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Abstract

‘We present minimax and stochastic formulations of some linear
approximation problems with uncertain data in R" equipped
with the Euclidean (I2), Absolute-sum (/1) or Chebyshev (I)
norms. We then show that these problems can be solved us-
ing convex optimization. Our results parallel and extend the
work of El-Ghaoui and Lebret on robust least squares [3], and
the work of Ben-Tal and Nemirovski on robust conic convex
optimization problems [1]. The theory presented here is useful
for desensitizing solutions to ill-contitioned problems, or for
computing solutions that guarantee a certain performance in
the presence of uncertainty in the data.

1 Introduction

Consider the problem of finding a solution z to the system
Az ~ b, where the coefficient matrices A € R™*" and b € R™
are uncertain. Over the past several decades, the sensitivity
of the solution z to perturbations in A or b has received much
attention. Yet it is only recently that algorithms have been
developed that explicitly use specific information about the
perturbations to desensitize the solution. These include total
least squares (TLS) [4], and more recently, robust least squares
(RLS) [3] and robust convex optimization [1, 6].

In this paper we present minimax and stochastic formula-
tions of linear approximation problems with uncertain data in
R" equipped with the Euclidean, Absolute-sum, or Chebyshev
norms. We then show that these problem can all be reduced
to convex optimization problems which can be solved very ef-
ficiently using interior point methods. Our results parallel and
extend the work in [3] on l; norms to the /; and /o norms,
and the work in [1, 6] to more general conic problems.

The engineering applications of robust approximation us-
ing the three norms above include desensitizing ill-conditioned
problems; system identification in the presence of norm
bounded noise [3], robust interpolation [3], steering of charged
particle beams [9], and signal processing [2]. Due to space
limitations, these will not be discussed here in detail.
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2 Problem Formulation

We model the uncertainty in the coefficient matrices as [A b]+
[AA Ab], where A and b are the problem data matrices and
[AA Ab] are the perturbations. Note that it is easy to special-
ize the results here to the case where the uncertainty is only
in A or in b.

In addition to standard notation in the literature, we will
use the following: If z; and x2 are column vectors in R™! and
R™? respectively, then (z1,z2) denotes the column vector in
R™ "2 formed by the concatenation of x; and z». Also if
is a column vector in R", then sgn(z) is the column vector
in R" whose components are the signs of the corresponding
components of x.

2.1

If the perturbations [AA Ab] are known to lie in some subset
Q of R™*(+1)  then following [1, 3], we may define the worst
case perturbation function as

Minimax Formulation

>

e(z) max

AE A+ A= b+ AD, ()

where 1 < p < co. This function measures the norm of the
worst case residual over the set of all possible coefficient ma-
trices in 2, for a given x. We may now state the following
minimax formulation of the uncertain data linear approxima-
tion problem:

min max

z [AA Ab]eﬂl|(A+AA)x_ (b+ Ab)|lp- (2)

We note that € is clearly a convex function of z, since it
is the max of a parametrized set of convex functions in x. In
some cases [1, 3], the evaluation of & may not be a tractable
problem, since it requires the computation of the maximum of
a convex function. However, we will show that for the case of
the Euclidean, Absolute-sum and the Chebyshev norms; the
problem can be solved efficiently for some useful choices of 2.

In particular, we will focus on two particular choices of €.
Suppose very little is known about the structure of the per-
turbations, and all we want to do is desensitize the solution.
Then we may model the perturbations as a norm bounded and
unstructured. One would then set € to be:

U={[AAA]| [[[AAAY], < p}

where p > 0 is a measure of the degree of the uncertainty.
Using this in definitions (1) and (2) gives the corresponding



unstructured worst case perturbation function €., and un-
structured worst case uncertain approximation problem.

If there is some structure to the perturbations, e.g. if A is
sparse or Toeplitz, then solving (2) with Q@ = U can give a
conservative solution. In this case one might chose to model
the perturbations as structured and norm bounded. Then one
would set €2 to be:

L L
S={[AAAY | AA =) Aidi, Ab= bi s, [16]l» < p}

i=1 i=1

where A; € R™*" and b; € R™ are given fixed matrices, and
Ao = Aand by = b. Using S in definitions (1) and (2) gives the
corresponding structured worst case perturbation function e,
and structured worst case uncertain approximation problem.

2.2 Stochastic Formulation

When [AA Ab] are random variables with known statistics,
then it may be more appropriate to minimize the unstructured
stochastic residual function:

cus(z) EB|(A+ AA)z — (b+ Ab)||2 (3)

where E denotes the expectation, which is taken with respect
to the perturbations [A A Ab]. This leads to the following (un-
structured) stochastic uncertain data approximation problem:

minE [[(4 + Ad)z — (b+ Ab)|. (4)

This stochastic formulation also admits a structured ver-
sion. Let A; € R™*" and b; € R™ be given fixed matrices,
as above. Let 6 be a random vector with known statistics.
Then the structured versions of the perturbation function and
associated minimization problem are given by:

L L
eas(z) 2B (Ao + Y Aidi)z — (bo+ Y b 6:)I5
i=1 i=1

L L
mzinEH(AOﬂLZAﬂSi)ﬂC—(b0+Zbi5i)||§, (5)

i=1 i=1

where the expectation is now taken with respect to 4.

The functions €,s and €55 are both convex in z, since both
are the positively weighted integral of a parametrized set of
convex functions [8]. Once again, the evaluation of these func-
tions may not be a simple matter. For example, we do not
know how to evaluate (3) for the Absolute-sum and Cheby-
shev cases. In the Euclidean case however, we will show that
both functions take on the form of a convex quadratic function
which can be efficiently minimized.

3 The Euclidean Case

The minimax formulation of the uncertain data linear approx-
imation problem for the /5> case has been solved by El-Ghaoui
and Lebret [3]. We simply restate their results here for com-
parison and for completeness. The results on the stochastic l2
formulation, though quite straight forward, seem new.

3.1 Solving the Minimax Formulation
Specifying Q@ = U with p = 2 in (1), we obtain the unstructured
perturbation function:

eu2(x) =

= A+AA)z— (b+Ab)ll. (6
i )z — ( M- (6)

In this case the relevant results from [3] can be summarized in
the following theorem:

Theorem 1 The unstructured worst-case perturbation func-
tion €42 can be computed as

uz(z) = [[Az = bll2 + pl| (z, =1)]]2. (7

The solution to the unstructured uncertain data approzima-
tion problem can be obtained by solving the following convex
optimization problem:

min{[| Az —bll2 + pl|(z, —=1)[|2}, (8)

which can be solved efficiently as a second order cone program

(SOCP) [6].

Remark 1 The equation (8) in the theorem has the form of
a multi-objective optimization problem, and shows the direct
trade off between accuracy and robustness: the robustness
requirement adds a term to the cost which penalizes large so-
lutions.

Specifying Q = § with p = 2 in (1) yields the structured
perturbation function:

€s2(x) = max

3
[18ll2<p

2

L L
(Ao =+ Z A,’(S,’):E — (bo + Z b,’&,’)
i=1 i=1

which can be written as:

exa(@) = max [IF3 gl (9)

F(.’E):[(A1.’t—b1)...(AL.’I?—bL)], g(.’t)z—(Aoiﬂ—bo).

(When z is fixed, we will sometimes drop the arguments of F'
and g.)

Theorem 2 For a fized z, esg(m)2 can be computed by solv-
ing the following semi-definite program (SDP) [8] in the two
variables A and T:

X—pir—r pT >0
3

I -Q| —

minimize A subject to
where Q = FTF, p = FTg, r = ¢Tg and F and g are as
in (9). The solution to the structured uncertain data linear

approzimation can be obtained by solving the following SDP in
(A, 7 ):

A—p’t 0 —g(z)"
minimize A subject to 0 I F@)T|>0
—g(z) F(z) I

Remark 2 Both Theorems 1 and 2 can be obtained as special
cases of the general theory presented in [1] on uncertain second
order conic problems with ellipsoidal uncertainty.



3.2 Solving the Stochastic Formulation
Let us assume that the perturbations are all random and zero
mean, and that their covariances are known. Then we may
compute the stochastic unstructured perturbation function as
follows:
esu(a) = B|(A+ Ad)z — (b+ Ab)|5
=E|[(Az —b) +[AAAb)(z, D)3
= || Az —b|3 + E[[AA Ab)(z, ~1)]13
The second term can be written as:
E|[|[AA Ab(z, ~D)[l} = B (2,~1)[AA AKT[AA Ab(z, 1)
= (z,—1)T (E[AA AT [AAAB]) (2, —1).

The matrix E[AAAb)T[AA Ab] is simply the covariance ma-
trix of the transposed perturbations [AA Ab]”. Hence we have
the following result:

Theorem 3 Assume that the perturbations [AA Ab] are ran-
dom and zero mean. Let R = E[AAAbT[AAAD] denote
the covariance matriz of the (transposed) perturbations. Then
the stochastic unstructured perturbation function is a quadratic
function in x

eus() = | Az —b])3 + (z,-1)" R (2, -1).

The solution to the stochastic unstructured uncertain linear
approzimation problem can be obtained by solving:

min{||Az — b3 + (#,~1)" R (z, ~1)} (10)

which is a convex quadratic optimization problem.

In a similar manner, one can show the following result for
the structured case:

Theorem 4 Let § be a zero mean random vector with covari-
ance matriz Rs. Let a{,,. denote the ith row of the matriz Ay,
and by,; the ith component of vector by,. Let A;f =la1,i...aL,)
and bf =[b1;...br;]. Then the stochastic structured pertur-
bation function is a quadratic function in x

eus(2) = | Aoz — bol3 + (2, ~1)"S (z, -1)

_ . \T oL
where S = (EiL:I[A,' b,]) R; (Zf:j [4; bj]). Hence the solu-
tion to the stochastic structured uncertain approrimation prob-

lem can be obtained by solving:

min{|| 4o z — boll3 + (z,—1)"S (z, ~1)} (11)

which 1s a convexr quadratic optimization problem.

Remark 3 Equations (10) and (11) again show a direct trade
off between accuracy and uncertainty in the coefficients.

4 The Absolute Sum Case

We will now obtain some analogous results for the space
(R™,]| - |l1)- The corresponding norm induced on a matrix
A € R™*" is the “max-col-sum” norm:

AlhqL = A = ij- 12
[All: = max [[Az|: j:rrllfian;IaJI (12)

[lzll1<1

ey

Solving approximation problems in the /;-norm may be prefer-

able to the lo>-norm, when it is suspected that the data may
contain large “outliers”, since the /;-norm does not put rela-
tively more weight on large errors than on small ones.

4.1 Solving the Minimax Formulation
Specifying Q = and p =1 in (1) we obtain:

€u(z) (A +Ad)z — (b+ Ab)|ls-

= max

[I[AA Ab]ll1<p
It follows from the triangle inequality and (12) that for any
[AAAD] in U:

[(A+Ad)z — (b + Ab)|[s < [[Az = blls + pl[(z, =Dl1. (13)

The (nonunique) worst case perturbation can now easily be
found: it is the perturbation for which equality holds. Let u
be any unit 1-norm vector. Then

p ﬁsgn((w, —1)T ifAz—b#£0

[AA Ablye = { i
pu (sga(z, ~1))

; otherwise.

Thus we conclude that:

Theorem 5 The unstructured worst case perturbation func-
tion can be computed as

€u1(x) = ||[Az = blls + pl|(z, =1)Ilx (14)

Therefore, the unstructured uncertain approzimation problem
can be solved as:

min{|lAz — bl + pll(z, =1)[11},

which is a convex optimization problem that can be solved using
linear programming or other specialized algorithms.

This result is identical to that obtained for the Euclidean
norm, and again exhibits the direct trade off between accu-
racy and robustness.

Specifying 2 = § yields the corresponding structured per-
turbation function:

€s1(x) = max

bl
1611 <p

1

L L
(Ao —+ Z Aidi)w — (bo + Z bidi)
i=1 i=1

which we can write as

&s1(x) = max ||[Fé—glh (15)

18111 <p
with F' and g defined as in (9).
In order to compute €51 and the associated worst case per-
turbation we will make use of the following lemma:

Lemma 1 Let F € R™*" and g € R™. Let f; be the columns
of [F — F]. Then

max ||F'd—glh = (o fis gl -

15112 <p =js-s2L
A mazimizing §* is given by

x
0" =apej,,

, +1 31<5<L
jo=arg_max_|(pfi—g)li, o=
j=1,...,2L

-1 ;p<j<2L’



Proof: First we note that

max ||Fd — = ma Fé— ,
max [IF5 =gl = max [pF3 =gl

which is the maximization of a real valued convex function over
a compact convex set. Therefore the maximum is attained at
an extreme point of the set [7]. The set of extreme points of
the set {5 |||6|l1 <1} is € = {%e1,... ,%er} where e; are the
columns of identity in RY. Hence

max [lp 6~ glls = max||p F3 - gl
18111 <1

=, max o f; —gllr.
The last expression is maximized by § = 6*. W
Applying the Lemma to (15) gives:
si(x) = max |lpfj(z) —g(@)lh
j=1 L
Using this expression and the definitions of f; and g, we obtain
the following result:

Theorem 6 The structured worst case perturbation function
can be computed as

eai(2) = max 14; z = bjllx (16)
(Ao — pA;) (bo — pbj)] ;p<j<2L.

Thus structured uncertain linear approrimation problem can
be solved as:

min max ||4; z — bj||1

r j 2L

o (17)

Once again, this is a conver optimization problem in x which
could be solved as an LP or using other specialized methods

[8].
5 The Chebyshev Case

We will now obtain similar results for the space (R", || - || )-
The corresponding norm induced on a matrix A € R™*" is
the “max-row-sum” norm:
n
~max g |aij].
||zl 0o i=1,...,m —
Jj=1

1Allo = max [[Az]loc = (18)

Solving approximation problems in the l.-norm may be
preferable to the l2-norm, when the perturbations are inde-
pendent, ie, we have the constraint ||§||c < p, rather than the
constraint ||d|]2 < p which inherently couples the perturba-
tions. In this case, the Euclidean formulation would minimize
only an upper bound on the worst case residual, in general [3].

5.1 Solving the Minimax Formulation
Taking Q = U and p = oo in (1), € becomes:

maXx

A+ AA) — (b+ Ab)lo-
H[AAAb]Hoo<P”( Jo = i

Euco(T) =

It follows from the triangle inequality and definition 18 that
for any [AAAb] in U:

1A+ Ad)z — (b + Ab)]|oo < [ 4z = bloc + pll @, ~1) |-
(19)

Now let Zang = (z,—1), io = argmaxi—1, . n+1|Zaug;| and
e; be the ith column of the identity matrix. Then we can
achieve equality in (19) with the following (nonunique) worst
case perturbation:
Az—b T .l _
[AA Ablye = {psgn(za"glo)w pif Az —b#0

T . .
peigei, ; otherwise.

Thus we conclude that:

Theorem 7 The unstructured worst case perturbation func-
tion can be computed as

€uco () = [|[Az — bllos + pll(z, =1l

Therefore, the unstructured uncertain approzimation problem

can be solved as:
min{[|Az —bllec + pll(2; 1)l },

which is a convex optimization problem which can be solved
using linear programming or other specialized algorithms.

(20)

Taking = § in (1) yields:

L L

AO+ZA6 T — bo+2b6

i=1 i=1

€xea () = o %p

o0

which we can write as

€sc0(T) = max ||F6 9lloo

lélloo ()

with F' and g as in (9).
In order to compute €500 and the associated worst case per-
turbation we will make use of the following lemma

Lemma 2 Let F € R™*F and g € R™. Let fI be the rows
of F, and g; be the components of g. Then

max [|F9 =gl = (o fis gi)ll1-

. a
116]] 0o i=1,...,m

A mazimizing §* is given by

8" = —psgn(gio) sgn(fio) where io = arg_max ||(p fi, gi)l1-
Proof: We first note that

dnax IF6 —gllo = = | nax lp F o= gllos,
which is again the maximization of a real valued convex func-
tion over a compact convex set. Therefore the maximum is
attained at an extreme point of the set [7]. The set of ex-
treme points, £, can be written as {6 # 0 | §; € {—1,1},i =
1,...,L}. Therefore:

nax lpFé— glloo=maXI|pF5 9lloo

=max max lp £ 8 — gil
S€e i 5

= max max|p f{ § — gil.
i=1,....m §e&



We complete the proof by noting that for each i, the inner
maximum over £ is ||p fill1 + |gs|, which is achieved by the
following choice of 4:

6 = —sgn(gi) sgn(fi).
| |

The 6* above can be used to compute a worst case pertur-
bation. Applying this lemma to (21) we have:

€soo(2) = max ||(p fi, gi)llr- (22)
Using the definitions of f; and g; given in (9) in (22), we obtain
the following result:

Theorem 8 The structured worst case perturbation function
can be computed as

€soo(T) = (23)

max ||AZ xr — 51‘”1,
m

.....

AT = [ao,, par,i -+ par] b} = [bo,i, pb1i-+ pbL.i],

where afﬂ- is the ith row of A, and by,; is the ith component
of br,. Thus structured uncertain approzimation problem can
be solved as:

min max ||A;z — b (24)
x i=1,....m

Once again, this is a conver optimization problem in x which

could be solved as an LP or using other specialized methods

[8]-
6 System Identification Example

Consider the following simple system identification problem.
Let H be a causal linear time invariant system, which obeys
the linear ordinary difference equation:

y(k) = —ary(k — 1) —--- — any(k —n)

+biu(k—1)+ -+ byu(k —n). (25)

We would like to compute an estimate of the system’s pa-
rameters (ai,...,an,b1,...,bn), in the presence of process
and sensor noises, w and v, by driving it with a known in-
put u sequence of length N and recording the output history
y=[Hx*(u+w)]+wv.

When the noises are white, there are several approaches for
solving this problem, see [5] for example. Now suppose that
all that is known about w and v is that they are independent
and bounded by p, and p,, respectively. Then one might try
the following approach: let z = (d1,...,dan, 31, b

,br) denoted
the parameter estimate and define
yk) =—arylk—1) —--- —any(k —n
(k) — (k—1) - ( ) (26)
+biu(k—1)+ -+ bpu(k — n).

Find an x which minimizes the worst case peak absolute error,
ly(k)—g(k)|, over all possible perturbations of u(k) and y(k) of
size p, and p,, respectively. This can be cast as a structured
robust Chebyshev approximation problem: Let

ith column of Inyny ;if 1 <i< N,
e; =
column of N zeros

; otherwise,

where Inxn is the N x N identity matrix. For any v € RN,
let Tw,n(v) be the N x n Toeplitz matrix generated by the

vector. Let ,4o and ¢ be the vectors whose components
are u(0),...,u(N—1), y(0),...,y(N—1), and y(1),...,y(N),
respectively. The desired estimate can now be computed by
solving (24) with the following data:

[Ao | bo] = [~Tnn (o) Tnn(i) | §1],

[Ai | b:] = {p“’ [ 0 Tnan(e)| 0 ]
Pv [_TN,n(ei,N) 0 | ei—Nfl]

;1<i<N,
i N<i<2N+1

Remark 4 Traditionally, such problems are solved using pre-
diction error methods and pseudo-linear regressions, which
lead to non-convex optimization problems which are mini-
mized using algorithms that might converge to a local mini-
mum. In contrast, the robust approximation formulation leads
to a convex optimization problem which is guaranteed to have
a global minimum, that can be computed efficiently. Of course,
convexity comes at the price of a tradeoff in accuracy and com-
putational burden.

7 Conclusion

In this paper we have shown that robust linear approximation
problems in R" equipped with the l1, l2, and lo norms can all
be reduced to convex optimization problems, and hence can be
solved efficiently in polynomial time [8]. The theory presented
here is useful for desensitizing solutions to ill-contitioned prob-
lems, or for computing solutions that guarantee a certain per-
formance in the presence of uncertainty in the data.
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