time is in Example 1 of Diaconis and Fill [DF90]. Clearly T = T1 +T2 is a strong stationary
time for the original walk on Fmn. Further, T1 and T2 are independent and

P{Ti ≥ l} ≤ A′ie
−B′

i
l/n2

, i = 1, 2

for suitable constants A′i, B
′
i, by classical estimates. This proves the upper bound in (4.3).

5 The graph Kn-Kn

Consider the graph Kn-Kn with loops and weights as follows: vertices (x, y) are end points of
the extra edge with weight A. Edges in the left copy of Kn with x as endpoint have weight B.
The same for vertices in the right copy of Kn with y as an endpoint. All other edges of Kn

have weight C. Finally every vertex different from {x, y} has a loop with weight D. For
n = 4 the graph is shown in Figure 17.
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Figure 17: The graph Kn-Kn with weights A,B,C,D.
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Figure 18: The orbit graph of Kn-Kn under C2 n (Sn−1 × Sn−1).

Proposition 5.1. The transition matrix of the Markov chain on the edge weighted graph
described above has the following set of eigenvalues

• 1 with multiplicity one

• −1 + A
A+E

+ F
B+F

with multiplicity one

• D−C
B+F

with multiplicity 2n− 4

• −AB+EF
2(A+E)(B+F )

± 1
2

√
1 + 2AE

(A+E)2
+ 2BF

(B+F )2
+ 3(AF−BE)2

(A+E)2(B+F )2
each with multiplicity one

where E = (n− 1)B and F = D + (n− 2)C.

Proof. All of our graphs have symmetry group C2n(Sn−1×Sn−1) as in section two. From the
computations of Example 2 in section two (Corollary 2.2), the graph has at most five distinct
eigenvalues, four with multiplicity one and one with multiplicity 2n− 4. We determine the
eigenvalues in the list above using a sequence of orbit graphs.

a) The orbit graph under the full automorphism group has two states, one corresponding
to the orbit {x, y} and one corresponding to the orbit formed by the remaining 2n−2 points;
see Figure 18. The transition matrix of this orbit chain is




A
A+E

E
A+E

E
E+(n−1)F

(n−1)F
E+(n−1)F


 =




A
A+E

E
A+E

B
B+F

F
B+F




Taking traces gives the second eigenvalue shown. By Proposition 3.1 this lifts to an eigenvalue
of multiplicity one for the full chain.

b) Consider next the orbit chain under C2 (Figure 19, left). This graph has symmetry
group Sn−1 with two orbits, one of size one and the other of size n − 1. The isotropy
subgroup of the large orbit is Sn−2. The orbit chain under Sn−2 has three states (Figure 19,
right) with transition matrix (only diagonals shown)




A
A+(n−1)B

∗ ∗
∗ D

B+D+(n−2)C
∗

∗ ∗ D+(n−3)C
B+D+(n−2)C




Taking traces, and using the eigenvalue found above (which also appears here) we find the
third eigenvalue shown with the reported high multiplicity. Indeed the C2 orbit chain has
three eigenvalues with multiplicity 1, 1, n− 2 and the second eigenvalue has multiplicity one.
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Figure 19: The orbit graphs of Kn-Kn under C2 (left) and C2 n (Sn−2 × Sn−2) (right).

c) To get the last two eigenvalues, consider the orbit chain for the subgroup Sn−1 × Sn−1.
This has four orbits: Oα consisting of the n− 1 points in the left Kn, {x}, {y} and Oβ; see
Figure 20. The transition matrix is




F
B+F

B
B+F

0 0
E

A+E
0 A

A+E
0

0 A
A+E

0 A
A+E

0 0 B
B+F

F
B+F




This matrix has the first two displayed eigenvalues known. Solving the resulting quadratic
for the last two eigenvalues gives the final result.
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Figure 20: The orbit graph of Kn-Kn under Sn−1 × Sn−1.

The bounds implicit in the following two corollaries were first derived by Mark Jerrum
using quite different arguments.

Corollary 5.1. On Kn-Kn, for a uniform stationary distribution, the max-degree construc-
tion has A = B = C = D = 1. The eigenvalues (in the listed order) are 1, 0, 0, 1

2
− 1

n
±

1
2

√
1 + 4

n
− 4

n2 . It follows that the second largest eigenvalue is 1− 2
n2 +O

(
1
n3

)
. The Metropo-

lis chain has slightly different weights but the second eigenvalue is 1− c
n2 +O

(
1
n3

)
for some

constant c.

Corollary 5.2. A good approximation to the fastest mixing Markov chain for a uniform
stationary distribution has weights A = D = n − 1, B = C = 1. The eigenvalues are 1,
1
2
− 1

2(n−1)
, 1

2
− 1

2(n−1)
(multiplicity 2n − 4), 1

4
− 1

4(n−1)
± 1

4

√
9− 2

n−1
+ 1

(n−1)2
. We thus see

that the second largest eigenvalue is 1− 1
3n

+O
(

1
n2

)
.
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Figure 21: The mixing time 1/(1− µ) of Kn-Kn.

This shows that the fastest mixing Markov chain has spectral gap at least a factor of n
larger than the Metropolis and max-degree chains. As argued in [BDX03], the fastest mixing
Markov chain can only improve over the Metropolis algorithm by a factor of the maximum
degree of the underlying graph. Thus this example is best possible.

Remark. Using our algorithm in [BDX03] to find the truly fastest mixing Markov chain
shows it is slightly different than the chain of corollary 5.2. Figure 21 shows the mixing time
1/(1−µ) (here µ is the second-largest eigenvalue magnitude) of four different Markov chains,
when n varies from 2 to 100. The curve labeled as “suboptimal” is the weighted chain of
Corollary 5.2; the one labeled as “optimal” is the fastest mixing Markov chain.

6 Uniform stationary distribution on flowers

In this section we give sharp bounds on the spectral gap for two different weightings of the
flower graph Fmn. Both graphs have a uniform stationary distribution π(v) = 1

m(n−1)+1
. The

max-degree weighting gives the chain (for (v, v′) an edge in the graph)

K1(v, v
′) =

1

2m
, K1(v, v) = 1− dv

2m
, (6.1)
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where dv is the degree of vertex v. A picture of the weighted graph appears in Figure 3. The
Metropolis weighting gives the chain (transition probabilities are symmetric on edges)

K2(0, (i, 1)) = K(0, (i, n− 1)) =
1

2m
,

K2((i, j), (i, j + 1)) =
1

2
, 1 ≤ j < n− 1,

K2((i, 1), (i, 1)) = K((i, n− 1), (i, n− 1)) =
1

2
− 1

2m
.

(6.2)

A picture of the weighted graph appears in Figure 2. Using symmetry analysis and geo-
metric eigenvalue bounds we show that the spectral gap for the max-degree chan is a factor
of min{m,n} times smaller than the spectral gap for the Metropolis chain. We have also
found (numerically) the spectral gap for the fastest mixing Markov chain. Figure 22 shows
a plot when m = 10 and n varies from 2 to 20. Figure 23 shows a plot when n = 10 and m
varies from 2 to 20. In the cases we tried, the Metropolis and optimal chains were virtually
identical.

Our numerical experiments show that the eigenvalues, as categorized in Corollary 2.1,
are all distinct (as opposed to the unweighted case where there is a coalescence), and the
second largest eigenvalue has multiplicity m− 1.

6.1 The max-degree chain

Proposition 6.1. For m ≥ 2 and odd n ≥ 3, on the flower graph Fmn, the max-degree chain
K1 of (6.1) has second absolute eigenvalue µ satisfying

1− c1
mn2

≤ µ(K1) ≤ 1− c′1
mn2

for universal constants c1 and c
′
1.

Proof. Suppose throughout that n ≥ 3 is odd; the argument for even n is similar. As shown
in section three, for any symmetric weights, all the eigenvalues appear in the orbit chain for
the subgroup H = Sm−1 nCm−1

2 . This is the random walk on the weighted “lollipop” graph
shown in Figure 24. The vertices of the n-cycle are labeled 0, 1, 2, . . . , n − 1. The vertices
of the “stem” are labeled −1,−2, . . . ,−n−1

2
, from right to left. Let |V | = m(n − 1) + 1

be the number of vertices in the original graph Fmn. Then the orbit chain has stationary
distribution

πH(0) = πH(i) =
1

|V | , 1 ≤ i ≤ n− 1,

πH(i) =
2(m− 1)

|V | , −n−1
2
≤ i ≤ −1.
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Figure 22: Mixing time 1/(1− µ) on Fmn: m = 10, n varies from 2 to 20.
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Figure 23: Mixing time 1/(1− µ) on Fmn: n = 10, m varies from 2 to 20.

28



PSfrag replacements

0

1

1

1

1

1

1

1

M
M

M M M

M
M

M

M

M2M2

M(M+ 1)

Figure 24: Orbit chain for max-degree weights on Fmn; M = 2(m− 1).

The transition matrix for the orbit chain is

KH(0, 1) = KH(0, n− 1) =
1

2m
, KH(0,−1) = 1− 1

m
,

KH(i, i± 1) =
1

2m
, KH(i, i) = 1− 1

m
, i 6= 0,−n−1

2
,

KH

(
−n−1

2
,−n−1

2
+ 1
)
=

1

2m
, KH

(
−n−1

2
,−n−1

2

)
= 1− 1

2m
.

We use path arguments with Poincaré inequalities to bound the second eigenvalue λ2 from
above. See [Bré99] for a textbook treatment; we follow the original treatment in [DS91]. For
each pair of vertices, v 6= v′, there is a unique shortest path v = v0, v1, . . . , vh = v′ with
(vi, vi+1) an edge. Loops are never used. Call this path γv,v′ with |γv,v′ | = h. The basic
Poincaré inequality says that the second eigenvalue from the top, λ2, is bounded above by

λ2 ≤ 1− 1

A
, A = max

e

1

QH(e)

∑

γ
vv′
3e

|γvv′ |πH(v)πH(v′), (6.3)

with the maximum over edges e = (y, z), QH(e) = πH(y)KH(y, z). The sum is over paths
γv,v′ containing e.

We consider two cases: edges inside the stem, and edges within the cycle.

• Edges inside the stem: e = (i, i+ 1), −n−1
2
≤ i ≤ −1. Here QH(e) =

2(m−1)
|V |

1
2m

. Paths

using e start at a vertex v to the left of i (at most n choices) and wind up at one of the

points to the right of i+1, say v′. If this point is in the stem, πH(v)πH(v
′) = 4(m−1)2

|V |2
. If

the rightmost point v′ is in the cycle, πH(v)πH(v
′) = 2(m−1)

|V |2
, and the number of choices

for the rightmost point is at most n. Bound |γv,v′ | ≤ n and the number of paths by
n2, the sum 1

QH(e)

∑
γ

vv′
3e |γvv′ |πH(v)πH(v′) is bounded above by

(
2(m− 1)

2m|V |

)−1(
nn24(m− 1)2

|V |2 + nn22(m− 1)

|V |2
)

=
mn3

|V | (4(m− 1) + 2) ≤ 8mn2,

where the last inequality used 4(m − 1) + 2 ≤ 4m, 1
|V |
≤ 2

mn
. The edge (i + 1, i) is

exactly the same.
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• Edges in the cycle: e = (i, i + 1), 0 ≤ i ≤ n − 1. Here QH(e) =
1
|V |

1
2m

. Paths using e

may start in the stem (at most n choices) and wind up in the cycle (at most n choices)

with πH(v)πH(v
′) = 2(m−1)

|V |2
; or, they may start in the cycle (at most n choices) and

wind up in the cycle (at most n choices) with πH(v)πH(v
′) = 1

|V |2
. Finally, they may

start in the cycle (at most n choices) and wind up in the stem (at most n choices) with

πH(v)πH(v
′) = 2(m−1)

|V |2
. Again bounding |γv,v′ | ≤ n yields

(
1

2m|V |

)−1(
n32(m− 1)

|V |2 + n3 1

|V |2 + n32(m− 1)

|V |2
)
≤ 12mn2.

Combining the bounds, we see λ2 ≤ 1− 1
12mn2 .

For a lower bound on the smallest eigenvalue λmin, use Proposition 2 of [DS91]. This
requires, for each vertex v, a path σv of odd length from v to v. Here loops are allowed. For
all vertices but 0, choose the loop at v. At 0, choose the path σ0 as 0 → −1 → −1 → 0.
The bound is

λmin ≥ −1 + 2/ι, ι = max
e

1

QH(e)

∑

σv3e

|σv|πH(v).

Bound |σv| ≤ 3. The maximum occurs at the edge (0,−1) and ι ≤ 5m. This gives λmin ≥
−1 + 2

5m
so that µ(K1) ≤ 1− 1

12mn2 as stated (c1 = 1
12
).

To prove the lower bound in Proposition 6.1, we use the variational characterization

1− λ2 = inf
f

E(f |f)
Var(f)

, (6.4)

where

E(f |f) =
1

2

∑

x,y

(f(x)− f(y))2πH(x)KH(x, y),

Var(f) =
1

2

∑

x,y

(f(x)− f(y))2πH(x)πH(y).

(See, e.g., [Bré99].) Thus, for any nonzero test function f0, λ2 ≥ 1 − E(f0|f0)/Var(f0).
Choose f0 to vanish on the stem, and on the cycle define

f0(j) =





j, 0 ≤ j ≤ n−1
4

n−1
2
− j, n−1

4
< j ≤ n−1

2

−f0(n− j), −n+1
2
≤ j ≤ n− 1.

Then, under πH , f0 has mean zero, Var(f0) asympotic to 1
|V |
Bn3, and E(f0|f0) asymptotic to

B′ n
m|V |

, for computible constantsB andB ′. Thus, for explicit constant c′1, E(f0|f0)/Var(f0) ≤
c′
1

mn2 . This proves the lower bound and so completes the proof of Proposition 6.1.
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Figure 25: Orbit chain for Metropolis weights on Fmn; M = 2(m− 1).

6.2 The Metropolis chain

Proposition 6.2. For m ≥ 2 and odd n ≥ 3, on the flower graph Fmn, the Metropolis chain
K2 of (6.2) has second absolute eigenvalue µ satisfying

1− c2
(m+ n)

mn2
≤ µ(K2) ≤ 1− c′2

1

(m+ n)n
(6.5)

with c2, c
′
2 universal constants.

Proof. As for Proposition 6.1 above, all the eigenvalues of K2 appear in the orbit chain
for the subgroup H = Sm−1 n Cm−1

2 . This is the random walk on the weighted “lollipop”
graph shown in Figure 25. The vertices of are labeled 0, 1, 2, . . . , n − 1 on the n-cycle, and
−1,−2, . . . ,−n−1

2
on the “stem” from right to left. As in §6.1, let |V | = m(n− 1) + 1. The

stationary distribution is

πH(0) = πH(i) =
1

|V | , 1 ≤ i ≤ n− 1,

πH(i) =
2(m− 1)

|V | , −n−1
2
≤ i ≤ −1.

The transition matrix for the orbit chain is

KH(0, 1) = KH(0, n− 1) =
1

2m
, KH(0,−1) = 1− 1

m
,

KH(1, 0) = K(n− 1, 0) = KH(−1, 0) =
1

2m
,

KH(1, 1) = K(n− 1, n− 1) = KH(−1,−1) =
1

2
− 1

2m
,

KH(i, i+ 1) = KH(i+ 1, i) =
1

2
, i 6= −1, 0, n− 1,

KH

(
−n−1

2
,−n−1

2

)
=

1

2
.

Again, there is a unique shortest path γv,v′ between any two vertices v to v′. Using the
Poincaré inequality (6.3) for λ2 on the Metropolis chain yields an upper bound 1− c

mn2 for
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some constant c. This has the same order as the maximum-degree chain and is unsatisfactory.
Instead, we use another form of Poincaré inequality derived in Proposition 1 of [DS91]:

λ2 ≤ 1− 1

κ
, κ = max

e

∑

γ
vv′
3e

|γvv′ |QH
πH(v)πH(v

′)

where
|γvv′ |QH

=
∑

e∈γ
vv′

QH(e)
−1.

First we bound |γvv′ |QH
for all possible paths. There are three cases:

• Paths in the stem: −n−1
2
≤ v, v′ ≤ −1. Edges in such paths have QH(e) = 2(m−1)

|V |
1
2
,

and we bound the number of edges in a path by n. Therefore

|γvv′ |QH
≤ n

(
2(m− 1)

|V |
1

2

)−1

=
n|V |
m− 1

,
∣∣γ(−)

∣∣ .

• Paths in the cycle: 0 ≤ v, v′ ≤ n−1. The two edges incident to 0 have QH(e) =
1
|V |

1
2m

,

and other edges have QH(e) =
1
|V |

1
2
.

|γvv′ |QH
≤ 2

(
1

|V |
1

2m

)−1

+ n

(
1

|V |
1

2

)−1

= (4m+ 2n)|V | ,
∣∣γ(+)

∣∣ .

• Paths across the center: −n−1
2
≤ v ≤ −1 and 0 ≤ v′ ≤ n − 1. The edge (−1, 0) has

QH(e) =
2(m−1)
|V |

1
2m

. Contribution from other edges are bounded by |γ(−)| and |γ(+)|.

|γvv′ |QH
≤
∣∣γ(−)

∣∣+
∣∣γ(+)

∣∣+
(
2(m− 1)

2m|V |

)−1

≤ (5m+ 3n)|V | ,
∣∣γ(±)

∣∣ .

Now we bound the quantities κ(e) ,
∑

γ
vv′
3e |γvv′ |QH

πH(v)πH(v
′) for all the edges. There

are three cases:

• Edges in the stem e = (i, i + 1), −n−1
2
≤ i ≤ −2. Paths using e start at a vertex v

to the left of i, and wind up at a vertex v′ to the right of i + 1. If v′ is in the stem,

πH(v)πH(v
′) = 4(m−1)2

|V |2
and |γvv′ |QH

≤ |γ(−)|; If v′ is in the cycle, πH(v)πH(v
′) = 2(m−1)

|V |2

and |γvv′ |QH
≤ |γ(±)|. We bound the number of paths containing e by n2 in either case.

κ(e) ≤ n2
∣∣γ(−)

∣∣ 4(m− 1)2

|V |2 + n2
∣∣γ(±)

∣∣ 2(m− 1)

|V |2 ≤ 20(m+ n)n.

• The edge (−1, 0). Paths using e start in the stem and end in the cycle, so πH(v)πH(v
′) =

2(m−1)
|V |2

and |γvv′ |QH
≤ |γ(±)|. We bound the number of paths containing e by n2.

κ(e) ≤ n2
∣∣γ(±)

∣∣ 2(m− 1)

|V |2 ≤ (20m+ 12n)n.
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• Edges in the cycle e = (i, i + 1), 0 ≤ i ≤ n − 1. Paths using e may start in the stem
and end in the cycle (analysis is same as previous case), or start in the cycle and end
in the cycle. In the second case, πH(v)πH(v

′) = 1
|V |2

and |γvv′ |QH
≤ |γ(+)|.

κ(e) ≤ n2
∣∣γ(±)

∣∣ 2(m− 1)

|V |2 + n2
∣∣γ(+)

∣∣ 1

|V |2 ≤ 20(m+ n)n.

All the κ(e) are bounded above by 20(m+n)n. This shows λ2 ≤ 1− 1
20(m+n)n

(here c2 = 1
20
).

Again, paths of odd length can be used to show µ = λ2.
To prove the lower bound, use the variational characterization (6.4) and the following

test function f0. Choose f0 to be zero on the stem and the center 0. On the cycle, define
f0(j) = j− n

2
for 1 ≤ j ≤ n− 1. Then, under πH , f0 has mean zero and variance asymptotic

to 1
|V |
Bn3 for a computible constant B. Next

E(f0|f0) = 2
(
0−

(
1− n

2

))2 1

|V |
1

2m
+ (n− 2)12 1

|V |
1

2
,

where the first term comes from the two edges incident to the center 0, and the second term
comes from the rest n−2 edges. It can be seen that E(f0|f0) has asymptotic order of (m+n)n

m|V |
.

Thus, for some explicit constant c′2, E(f0|f0)/Var(f0) ≤ c′2
m+n
mn2 , and this gives the claimed

lower bound on λ2.

Remark. Form = O(n), the upper and lower bounds have the same order, µ(K2) ∼ 1− c3
n2 .

For m = o(n), 1 − c4
mn
≤ µ ≤ 1 − c′

4

n2 . For n = o(m), 1 − c5
n2 ≤ µ ≤ 1 − c′

5

mn
. Here ci, c

′
i are

computable universal constants. Compared with Proposition 6.1, the spectral gap for the
Metropolis chan is a factor of min{m,n} times larger than the spectral gap for the max-
degree chain.
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