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Abstract

We present a method for optimizing and automating compo-
nent and transistor sizing for CMOS operational amplifiers.
We observe that a wide variety of performance measures can be
formulated as posynomialfunctions of the design variables. As
a result, amplifier design problems can be formulated as age-
ometric program, a special type of convex optimization problem
for which very efficient global optimization methods have re-
cently been developed. The synthesis method is therefore fast,
and determines the globally optimal design; in particular the
final solution is completely independent of the starting point
(which can even be infeasible), and infeasible specifications are
unambiguously detected.

After briefly introducing the method, which is described in
more detail in [1], we show how the method can be applied to
six common op-amp architectures, and give several example de-
signs.

1 Introduction

As the demand for mixed mode integrated circuits increases, the
design of analog circuits such as operational amplifiers (op-amps)
in CMOS technology becomes more critical. Many authors have
noted the disproportionately large design time devoted to the analog
circuitry in mixed mode integrated circuits. In [1] we introduced a
new method for determining the component values and transistor
dimensions for CMOS op-amps. The method handles a wide vari-
ety of specifications and constraints, isextremely fast, and results
in globally optimaldesigns. We have developed a simple op-amp
synthesis tool, called GPCAD, based on our method.

We have formulated the op-amp design problem as a special
type of convex optimization problem called ageometric program
(GP). Methods to solve convex optimization problems have several
advantages when compared to general purpose optimization meth-
ods: they find the globally optimal solution; the solution can be
computed extremely fast even for large problems; and, if a solution
exists, convergence is guaranteed. The disadvantage of convex op-
timization methods is that they apply to a more restricted class of
problems than the general methods. The contribution of this paper
is to demonstrate the surprising result that a wide variety of op-amp
design problems can be formulated with considerable accuracy as
convex programming problems.

In this paper we describe how the method applies to six dif-
ferent types of op-amps: two simple op-amps (OTAs), a two-stage

op-amp, a two-stage cascoded op-amp, a folded-cascode op-amp,
and a telescopic op-amp. We also give some design examples.

In x2, we give a brief overview of previous approaches to op-
amp synthesis. Inx3, we describe geometric programming, the
optimization problem which is the basis of the method. Inx4, we
briefly describe the transistor model used, which we call the GP1
model. This simple model gives reasonable agreement with sophis-
ticated BSIM1 models over a range of lengths, widths, and bias
currents, and moreover, is compatible with the GP method. Inx5,
we describe the six op-amp architectures we consider. Inx6, we
show how a variety of performance measures can be cast in the
GP framework. To simplify the discussion (and also due to lack of
space) we concentrate our discussion on a single typical op-amp,
and use a simple transistor model based on a classical long channel
square law. The same ideas and methods, however, can be used to
formulate the GP for the other five architectures we consider, and
the more accurate GP1 MOS model. Inx7, we give design exam-
ples for the different op-amps. More details on geometric program-
ming, transistor models and how the method applies, can be found
in [1, 2].

2 Other approaches

We can classify previous methods for analog circuit CAD into four
groups.

Classical optimization methods

Classical optimization methods, such as steepest descent, sequen-
tial quadratic programming and Lagrange multiplier methods, have
been widely used in analog circuit CAD. The general purpose op-
timization codes NPSOL [3] and MINOS are used in,e.g., [4, 5].
Other CAD methods based on classical optimization methods, and
extensions such as a minimax formulation, include OPASYN [6],
OAC [7], and STAIC [8]. These classical methods can be used
with complicated circuit models, including full SPICE simulations
in each iteration, as in DELIGHT.SPICE [9].

The main disadvantage of classical methods is that they only
find locally optimal designs. This means that it is possible that
some other set of design parameters, far away from the one found,
results in a better design. The same problem arises in determin-
ing feasibility: they can fail to find a feasible design, even if one
exists. In order to avoid local solutions, the minimization method
is carried out from many different initial designs. This increases
the likelihood of finding the globally optimal design but it also de-
stroys one of the advantages of classical methods,i.e., speed, since
the computation effort is multiplied by the number of different ini-
tials designs that are tried. It also requires human intervention (to
give “good” initial designs), which makes the method less auto-
mated. Also, these methods become slow if complex models are
used, as in DELIGHT.SPICE.



Knowledge-based methods

Knowledge-based and expert-systems methods have also been widely
used in analog circuit CAD. Examples include genetic algorithms
or evolution systems like DARWIN [10] and special heuristics based
systems like IDAC [11] and OASYS [12].

These methods have few limitations on the types of problems,
specifications, and performance measures that can be considered
but they have several disadvantages. They find a locally optimal
design (or, even just a “good” or “reasonable” design). The final
design depends on the initial design chosen and the algorithm pa-
rameters. These methods require substantial human intervention
either during the design process, or during the training process.

Global optimization methods

Global optimization methods such as branch and bound and sim-
ulated annealing have also been used,e.g., in [13]. Branch and
bound unambiguously determines the global optimal design but it
is extremelyslow, with computation growing exponentially with
problem size. Simulated annealing (SA) is another very popular
method that can avoid becoming trapped in a locally optimal de-
sign. Inprinciple it can compute the globally optimal solution, but
in practical implementations there is no guarantee at all; termina-
tion is heuristic. Like classical and knowledge-based methods, SA
allows a very wide variety of performance measures and objectives
to be handled. Simulated annealing has been used in several tools
such as ASTR/OBLX [14] and OPTIMAN [15]. The main disad-
vantages of SA are that it can be very slow, and in practice it cannot
guarantee a global optimal solution.

Convex optimization methods

In a convex optimization problem we minimize a convex objective
function subject to linear equality constraints, and inequality con-
straints that are expressed as upper bounds on convex functions.
The great practical advantages of convex optimization are begin-
ning to be widely appreciated, mostly due to the development of
extremely powerful interior-point methods for general convex op-
timization problems in the last five years (e.g., [16, 17]). These
methods can solve large problems, with thousands of variables and
tens of thousands of constraints, very efficiently (e.g., in minutes
on a small workstation). Problems involving tens of variables and
hundreds of constraints are considered small, and can be solved on
a small current workstation in less than one second.

One very great advantage of convex optimization, compared to
general purpose optimization methods, is that the global solution is
alwaysfound, regardless of the starting point. Infeasibility is un-
ambiguously detected,i.e., if the methods do not produce a feasible
solution, they produce a certificate that proves that the problem is
infeasible.

3 Geometric Programming

Geometric programming (GP) is a special type of convex optimiza-
tion problem. It has been known and used since the late 1960s
(see [18]); more recently it has been widely used in transistor and
wire sizing for Elmore delay minimization in digital circuits, as in
TILOS [19]. As far as we know, it has not been used before in
analog amplifier design.

Let x be a vector(x1; : : : ; xn) of n real, positive variables. A
functionf is called aposynomialfunction ofx if it has the form

f(x1; : : : ; xn) =

tX
k=1

ckx
�1k
1 x

�2k
2 � � �x�nkn

wherecj � 0 and�ij 2 R. When there is only one term in the
sum,i.e., t = 1, we callf a monomialfunction. Note that posyn-
omials are closed under addition, multiplication, and nonnegative
scaling. Monomials are closed under multiplication and division.

A geometric programis an optimization problem of the form

minimize f0(x)
subject to fi(x) � 1; i = 1; : : : ; m;

gi(x) = 1; i = 1; : : : ; p;
xi > 0; i = 1; : : : ; n;

(1)

wheref0; : : : ; fm are posynomial functions andg1; : : : ; gp are mono-
mial functions.

If f is a posynomial andg is a monomial, then the constraint
f(x) � g(x) can be handled by expressing it asf(x)=g(x) � 1.
In a similar way ifg1 andg2 are both monomial functions, then we
can handle the equality constraintg1(x) = g2(x) by expressing it
asg1(x)=g2(x) = 1.

We say that a functionh is inverse-posynomialif 1=h is a posyn-
omial function. Ifh is an inverse-posynomial andf is a posyno-
mial, then GP can handle the constraintf(x) � h(x) by express-
ing it asf(x)(1=h(x)) � 1. If h is an inverse-posynomial, then
we can maximize it, by minimizing1=h. Inverse-posynomials are
closed under products, and also parallel combinations: ifh and~h
are inverse-posynomial then so ishk~h = 1=(1=h + 1=~h).

Geometric programming in convex form

A geometric program can be reformulated as a convex optimiza-
tion problem, by changing variables and considering the logs of the
functions involved. We define new variablesyi = log xi, and take
the logarithm of a posynomialf to get

h(y) = log f (ey1 ; : : : ; eyn) = log
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k
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whereaTk = [�1k � � ��nk] andbk = log ck. It can be shown thath
is aconvexfunction of the variabley.

Thus, we can convert the standard geometric program (1) into
a convex program by expressing it as

minimize h0(y) = log f0(e
y1 ; : : : ; eyn)

subject to hi(y) = log fi(e
y1 ; : : : ; eyn) � 0;

vi(y) = log gi(e
y1 ; : : : ; eyn) = 0:

(2)

This is the so-calledexponential formof the geometric program (1)
(see,e.g., [20]).

There are several methods for solving geometric programs. One
option is to solve the exponential form of the geometric program
using a general purpose optimization code such as NPSOL or MI-
NOS. These general purpose codes will in principle find the glob-
ally optimal solution, but codes specifically designed for solving
geometric programs offer greater computational efficiency. Re-
cently, Kortanek et al. have shown how the most sophisticated primal-
dual interior-point methods used in linear programming can be ex-
tended to GP, resulting in an algorithm with efficiency approaching
that of current interior-point linear programming solvers [21].

For use in GPCAD we have implemented, in MATLAB, a very
simple primal barrier method, which is described in [1] and [20].
Despite the simplicity of our algorithm and the overhead of an inter-
preted language, the GPs arising in this paper are solved in less than
two seconds on a SUN1 ULTRA-SPARC 1 (170MHz) workstation.
A more efficient algorithm and implementation would make it con-
siderably faster.



4 Transistor modeling

The transistor model we use has the following form, which we call
aGP1 model.

� The overdrive voltageVgs � VTH is a monomial function of
transistor lengthL, transistor widthW and transistor drain
currentI.

� The transconductancegm is a monomial function inL, W ,
andI.

� The output conductancego is given by�go;m wherego;m is
monomial inL, W , andI, and� is a constant. We use two
different values of�, depending on whether the transistor in
question typically operates with large or smallVds.

� Capacitances between the terminals and bulk are posynomial
in L, W , andI.

The traditional long channel MOS transistor model (level 1 in
HSPICE) fits exactly the format of the GP1 model (see [1]). By
simple data fitting techniques [20], we have obtained GP1 models
that have reasonable agreement with HSPICE higher order models
(BSIM1 models), over large ranges of length, width, and bias cur-
rents. To model submicron devices, we are now developing more
sophisticated and accurate models that are still compatible with ge-
ometric programming based design. These models, which we call
GP2, are described in [2].

5 Op-amp architectures

We will apply the method to the six different op-amp architectures,
or topologies, shown in figures 1–6. These are:

� a two-stage op-amp (figure 1)

� a simple OTA op-amp (figure 2)

� an OTA op-amp (figure 3)

� a two-stage cascoded op-amp (figure 4)

� a folded-cascode op-amp (figure 5)

� a telescopic op-amp (figure 6)
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Figure 1: Two stage op-amp.
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Figure 2: Simple OTA op-amp.
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Figure 3: OTA op-amp.

Vdd

Vss

Vss

V+ V�
Vout

V1

V2 CL
Ibias

M1 M2

M3 M4

M5

M6

M7

M9

M10

M8

Figure 4: Two stage cascoded op-amp.

6 Performance speci�cations/constraints

In this section we show how a variety of performance measures and
constraints can be formulated using geometric programming. To
simplify the discussion (as well as to save space) we concentrate on
one op-amp topology, the two-stage op-amp of figure 1, and assume
a simple MOS model; more details can be found in [1]. In each
section we give short comments about how the method extends to
the other five op-amp architectures, as well as more sophisticated
MOS models.

The design variables are the transistor sizes (width and length),
the value of the passive components (capacitors and resistors), and
the value of bias currents and bias voltages. For this particular two-
stage op-amp, there are nineteen design variables.
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Figure 5: Folded-cascode op-amp.
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Figure 6: Telescopic op-amp.

Symmetry and matching

In many op-amps there are some symmetry and matching con-
straints that must be met. For example, the input transistors should
be identical and the bias transistors should have the same length to
improve the matching among them. These conditions can be ex-
pressed as monomial constraints of the form

Wi =Wj ; Li = Lj : (3)

(Equivalently we can simply work with a smaller number of vari-
ables,e.g., usingWi to represent the widths of several transistors.
For the small problems we encounter, however, keeping the extra
variables and equality constraints results in a very small computa-
tional penalty.)

Device sizes

Lithography limitations and layout rules impose lower limits on the
device sizes:

Lmin � Li; Wmin �Wi; i = 1; : : : ; n: (4)

These constraints are monomial and can be handled by GP.
Another common constraint thatcannotbe handled by GP is

that the lengths and widths can only assume discrete values,e.g.,
multiples of some small dimension. In practice this is not a problem
since many transistors end up being minimum length, and transis-
tor widths are often much larger than the minimum grid resolution
making the rounding error for device width small.

Area

An approximate expression for the active device op-amp die area
A is given by the sum of the sum of transistor and capacitor ares,

A = �0 + �1Cc + �2

nX
i=1

WiLi; (5)

where the�i are positive constants. This expression is a posyno-
mial function of the design parameters, so we can impose an upper
bound on the area, or use the area as the objective to be minimized.

Current equations

Biasing is typically accomplished by mirroring a reference current
to the different stages of the op-amp. In this case the bias currents
become monomials of the design parameters. In the two-stage op-
amp, for example, if we define the bias currentsI5 andI7 through
transistorsM5 andM7, respectively, we have,

I5 =
W5L8

L5W8

Ibias; I7 =
W7L8

L7W8

Ibias: (6)

Since these expressions are monomial we can useI5 andI7 as part
of the design variables, considering (6) as an equality constraint.
This reduces the complexity of the other design equations, at some
(negligible) computational cost. Note that the bias reference cur-
rent,Ibias can be fixed (by the biasing scheme of the IC) or can be
a design variable.

Bias conditions

For the correct operation of most op-amps the transistors need to re-
main in the saturation region for the specified input common mode
range ([Vcm;min; Vcm;max]) and the specified output voltage swing
([Vout;min; Vout;max]). These bias, input common mode, and out-
put swing constraints turn out to have posynomial form. For exam-
ple, using the long channel square-law MOS transistor model in the
two-stage op-amp, the condition forM5 remaining in saturation isr

I1L1

KpW1

+

r
I5L5

KpW5

� Vdd � Vcm;max + VTP; (7)

which is a posynomial constraint.

Quiescent power

For the two-stage op-amp the quiescent power has the form

P = (Vdd � Vss) (Ibias + I5 + I7) ; (8)

which is a posynomial function of the design parameters, so we can
impose an upper bound on, or minimize, quiescent power. Similar
equations hold for the other architectures we consider.

Open-loop DC gain

For the two-stage op-amp, the open-loop voltage gain is given by

Av =

�
gm2

go2 + go4

��
gm6

go6 + go7

�
; (9)

which is an inverse-posynomial function of the design parameters.
We can therefore impose a minimum required open-loop voltage
gain or we can maximize the gain.

The other five op-amp topologies have different expressions for
the open-loop voltage gain, but in each case the gain is inverse-
posynomial. This can be explained as follows. The total op-amp



gain is the product of the gain of the stages. the gain of each stage
has the typical formGi = gm=gout wheregm is the transconduc-
tance of the stage input transistor andgout is the output conduc-
tance seen by the transistor. Sincegout is a sum of several load
conductances, each of which is monomial in the design variables,
the stage gain is inverse-posynomial. Therefore the overall gain is
inverse-posynomial.

Unity-gain bandwidth

The op-amps we consider are designed to have a dominant pole.
For the two-stage op-amp the dominant pole is given by

p1 = gm1=(AvCc); (10)

and the unity gain bandwidth is given by the expression

!c = gm1=Cc; (11)

which is monomial. For the other architectures, the unity-gain
bandwidth is given by the ratio of the transconductance of some
device to the compensation (or output) capacitance, and is either
monomial or inverse-posynomial. Therefore we can impose lower
bounds on, or maximize, the unity-gain bandwidth.

Non-dominant pole conditions

With the choice of the compensation resistorRc = 1=gm6, the
two-stage op-amp has three non-dominant poles given by

p2 = gm6Cc=(C1Cc + C1CTL + CcCTL) (12)

p3 = gm3=C2 (13)

p4 = gm6=C1; (14)

whereC1,CL andC2 can be expressed as posynomial expressions
of the transistors widths and lengths,

C1 = Cgs6 + Cdb2 + Cdb4 + Cgd2 + Cgd4

CTL = CL +Cdb6 + Cdb7 + Cgd6 + Cgd7

C2 = Cgs3 + Cgs4 + Cdb1 + Cdb3 +Cgd1:

The important point is that the non-dominant polesp2, p3 andp4
are given by inverse-posynomial functions of the design parame-
ters. We can therefore impose a lower bound on the non-dominant
poles (e.g., limiting them to be a decade above the unity-gain band-
width). For the other architectures as well, the non-dominant poles
are given by inverse-posynomial expressions.

Phase margin

For large gains, the phase due to the dominant pole at the unity-gain
frequency will be very nearly90�. For small phase shifts (less than
25�), we havearctan(x) � x, so the phase margin constraint can
be approximated as

4X
i=2

!c;approx

pi
�

�

2
� PMmin; (15)

which is a posynomial inequality in the design variables. The ap-
proximation error is very small since the phase contributed by each
non-dominant pole is small (less than25�).

In the general case, the phase margin depends on the sum of
phase shifts, at the unity-gain frequency, contributed by the non-
dominant poles and zeros. Left half plane poles and right half
plane zeros contribute phase shifts that can be approximated, using
arctan(x) � x, as posynomial expressions. For the six op-amps
considered, the resulting phase margin constraints are posynomial.

Slew Rate

The slew rate is typically determined by the amount of current that
can be sourced or sinked into the compensation (or output) capac-
itance. For the two-stage op-amp the conditions to ensure a mini-
mum slew rateSRmin are

Cc=(2I1) � 1=SRmin; (Cc +CTL)=I7 � 1=SRmin; (16)

which are posynomial inequalities. A similar situation holds for the
other architectures.

CMRR

For the two-stage op-amp, the common mode rejection ratio is
given by

CMRR =
2gm1gm3

(go3 + go1) go5
; (17)

which is inverse-posynomial, so we can impose a minimum CMRR.
For the other five op-amp topologies, the expression for the CMRR
is also inverse-posynomial. In simple op-amps the CMRR is just
the ratio of the differential gain of the first stage to the common
mode gain of the first stage and is proportional to the output resis-
tance of the biasing network.

There are several other specifications that can be handled using
geometric programming, but are omitted here for space consider-
ations. These include, for example, minimum gate overdrive volt-
age, minimum3dB bandwidth, and limits on input-referred spot
noise, or total RMS noise in a band (see [1]).

7 Design examples

In this section we provide some sample designs for the two-stage
op-amp using a standard1:2�m CMOS process (described in more
detail in [1]). The load capacitance is5pF and the supply voltages
areVdd = 5V andVss = 0V.

A simple design example

Table 1 describes the sample design problem, and shows the perfor-
mance of the design obtained by GPCAD using GP1 models, and
the simulated performance with BSIM1 models (HSPICE level 13).
The objective was to maximize the unity gain bandwidth subject to
the other given constraints. The first column in table 1 identifies the
performance measure (and its units); the second gives the specifi-
cation (showing whether it is an upper or lower bound). The third
column, labeled GPCAD, shows the performance of the design ob-
tained, according to the GP1 model of GPCAD. The fourth column,
labeled HSPICE, shows the value of the specification as simulated
by BSIM1 from our design.

We can see that there is close agreement between the predicted
results from GPCAD and the HSPICE simulations. Recall that the
GPCAD values are based on simple posynomial expressions, as
well as a number of approximations; the HSPICE simulations are
based on sophisticated MOS models, and no approximations (e.g.,
of transfer functions). The close agreement between the two shows
that our posynomial models and approximations, though simple,
are adequate for real design.

The computer time required for the design is approximately
two seconds, using an inefficient MATLAB implementation of an
interior-point method. (An efficient implementation would be far
faster.)

The optimal design parameters found are shown in table 2. It
is interesting to note that only deviceM6 is minimum length. This
can be easily explained. BSIM1 models and our GP1 models take



into account the fact that the output conductance of the device de-
creases with increasing transistor length. Since the gain require-
ment is high, longer devices are needed to obtain80dB of open-
loop gain. The output conductances ofM1,M3,M6 andM7 affect
the final gain but only deviceM6 is minimum length. The reason
is that the second non-dominant pole position is proportional to the
transconductance ofM6. Since the phase margin requirement is
stringent, GPCAD decides to increase the transconductance ofM6

by making it as short as possible. If the gain requirement is dropped
to 60dB, all transistors are minimum length and the unity-gain fre-
quency is25MHz. One may also think that transistorM1 should be
minimum length so its transconductance is maximum. The prob-
lem is that for larger unity-gain bandwidths it is very hard to meet
the phase margin specification, and GPCAD opts for a lowerM1

transconductance.
We remind the reader that the design found by GPCAD isglob-

ally optimal, and not merely (as with local methods) a locally op-
timal design. Please note also that our discussion above is offered
only as an explanation for what GPCAD obtained; GPCAD ob-
tained the design by solving a geometric program, and not using
any circuit design reasoning!

Performance measure Spec GPCAD HSPICE
Area (�m2) � 2:5k 2:5k 2:5k
Max. output(V) � 4:5 4:5 4:5
Min. output (V) � 0:5 0:1 0:1
Power (mW) � 5 0:5 0:6
DC gain (dB) � 80 80 83
Unity-gain BW (MHz) Max. 9 8
Phase margin (�) � 60 60 66
Slew rate (V=�s) � 10 10 11
CMRR (dB) � 60 80 84
PSRRn (dB) � 80 91 94
PSRRp (dB) � 80 95 97

Noise,1kHz(nV=
p

Hz) � 600 600 590
Lmin (�m) � 1:2 1:2 1:2
Wmin(�m) � 2 2:3 2:3

Table 1: Design specifications for two-stage op-amp.

Variable Value
W1 =W2 41:3�m
W3 =W4 18:2�m
W5 5:4�m
W6 520�m
W7 109�m
W8 2:3�m
L1 = L2 3:3�m
L3 = L4 1:7�m
L5 2:6�m
L6 1:2�m
L7 2:6�m
L8 2:6�m
Cc 0:58pF
Ibias 2:6�A

Table 2: Optimal design for design example.

A globally optimal trade-o� curve

By repeatedly solving the design problem while varying one of
the specifications, we can sweep out theglobally optimaltrade-off
curve between competing objectives (with the others fixed). In fig-
ure 7 we plot a trade-off curve for the two-stage op-amp, obtained
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Figure 7: Globally optimal trade-off curve between maximum
unity-gain bandwidth and maximum power, for different sup-
ply voltages.

by maximizing unity-gain bandwidth, while varying the maximum
allowed power dissipation, for three different supply voltages. The
rest of specifications are set to the values given in table 2, except
the area, which is relaxed to104�m2. It is interesting to note that
the curves cross, with different power supply voltages being opti-
mal for different maximum powers (or unity gain bandwidths). We
see that for low power designs we obtain a higher bandwidth with
lower supply voltages but when power is not a limit we are better
off with a higher supply voltage. The reason is that for a given
power, the low voltage design can use more current than the high
voltage design.

Each trade-off curve was computed in under two minutes, by
solving each problem from scratch,i.e., “cold start”. This would
be far faster with an efficient implementation, using “warm start”,
i.e., starting from the previous design found.

Designs for the other architectures

In this section we give design examples for the other op-amp topolo-
gies studied: simple OTA op-amp (figure 2, table 3), OTA op-amp
(figure 3, table 4), two-stage cascoded op-amp (figure 4, table 5),
folded-cascode op-amp (figure 5, table 6), and telescopic op-amp
(figure 6, table 7).

For each problem the objective was to minimize area. The other
specifications are given in the table as the first entry; the next two
entries give the value obtained by GPCAD, using the GP1 model,
and the simulated value from HSPICE BSIM1. The specifications
are similar, but not the same, since the op-amps differ considerably
in achievable gain, bandwidth, etc. As in the example design above
for the two-stage op-amp, the results obtained from GPCAD agree
quite closely with HSPICE simulation.

Trade-o� curves for telescopic and folded-cascode
op-amps

In figure 8 we show the globally optimal trade-off curves between
DC gain and unity-gain bandwidth, for the telescopic op-amp and
the folded-cascode op-amp, each subject to the same specifica-
tions. The curves show that the telescopic op-amp achieves more
gain at higher unity-gain bandwidths. The reason is that for the
same quiescent power, the input transistors in the telescopic op-
amp carry approximately twice the current of the input transistors
in the folded-cascode op-amp. In this example, the output volt-
age swing constraint was set to only2V. If this last requirement is
tougher the folded-cascode outperforms the telescopic op-amp.



Performance measure Spec GPCAD HSPICE
CL (pF) 1 1 1
DC gain (dB) � 40 40 39
Unity-gain BW(MHz) � 50 50 50
Phase margin (�) � 60 65 70
Power (mW) � 1 0:4 0:4
PSRRp (dB) � 20 65 70
PSRRn (dB) � 20 40 40
Output swing (V) � 2:3 3:5 3:6
Slew Rate (V=�s) � 10 37 40

Area(�m2) Min. 400 400

Table 3: Simple OTA design.

Performance measure Spec GPCAD HSPICE
CL (pF) 1 1 1
DC gain (dB) � 40 40 44
Unity-gain BW(MHz) � 25 25 25
Phase margin (�) � 45 53 58
Power (mW) � 1 0:75 0:75
PSRRp (dB) � 40 40 42
PSRRn (dB) � 40 49 52
Output swing (V) � 2:5 3 2:8
Slew Rate (V=�s) � 35 48 50

Area(�m2) Min. 300 300

Table 4: OTA design.

Performance measure Spec GPCAD HSPICE
CL (pF) 1 1 1
DC gain (dB) � 60 92 95
Unity-gain BW(MHz) � 10 10 10
Phase margin (�) � 60 60 59
Power (mW) � 1 0:14 0:14
PSRRp (dB) � 20 86 88
PSRRn (dB) � 40 70 72
Output swing (V) � 2 3:5 3:5
Slew Rate (V=�s) � 2 7 6

Area(�m2) Min. 1900 1900

Table 5: Two stage cascoded op-amp design.

Performance measure Spec GPCAD HSPICE
CL (pF) 1:25 1:25 1:25
DC gain (dB) � 70 70 70
Unity-gain BW(MHz) � 50 50 50
Phase margin (�) � 60 60 74
Power (mW) � 1 0:94 0:9
PSRRp (dB) � 70 77 79
PSRRn (dB) � 70 70 69
Output swing (V) � 1 2:1 2:4
Slew Rate (V=�s) � 50 50 52

Area(�m2) Min. 720 720

Table 6: Folded-cascode op-amp design.

This example points out a very important feature of GPCAD.
By itself, GPCAD does not design circuit topology or architecture;
it merely designs component values and transistor dimensions for
a given architecture. By solving the same problem (i.e., identical
constraints and objective) for several different architectures, GP-
CAD can decide which architecture is best. Here again the fact that
GPCAD finds globally optimal solutions for each architecture, and
not just locally optimal solutions, is critical. It allows us to say with
certainty that, for a given set of specifications, one architecture is

Performance measure Spec GPCAD HSPICE
CL (pF) 1 1 1
DC gain (dB) � 80 80 78
Unity-gain BW(MHz) � 20 33 33
Phase margin (�) � 60 60 70
Power (mW) � 1 0:1 0:13
PSRRp (dB) � 70 74 78
PSRRn (dB) � 70 75 76
Output swing (V) � 2 2 2:2
Slew Rate (V=�s) � 20 20 22

Area(�m2) Min. 440 440

Table 7: Telescopic op-amp design.

better than another.
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Figure 8: Maximum achievable gain versus unity-gain band-
width for folded-cascode and telescopic op-amp architectures.

8 Conclusions and extensions

We have shown how geometric programming can be used to design
CMOS op-amps. The method is very efficient, can handle a wide
variety of constraints and provides globally optimal designs. Even
with relatively simple transistor models, we achieve good agree-
ment with SPICE simulations based on sophisticated models. We
are currently developing more sophisticated and accurate models,
that are compatible with geometric programming design, and are
very accurate even for submicron, short channel designs [2].

GPCAD can also be effectively combined with a (local) opti-
mization method that uses more accurate model equations, or even
circuit simulation (such as DELIGHT.SPICE). Thus, GPCAD is
used to get close to the (presumably global) optimum, and the final
design is tuned using the more accurate model or direct circuit sim-
ulation. This would reduce the search time of the local optimizer
considerably while still preserving extreme accuracy.

We mention here several important features that space limita-
tions did not allow us to mention above. When the geometric pro-
gram is solved, we get a complete sensitivity analysis of the prob-
lem, without any additional computational effort. These sensitivity
numbers provide extremely useful information to the designer; it
shows which constraints are ‘most’ binding; which constraints can
be relaxed to obtain a great improvement in the objective function,
and which constraints can be tightened without much cost. See [1]
for a complete discussion of this topic (as well as the sensitivities
for some of the designs described in this paper).



Another useful feature of GPCAD is its ability to developro-
bustdesigns,i.e., designs that guarantee a set of specifications are
met for a variety of different processes and technology parameter
values. This is done by replicating the design constraints for the
different operating conditions, which is practical only because the
computational effort for solving geometric programs grows approx-
imately linearly with the number of constraints.

Although GPCAD does not directly design op-amp topology, it
can be used to choose the best op-amp topology out of a number of
topologies. This would work as follows: first, a library of topolo-
gies is developed; for each one we have a method for translating
the op-amp specifications into an associated geometric program.
(Thus, in this paper we consider a small library of six topologies.)
Then for a specific set of design specifications, one can perform
the design for each op-amp architecture in the library. This evi-
dently identifies the best architecture in the library, for the given
specifications. Note that (as in the example above) which archi-
tecture is best depends on the specifications. Since each design is
very fast (i.e., 2 seconds with our current, inefficient implementa-
tion), a large library (with, say, hundreds of architectures) can be
scanned quickly. This process can be speeded up in several ways.
For example, the optimization process for a given architecture can
be terminated once it is clear that the optimal value is more than
the best optimal value found so far. Again, this is only practical
because geometric programs can be solved so efficiently.

We end our discussion by explaining what needs to be done to
apply geometric programming to the design of a specific circuit,
i.e., to develop a library entry for a given circuit topology that has
not yet been analyzed. The task is to express the design constraints
and performance specifications in a form appropriate for geometric
programming. At this point, we have no method for automating
this step, although we envision using some type of symbolic ana-
lyzer (e.g., [22]) to aid in this process. Of course, this step is done
only once for each topology; once the library entry exists, specific
design problems involving that topology are solved within a few of
seconds, since only geometric programming is involved.

In a similar way, new GP1 models have to be developed for
each new process technology. This step, which is based on fitting
monomials to given tabulated data (which come from a sophisti-
cated model, or even from empirical device measurements) is com-
pletely automated; it only takes a few minutes (assuming the data
are already available). This is discussed in depth in [2].
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