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ABSTRACT

We point out some connections between applications of semide�nite programming in

control and in combinatorial optimization. In both �elds semide�nite programs arise

as convex relaxations of NP-hard quadratic optimization problems. We also show that

these relaxations are readily extended to optimization problems over bilinear matrix

inequalities.

1 SEMIDEFINITE PROGRAMMING

In a semide�nite program (SDP) we minimize a linear function of a variable
x 2 Rm subject to a matrix inequality:

minimize cTx

subject to F (x) � 0
(1.1)

where

F (x)
�
= F0 +

mX
i=1

xiFi:
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The problem data are the vector c 2 R
m and m + 1 symmetric matrices

F0; : : : ; Fm 2 Rn�n. The inequality sign in F (x) � 0 means that F (x) is
positive semide�nite, i.e., zTF (x)z � 0 for all z 2 Rn. We call the inequality
F (x) � 0 a linear matrix inequality (LMI).

Semide�nite programs can be regarded as an extension of linear programming
where the componentwise inequalities between vectors are replaced by matrix
inequalities, or, equivalently, the �rst orthant is replaced by the cone of posi-
tive semide�nite matrices. Semide�nite programming uni�es several standard
problems (e.g., linear and quadratic programming), and �nds many applica-
tions in engineering and combinatorial optimization (see [Ali95], [BEFB94],
[VB96]). Although semide�nite programs are much more general than linear
programs, they are not much harder to solve. Most interior-point methods for
linear programming have been generalized to semide�nite programs. As in lin-
ear programming, these methods have polynomial worst-case complexity, and
perform very well in practice.

2 SEMIDEFINITE PROGRAMMING AND

COMBINATORIAL OPTIMIZATION

Semide�nite programs play a very useful role in non-convex or combinatorial
optimization. Consider, for example, the quadratic optimization problem

minimize f0(x)
subject to fi(x) � 0; i = 1; : : : ; L

(1.2)

where fi(x) = xTAix + 2bTi x + ci, i = 0; 1; : : : ; L. The matrices Ai can be
inde�nite, and therefore problem (1.2) is a very hard, non-convex optimization
problem. For example, it includes all optimization problems with polynomial
objective function and polynomial constraints (see [NN94, x6.4.4], [Sho87]).

For practical purposes, e.g., in branch-and-bound algorithms, it is important to
have good and cheaply computable lower bounds on the optimal value of (1.2).
Shor and others have proposed to compute such lower bounds by solving the
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semide�nite program (with variables t and �i)

maximize t

subject to

�
A0 b0
bT0 c0 � t

�
+ �1

�
A1 b1
bT1 c1

�
+ � � �+ �L

�
AL bL
bTL cL

�
� 0

�i � 0; i = 1; : : : ; L:
(1.3)

One can easily verify that this semide�nite programyields lower bounds for (1.2).
Suppose x satis�es the constraints in the nonconvex problem (1.2), i.e.,

fi(x) =

�
x

1

�T �
Ai bi
bTi ci

��
x

1

�
� 0

for i = 1; : : : ; L, and t, �1, . . . , �L satisfy the constraints in the semide�nite
program (1.3). Then

0 �

�
x

1

�T ��
A0 b0
bT0 c0 � t

�
+ �1

�
A1 b1
bT1 c1

�
+ � � �+ �L

�
AL bL
bTL cL

���
x

1

�

= f0(x)� t+ �1f1(x) + � � �+ �LfL(x)

� f0(x)� t:

Therefore t � f0(x) for every feasible x in (1.2), as desired. Problem (1.3) can
also be derived via Lagrangian duality; for a deeper discussion, see Shor [Sho87],
or Poljak, Rendl, and Wolkowicz [PRW94].

Most semide�nite relaxations of NP-hard combinatorial problems seem to be
related to the semide�nite program (1.3), or the related one,

minimize TrXA0 + 2bT0 x+ c0

subject to TrXAi + 2bTi x+ ci � 0; i = 1; : : : ; L�
X x

xT 1

�
� 0;

(1.4)

where the variables are X = XT 2 Rk�k and x 2 Rk. It can be shown
that (1.4) is the semide�nite programming dual of Shor's relaxation (1.3); the
two problems (1.3) and (1.4) yield the same bound.

Note that the constraint �
X x

xT 1

�
� 0 (1.5)
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is equivalent to X � xxT . The semide�nite program (1.4) can therefore be
directly interpreted as a relaxation of the original problem (1.2), which can be
written as

minimize TrXA0 + 2bT
0
x+ c0

subject to TrXAi + 2bTi x+ ci � 0; i = 1; : : : ; L

X = xxT :

(1.6)

The only di�erence between (1.6) and (1.4) is the replacement of the (non-
convex) constraint X = xxT with the convex relaxation X � xxT . It is also
interesting to note that the relaxation (1.4) becomes the original problem (1.6)
if we add the (nonconvex) constraint that the matrix on the left hand side
of (1.5) is rank one.

As an example, consider the (�1; 1)-quadratic program

minimize xTAx+ 2bTx
subject to x2i = 1; i = 1; : : : ; k;

(1.7)

which is NP-hard. The constraint xi 2 f�1; 1g can be written as the quadratic
equality constraint x2i = 1, or, equivalently, as two quadratic inequalities x2i � 1
and x2i � 1. Applying (1.4) we �nd that the semide�nite program in X = XT

and x
minimize TrXA + 2bTx

subject to Xii = 1; i = 1; : : : ; k�
X x

xT 1

�
� 0

(1.8)

yields a lower bound for (1.7). In a recent paper on the MAX-CUT problem,
which is a speci�c case of (1.7) where b = 0 and the diagonal of A is zero,
Goemans and Williamson have proved that the lower bound from (1.8) is at
most 14% suboptimal (see [GW94] and [GW95]). This is much better than any
previously known bound. Similar strong results on semide�nite programming
relaxations of NP-hard problems have been obtained by Karger, Motwani, and
Sudan [KMS94].

The usefulness of semide�nite programming in combinatorial optimization was
recognized more than twenty years ago (see, e.g., Donath and Ho�man [DH73]).
Many people seem to have developed similar ideas independently. We should
however stress the importance of the work by Gr�otschel, Lov�asz, and Schrij-
ver [GLS88, Chapter 9], [LS91] who have demonstrated the power of semidef-
inite relaxations on some very hard combinatorial problems. The recent de-
velopment of e�cient interior-point methods has turned these techniques into



Semide�nite programming relaxations 5

powerful practical tools; see Alizadeh [Ali92b, Ali91, Ali92a], Kamath and Kar-
markar [KK92, KK93], Helmberg, Rendl, Vanderbei and Wolkowicz [HRVW94].

For a more detailed survey of semide�nite programming in combinatorial opti-
mization, we refer the reader to the recent paper by Alizadeh [Ali95].

3 SEMIDEFINITE PROGRAMMING AND

CONTROL THEORY

Semide�nite programming problems arise frequently in control and system
theory; Boyd, El Ghaoui, Feron and Balakrishnan catalog many examples
in [BEFB94]. We will describe one simple example here.

Consider the di�erential inclusion

dx

dt
= Ax(t)+Bu(t); y(t) = Cx(t); jui(t)j � jyi(t)j; i = 1; : : : ; p (1.9)

where x(t) 2 Rl, u(t) 2 Rp, and y(t) 2 Rp. In the terminology of control
theory, this is described as a linear system with uncertain, time-varying, unity-
bounded, diagonal feedback.

We seek an invariant ellipsoid, i.e., an ellipsoid E such that for any x and u

that satisfy (1.9), x(T ) 2 E implies x(t) 2 E for all t � T . The existence
of such an ellipsoid implies, for example, that all solutions of the di�erential
inclusion (1.9) are bounded.

The ellipsoid E = fx j xTPx � 1g, where P = PT > 0, is invariant if and
only if the function V (t) = x(t)TPx(t) is nonincreasing for any x and u that
satisfy (1.9). In this case we say that V is a quadratic Lyapunov function that
proves stability of the di�erential inclusion (1.9).

We can express the derivative of V as a quadratic form in x(t) and u(t):

d

dt
V (x(t)) =

�
x(t)
u(t)

�T �
ATP + PA PB

BTP 0

��
x(t)
u(t)

�
: (1.10)

We can express the conditions jui(t)j � jyi(t)j as the quadratic inequalities

u2i (t) � y2i (t) =

�
x(t)
u(t)

�T �
�cTi ci 0
0 Eii

� �
x(t)
u(t)

�
� 0; i = 1; : : : ; p;

(1.11)
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where ci is the ith row of C, and Eii is the matrix with all entries zero except
the ii entry, which is 1.

Putting it all together we �nd that E is invariant if and only if (1.10) holds
whenever (1.11) holds. Thus the condition is that one quadratic inequality
should hold whenever some other quadratic inequalities hold, i.e.:

for all z 2 Rl+p; zTTiz � 0; i = 1; : : : ; p =) zTT0z � 0 (1.12)

where

T0 =

�
ATP + PA PB

BTP 0

�
; Ti =

�
�cTi ci 0
0 Eii

�
; i = 1; : : : ; p:

In the general case, simply verifying that (1.12) holds for a given P is very
di�cult. But an obvious su�cient condition is

there exist �1 � 0; : : : ; �p � 0 such that T0 � �iT1 + � � �+ �pTp: (1.13)

Replacing the condition (1.12) with the stronger condition (1.13) is called the
S-procedure in the Soviet literature on control theory, and dates back at least
to 1944 (see [BEFB94, p.33], [FY79], [LP44]). Note the similarity between
Shor's bound (see (1.2) and (1.3)) and the S-procedure ((1.12) and (1.13)).
Indeed Shor's bound is readily derived from the S-procedure, and vice versa.

Returning to our example, we apply the S-procedure to obtain a su�cient
condition for invariance of the ellipsoid E : for some D = diag(�1; : : : ; �p),

�
ATP + PA+CTDC PB

BTP �D

�
� 0: (1.14)

This is a linear matrix inequality in the (matrix) variables P = PT and (diag-
onal) D. Hence, by solving a semide�nite feasibility problem we can �nd an
invariant ellipsoid (if the problem is feasible). One can also optimize various
quantities over the feasible set; see [BEFB94]. Note that (1.14) is really a convex
relaxation of the condition that E be invariant, obtained via the S-procedure.

The close connections between the S-procedure, used in control theory to form
semide�nite programming relaxations of hard control problems, and the various
semide�nite relaxations used in combinatorial optimization, do not appear to
be well known.
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4 EXTENSION TO BILINEAR MATRIX

INEQUALITIES

We now consider an extension of the SDP (1.1), obtained by replacing the
linear matrix inequality constraints by bilinear (or bi-a�ne) matrix inequalities
(BMIs),

minimize cTx

subject to F0 +

mX
i=1

xiFi +

mX
j;k=1

xjxkGjk � 0: (1.15)

The problem data are the vector c 2 Rm and the symmetric matrices Fi,
Gjk 2 Rn�n.

Bilinear matrix inequality problems are NP-hard, and include a wide variety of
control problems (see, e.g., [GLTS94], [GSP94], [SGL94], [GTS+94], [GSL95]).
They also include all quadratic problems (when the matrices in (1.15) are di-
agonal), all polynomial problems, all f0; 1g and integer programs, etc.

Several heuristic methods for BMI problems have been presented in the litera-
ture cited above and reported to be useful in practice. Our purpose here is to
point out that the semide�nite relaxations for quadratic problems can be easily
extended to bilinear matrix inequalities.

We �rst express the BMI problem as

minimize cTx

subject to F0 +

mX
i=1

xiFi +

mX
j;k=1

wjkGjk � 0

wjk = xjxk; j; k = 1; : : : ;m;

and then relax the second constraint as an LMI

minimize cTx

subject to F0 +

mX
i=1

xiFi +

mX
j;k=1

wjkGjk � 0

�
W x

xT 1

�
� 0:

This is an SDP in the variables W , x. Its optimal value is a lower bound for
the optimal value of problem (1.15). As in Section 2, this SDP can also be
interpreted as the dual of the Lagrangian relaxation of problem (1.15).
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We should point out that the SDP relaxation may require some manipulation
(e.g., when some of the matrices Gii are zero), just as in the general inde�nite
quadratic programming case.

We do not yet have any numerical experience with this SDP relaxation of the
BMI problem.

5 CONCLUSION

The simultaneous discovery of semide�nite programming applications in con-
trol and combinatorial optimization is remarkable and raises several interesting
questions. For example,

can we obtain Goemans and Williamson-type results in control theory, i.e.,
solve a (polynomial-time) SDP and get a guaranteed bound on subopti-
mality?

what is the practical performance of semide�nite relaxations in nonconvex
quadratic or BMI problems?
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