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Abstract 
Studies of spatial variability and simulation of available soil water and extractable soil water are scarce 
and yet such data are essential in hydrologic and solute transport modeling. A study was conducted to 
characterize spatial variability of available soil water and extractable soil water on a reclaimed site in 
northern Alberta. The vegetation on site included grasses, legumes and shrubs. The site was reclaimed 
and the reconstructed profile was made up of 40-100 cm of clay loam/peat material overlying fine tailings 
sand. Soil water was measured using neutron moisture meters on a frequency of approximately two 
weeks during the growing season for a 2-year period. Spatial characterizations of available soil water 
(ASW) and extractable soil water (ESW) on the driest and wettest measurement days were conducted 
using geostatistical methods. A sample semi-variogram was estimated and several permissible theoretical 
models fitted and the model of best fit was determined using the Akaike Information Criterion (AIC). The 
spherical model was found to best represent the semi-variogram for available soil water and extractable 
soil water. Both the available soil water and extractable soil water had very high degrees of spatial 
dependence (> 99%) and the range of within which sample points were auto-correlated was less than 1 
m. The conditional stochastic simulation of extractable soil water at unsampled locations that were 5 m 
north of the sampled locations indicated a high degree of uncertainty. This implies that generation of 
exhaustive data sets may require more sampling points at closer spacing to reduce uncertainty. 
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Introduction 
Soil water may vary spatially due to variation in soil textural and structural properties as well as changes 
in micro-topography. Due to this variation in space, soil sampling or measurements at a finite number of 
places often gives incomplete pictures (Heuvlink and Webster 2001). Quite often, there is a need for us to 
predict between sampling points in order to construct a map of a soil property under consideration, such 
as soil water. Geostatistics provides a set of tools for incorporating the spatial coordinates of soil 
observations in data processing and thus allows description and modeling of spatial patterns and 
prediction at unsampled intervals (Goorvaerts 1998). Such predictions aid in generating exhaustive grid 
data sets that could be used in hydrologic and solute transport modeling. Spatial characterization over 
different scales has become invaluable in various fields of study such as soil management and soil 
mapping (Schloeder et al. 2001). Characterization of the spatial variability of soil properties such as 
available soil water, extractable soil water may be described using semi-variograms (also referred to as 
variograms). The semi-variogram is a standard statistical measure of spatial variability and represents a 
measure of the average similarity between points at a specific distance apart (Webster and Oliver 2001). 
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Often the computation of the semi-variogram is not the final goal by itself, but is a prerequisite for the 
estimation of values at unsampled points through kriging and/or stochastic simulation. Ordinary kriging is 
an interpolation procedure that utilizes various equations to estimate values of unsampled points on a grid 
through minimization of the error variance. However, kriging is widely reported to overestimate small 
values and underestimate large values (Goovaerts 1998). Stochastic simulation, on the other hand, tends 
to preserve the sample variogram and may be useful in developing isarithmic maps or fine grid data sets 
of such variables as soil water that could used in hydrological models. Stochastic simulation has become 
a popular way to apply a variability model (e.g. Gaussian, spherical, exponential models) to estimate 
spatial patterns of soil properties. Consequently, an image generated from stochastic simulation would 
have the same statistical properties that the variability model prescribes (Pachepsky and Acock 1998). 
The objectives of this study conducted on a reclaimed site were: i) to characterize the spatial variability in 
available and extractable soil water, and; ii) to evaluate the use of conditional stochastic simulation for 
generating extractable soil water data sets at unsampled locations during wet and dry periods. 
 
Methodology 
 
Site description 
The study was conducted in 2001 and 2002 on the slopes of the reclaimed land on the Southwest Sand 
Storage Facility of Syncrude Canada Ltd. approximately 50 km north of Fort McMurray, Alberta, Canada. 
The tailings pond measures 25 km2 and is considered to be one of the largest tailings ponds in the world. 
The vegetation found on site included white sweet clover (Melilotus alba), yellow sweet clover (Melilotus 
officinalis), white clover (Trifolium repens), timothy grass (Phleum spp.), alfalfa (Medicago sativa), slender 
wheatgrass (Agropyron trachycaulum), sowthistle (Sonchus arvensis), raspberry (Rubus idaeus) and 
strawberry blite (Chenopodium capitatum). The topsoil was clay loam textured ranging between 40-100 
cm deep overlying tailings sand. The experimental area measured about 700 m by 400 m with an 
average slope of 4.5 %. The area was also terraced into benches, as a sequence of downslope and 
backslope separated by small waterways. The area was divided into four transects running from the first 
waterway upwards to the tailings pond. 
 
Thirteen aluminum access tubes were installed in each of the four transects. Geo-referencing was 
conducted using a global positioning system (GPS) and coordinates of longitude and latitude were 
determined for each access tube. Soil water was measured every two weeks using CPN 503 neutron 
moisture meters starting at a 15-cm depth down to 195 cm, at 10-cm depth increments. Pressure plate 
analysis was conducted on soil samples collected 3 m away from access tubes in 2001 for determination 
of field capacity (0.033 MPa) water and wilting point (1.5 MPa) water content. Available water holding 
capacity (AWHC) was determined as the difference between FC and WP. 
 
Available soil water and extractable soil water  
The available soil water (ASW, in mm) and extractable soil water (ESW, in mm) on each measurement 
date and around each access tube were computed. Each ASW value was determined as the difference in 
between the field total soil water (0-40 cm interval) and wilting point (WP) soil water for that depth 
increment. Each ESW value was computed as the difference between the field total soil water and the 
minimum field soil water that was measured throughout the study period. The conversion of WP to mm for 
the 0-40 cm depth interval was determined as the sum of products of bulk density, gravimetric water at 



Mapfumo E., Chanasyk D.S., and Chaikowsky C.L.A./ JOSH 6 (2006) 34-44 

 

Journal of Spatial Hydrology 54

WP and depth increment. ASW values for each of the 52 access tube locations were computed. Also 
ASW values for each slope position were determined as the average of four values representing each 
transect. 
 
Spatial characterization of soil water status 
To characterize the spatial variability of available soil water, extractable soil water and actual 
evapotranspiration geostatistical perspective was applied. This approach considered a finite domain D in 
space, with dRD ⊂ . We assumed that d = 2; hence R2 was the two-dimensional (horizontal) space. A 
spatial random variable, Z(x), is a variable that takes a series of outcome values (realizations) at any 
location in space Dx∈  according to a probability distribution. Thus the spatial process was represented 
as follows; 
 

{ }DxxZ ∈:)(      where x = is a spatial element in finite domain D, and 2RD ⊂  

{ }nxxx ,.....,, 21        = locations 

{ })(),....,(),( 21 nxZxZxZ         = random variables at locations. 

 
The empirical semi-variogram (also referred to as experimental or sample variogram) was then computed 
using the classical Matheron variogram estimator (Matheron 1971) described by the following equation: 
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where N(h) = number of pairs of sample points (52 points), Z = regionalized variable (e.g. available soil 
water), x = sample location; h = distance between sample points (25 m). Because of the irregular 
distances between nearest neighbor sampling points, the separation distance (h) used in the analyses 
was 25 m with a tolerance of 10 m. The separation distance was estimated as the approximate average 
distance between nearest neighbour sample points. Because of the sampling locations were irregular, a 
lag distance tolerance of 5 m was imposed. 
 
Because of the classical method of moments (Matheron) variogram estimation is sensitive to outliers, an 
alternative estimator, the robust variogram estimator, was also used in model fitting because it is less 
sensitive to the influence of outliers in the data set. The robust variogram estimator was described using 
the following equation (Cressie and Hawkins 1980); 
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Four permissible theoretical semi-variogram models were fitted to the experimental semi-variogram as 
represented below; 
Spherical model: 
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Exponential model: 
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Gaussian model:  
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Power model:  
20)( 0 ≤<+= wAhch wγ     Equation 6 

 
where γ(h) is semi-variogram for lag h, h is the distance between observations, c0 is the nugget effect 
(i.e., the variance when the lag distance is zero), c0 + c1 is the sill (i.e. the maximum variance, σ2), and a 
is the range (i.e., the lag distance at which the variogram reaches the sill, also referred to as the 
correlation range since it is the range at which autocorrelation becomes zero). The range marks the limit 
of spatial dependence, such that places further apart than the range are spatially independent. 
 
The SAS statistical package Variogram and Mixed procedures (SAS Institute Inc., 2000) were used for 
determination of the empirical and robust semi-variograms and fitting permissible theoretical variogram 
models. For each fitted model the Akaike Information Criterion (AIC) values considered in determining the 
model of best fit were based on achieving convergence criteria and positive definiteness, as was required 
before spatial moments became utilized in stochastic simulations. The model with the smallest AIC was 
considered to be the best model to represent the semi-variogram. The AIC was chosen because of its 
ability to achieve a satisfactory compromise between goodness of fit and parsimony of the model 
(McBratney and Webster 1986). The nugget effect was incorporated in the model because in practice, 
more often than not, data suggests that a spatial process is discontinuous and have a variance that jumps 
from zero at lag distance of zero to positive immediately away from origin. 
 
The semi-variogram measures the spatial dependence for the property. The covariance counterpart of the 
variogram measure, γ(h) for all distance and direction vectors, h, must have the mathematical property of 
positive definiteness, i.e., we must be able to use the variogram or its covariance counterpart in kriging 
and stochastic simulation. From the semi-variogram we determined the structural variance, which is the 
spatially structured proportion of the sample variance that is not random noise or measurement error 
(also referred to as the degree of spatial dependence, SD). This is defined as; 
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where c1 + c0 = sill, c0 = nugget effect. The value of SD was used to evaluate the spatial dependence (or 
independence) of available soil water and extractable soil water. 
 
Conditional stochastic simulation of extractable soil water 
Linear prediction, such as through ordinary kriging, always results in values that are 'best' in the sense 
that the expected squared prediction error is minimal. However, the problem is that the field with 
predicted values is usually smoother than the field from which observations were obtained (Pebesma and 
Wesseling 1998). An alternative is stochastic simulation, whereby simulations are viewed as possible 
realizations of a spatially correlated random field that honor the spatial moments (mean and variogram) of 
the field. Different simulations may be completely independent, only sharing the spatial moments 
(referred to as unconditional simulation) or they may, in addition, reproduce a set of observed values 
(referred to as conditional simulation). A single prediction at each location within the study area is called a 
realization. Multiple realizations can be generated to provide a better representation of possible 
extractable soil water values. Multiple simulations can aid in understanding the combined effect of 
prediction uncertainty and spatial variation of the underlying process.  
 
Therefore, based on the semi-variogram model, conditional stochastic simulation was used to generate a 
number of sets of values (realizations) that aim to reproduce each sample semi-variogram and the 
theoretical semi-variogram model. The technique used collected data to calculate the most likely 
extractable soil water at unsampled locations. The SAS statistical package (Sim2D procedure) was used 
to conduct conditional stochastic simulation of unsampled locations 5 m north of each of the 52 access 
tubes. Each simulation run produced 3 realizations that were used to evaluate the degree of spatial 
uncertainty in generating exhaustive extractable soil water data sets on driest and wettest days. 
All images produced from conditional stochastic simulation are equiprobable and obey the same spatial 
correlation model (Pachepsky and Acock 1998). As opposed to interpolation methods, stochastic 
simulation does not result in a single estimated map but results in a set of maps all consistent with the 
data actually used and the correlation model that ties them together.  
 
Results and Discussion 
 
Spatial dependence of soil water  
Available soil water ranged from values below wilting point up to 67 mm, whereas extractable soil water 
ranged between 0 and 78 mm throughout the two-year study period. Tables 1 and 2 indicate values of 
ASW and ESW, respectively, for data averaged across transects. 
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Table 1. Available soil water (TSW - WP, in mm) during measurement periods in 2001 and 2002. 
     Available H2O - Tubes   

Date 1 2 3 4 5 6 7 8 9 10 11 12 13 
 ------------------------------------------- 2001 data --------------------------------------------------------- 
June 9 32.0 49.5 33.3 52.7 33.3 54.8 16.1 20.6 54.1 22.2 24.5 32.2 57.1 
June 20 25.1 43.1 24.1 43.9 29.0 47.8 9.5 6.9 44.0 19.9 44.7 28.3 56.1 
July 4 -4.0 6.7 -2.9 4.0 -6.6 12.1 -8.7 -13.7 10.7 -13.4 -7.1 -6.2 19.3 
July 23 7.8 15.0 4.0 10.4 7.0 38.3 9.2 1.0 16.9 3.6 10.0 6.1 49.9 
Aug 14 10.6 14.5 2.4 5.4 3.7 38.0 -8.8 -6.4 21.0 1.2 6.2 0.7 49.8 
Aug 27 9.5 15.0 0.7 3.1 1.3 39.1 0.9 -9.2 10.8 0.3 7.5 1.1 50.4 
Sept 21 10.2 13.8 -0.9 3.7 1.4 43.2 -2.2 -12.1 6.5 -6.8 5.1 -4.5 51.9 

              
 ------------------------------------------- 2002 data --------------------------------------------------------- 

May 24 19.1 40.4 22.2 49.7 23.7 61.6 8.8 7.7 55.8 21.1 7.1 13.1 61.3 
Jun 4 19.2 38.8 13.1 36.4 21.9 53.5 5.5 0.5 47.4 19.3 9.0 13.3 60.3 
Jun 18 17.9 25.9 -1.5 28.7 9.8 52.6 3.6 -3.1 28.7 11.4 3.1 10.1 56.1 
Jul 16 9.9 10.3 -0.6 0.5 -1.1 35.3 -3.9 -15.0 -1.8 -8.6 1.0 -0.3 44.3 
Jul 29 25.2 28.9 9.2 28.8 15.6 48.5 3.1 -6.3 27.0 11.2 22.4 30.5 53.2 
Aug 13 18.6 23.6 16.2 24.7 15.3 44.2 4.9 -2.8 18.8 8.7 24.2 28.5 54.7 
Aug 27 18.1 21.8 8.5 23.3 28.5 66.8 7.2 -2.9 19.2 -0.5 19.7 31.4 50.0 
Sept 13 29.3 31.4 18.3 30.7 23.0 51.1 8.2 5.0 34.2 9.6 29.0 35.0 60.4 
        
 
 
 
Table 2. Extractable soil water (TSW - minimum TSW, in mm) during measurement periods in 2001 and 

2002. 
     Available water by tube #   

Date 1 2 3 4 5 6 7 8 9 10 11 12 13 
 ------------------------------------------------------ 2001 data ---------------------------------------------------------
June 9  52.0 58.4 36.2 62.2 51.6 66.3 37.5 41.1 61.2 39.4 41.0 49.5 58.8 
June 20  45.2 52.1 27.0 53.4 47.3 59.3 30.9 27.3 51.1 37.1 61.1 45.6 57.8 
July 4  16.0 15.6 0.0 13.5 11.7 23.6 12.7 6.8 17.7 3.8 9.4 11.1 21.0 
July 23 27.9 23.9 7.0 19.9 25.2 49.8 30.7 21.4 24.0 20.8 26.5 23.4 51.6 
Aug 14 30.6 23.4 5.3 14.9 21.9 49.5 12.6 14.1 28.0 18.4 22.6 17.9 51.5 
Aug 27 29.5 23.9 3.6 12.6 19.5 50.6 22.3 11.3 17.9 17.5 24.0 18.3 52.2 
Sept 21 30.3 22.8 2.0 13.1 19.7 54.7 19.2 8.4 13.6 10.4 21.6 12.7 53.7 

              
 ------------------------------------------------------ 2002 data ---------------------------------------------------------

May 24 39.1 49.3 25.1 59.2 41.9 73.1 30.2 28.1 62.9 38.3 23.5 30.3 63.1 
Jun 4 39.3 47.7 16.0 45.9 40.2 65.0 26.9 21.0 54.5 36.5 25.5 30.6 62.0 
Jun 18 37.9 34.8 1.4 38.2 28.0 64.1 25.0 17.4 35.7 28.7 19.5 27.3 57.9 
Jul 16 29.9 19.2 2.3 10.0 17.2 46.8 17.5 5.5 5.2 8.6 17.4 16.9 46.1 
Jul 29 45.2 37.8 12.1 38.3 33.8 60.0 24.5 14.2 34.0 28.4 38.8 47.8 55.0 
Aug 13 38.6 32.6 19.1 34.2 33.5 55.6 26.3 17.6 25.9 25.9 40.7 45.7 56.4 
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Aug 27 38.1 30.8 11.4 32.8 46.8 78.3 28.6 17.5 26.3 16.7 36.2 48.7 51.7 
Sept 13 49.3 40.3 21.2 40.2 41.3 62.6 29.6 25.4 41.3 26.8 45.5 52.3 62.1 
The results of spatial analysis indicated that the best model to fit the semi-variogram data was the 
spherical model as indicated by the lowest AIC values in all cases and for ASW (Figure 1) and also for 
the ESW data.  

Figure 1.  Robust semi-variograms for the transects of 52 available soil water values measured on 
wet and dry days in 2001 and 2002 on a reclaimed mined site with the spherical model fitted with 
nugget effect (separation distance = 25 m, lag tolerance = 5m). 
 

The equations below indicate the fitted spherical models with their values of range, sill and nugget for 
available soil water and extractable soil water on wet and dry days of 2001 and 2002;  
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(i) Available soil water: 
Wet day,  June 8, 2001: 

0001.0

0001.00

30.53667.53563.0)(
0001.02

1
0001.0*2

367.53563.0)(
3

>

≤<

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

=+=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−+=

hfor

hfor

h

hhh

γ

γ
 Equation 8 

 
Dry day, Sept 21, 2001: 
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Wet day, June 4, 2002: 
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Dry day, July 16, 2002: 
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ii) Extractable soil water: 

Wet,  June 8, 2001 
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Dry, Sept 21, 2001 
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Wet, June 4, 2002: 
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Dry, July 16, 2002: 
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In both the ASW and ESW variogram models the range was much less than 1 cm indicating a high 
degree of spatial dependence as was also confirmed by the high SD values (> 99%). This means that for 
these variables values in locations that are less than 1 cm apart are highly autocorrelated and at 
distances further apart the values are independent. This short-range variability in ASW and ESW 
probably reflects the local heterogeneity of topsoil material which was composed of peat and clay loam 
soil in different quantities. Further, existence of a defined spatial structure at a micro-scale seems to 
suggest that sampling should be employed for soil water studies at that scale. However, in practice it is 
difficult to conduct such sampling schemes because of the nature and size of equipment used in soil 
water measurements. The spherical model has also been found to best describe the many soil physical 
properties, such as clay content, organic C, pH (Rahman et al. 1996; Gaston et al. 2001) and 
exchangeable cations (Schloeder et al. 2001). Also, for many soil variables an average spatial correlation 
range of 11 m was reported in the coastal plain of South Carolina (Lister et al. 2000). However, others 
have reported exponential variogram models to describe variograms for various soil properties (Anctil et 
al. 2002). The change of spatial structure with moisture condition (wet versus dry) observed in our study 
was less pronounced than that reported in other studies. For example, in a study conducted in Australia, 
high sills and low correlation ranges were observed during the winter wet periods, whereas during dry 
summer periods sills are smaller and correlation ranges longer (Western et al. 1998). The difference in 
the spatial structure of wet and dry periods was attributed to the dominance of lateral movement in during 
wet periods and dominance of vertical fluxes during dry periods. 
 
Stochastic simulation of extractable soil water 
The results of the conditional stochastic simulations indicated large uncertainty in the estimation of 
extractable soil water on both dry and wet days (Figure 2). The differences in the simulated extractable 
soil water patterns among the three realizations indicate a high degree of spatial uncertainty, because 
each realization had different simulated values of extractable soil water. The average of the 3 realizations 
minimized the variability of the simulated extractable soil water, and thus may provide better estimates for  
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Figure 2. Stochastically simulated extractable soil water values at 52 unsampled locations that are 5 m north of 

sampling locations for three realizations and the average of three realizations. The top four graphs are for 
the wet day (a, b, c, d -June 8, 2001) and the bottom four graphs are for the dry day (e, f, g, h - September 
21, 2001). 

 
unsampled locations. Some researchers have indicated the potential use of conditional simulation in 
determining optimal experimental designs for future studies of soil water properties (Fagroud and van 
MeirVenne 2002). Furthermore, the conditional stochastic simulation provides us with a way to evaluate 
the risk involved in any decision-making process tied to soil water status or how prediction errors 
propagate through complex functions such as hydrologic models or crop growth models (Goovaerts 
2001). Thus caution must be exercised in generating exhaustive available water data sets for the study 
area for use in hydrologic and ecosystem modeling. Multiple realizations would be required to reduce 
spatial uncertainty in simulated extractable soil water values for unsampled locations. 
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Conclusions 
Characterization of spatial dependence by estimating a regular and theoretical semi-variograms indicated 
that the spherical model was generally the best to describe the available soil water and extractable soil 
water. Both the available soil water and extractable soil water had very high degrees of spatial 
dependence (> 99%) and the range of within which sample points were auto-correlated was less than 1 
m. The stochastic simulation of extractable soil water indicated high degree of uncertainty in the 
simulated values, such that generation of exhaustive data sets for use in hydrologic modeling that 
requires data in fine grid must be exercised with caution. Any decision-making process based on soil 
water status should be based multiple realizations in order to ensure reduced spatial uncertainty. In our 
study a minimum of three realizations seemed adequate to minimize the variability of simulated soil water. 
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