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Abstract

The two-fund separation theorem tells us that an investor with quadratic utility can
separate her asset allocation decision into two steps: First, find the tangency portfolio
(TP), i.e., the portfolio of risky assets that maximizes the Sharpe ratio (SR); and
then, decide on the mix of the TP and the risk-free asset, depending on the investor’s
attitude toward risk. In this paper, we describe an extension of the two-fund separation
theorem that takes into account uncertainty in the model parameters (i.e., the expected
return vector and covariance of asset returns) and uncertainty aversion of investors.
The extension tells us that when the uncertainty model is convex, an investor with
quadratic utility and uncertainty aversion can separate her investment problem into
two steps: First, find the portfolio of risky assets that maximizes the worst-case SR
(over all possible asset return statistics); and then, decide on the mix of this risky
portfolio and the risk-free asset, depending on the investor’s attitude toward risk. The
risky portfolio is the TP corresponding to the least favorable asset return statistics, with
portfolio weights chosen optimally. We will show that the least favorable statistics (and
the associated TP) can be found efficiently by solving a convex optimization problem.

1 Introduction

The two-fund separation theorem [53] is a central result in modern portfolio theory pioneered
by Markowitz [39, 40]. It tells us that the risk-return pair of any admissible or feasible
portfolio cannot lie above the capital market line (CML) in the risk-return space, obtained
by combining the risk-free asset and the portfolio that maximizes the Sharpe ration (SR).
An important implication is that an investor can separate her asset allocation decision into
two steps: First, find the portfolio of risky assets that maximizes the SR; then, decide on the
mix of the optimal risky portfolio and the risk-free asset, depending on her attitude toward
risk. Sharpe [50] and Lintner [34] derive the implications of the two-fund separation property
for equilibrium prices, which is known as the capital asset pricing model (CAPM).

*Information Systems Laboratory, Department of Electrical Engineering, Stanford University, Stanford,
CA 94305-9510. ({sjkim,boyd}@stanford.edu)



The two-step asset allocation process is based on the assumption that there is no model
uncertainty or model mis-specification, i.e., the input data or parameters (the mean vector
and covariance matrix of asset returns) are perfectly known. These input parameters are
typically empirically estimated from historical data of asset returns, or from extensive anal-
ysis of various types of information about the assets and macro-economic conditions. Due to
inevitable imperfections in the analysis and estimation procedure, the parameters are esti-
mated with error. The standard two-step asset allocation process can be very sensitive to the
estimation error: Portfolios constructed on the basis of estimated values of the parameters
cam have very poor performance for another set of parameters that is similar and statisti-
cally indistinguishable from the one used in the allocation decision [28]. The literature on
the sensitivity problem of MV allocation to estimation error or model uncertainty is huge;
see, [3, 4, 8, 7, 23, 27, 43] to name a few.

A variety of approaches have been suggested for alleviating the sensitivity problem in MV
asset allocation. The list includes imposing constraints such as no short-sales constraints
[26], the resampling approach [43], Bayesian approaches [1, 9, 31, 44, 45, 56], the shrinkage
approach [13, 55, 24], the empirical Bayes approach [19], the Black-Litterman approach [4]
(which allows investors to incorporate economic views into the asset allocation process), and
the worst-case approach [11, 16, 20, 25, 29, 28, 54, 47, 49]. The reader is referred to the
expository article [6] for an overview of these approaches.

This paper contributes to the literature on the worst-case approach. This approach is
related to the view of Knight [32] that we should distinguish between “uncertainty” (am-
biguous probabilities) and “risk” (precisely known probabilities), and model uncertainty, or
more precisely, the investors’ assessment of model uncertainty, which cannot be represented
by a probability prior. Its axiomatic foundation is laid out in [21, 15] which formally describe
the max-min expected utility framework, in which an investor with ambiguity or uncertainty
aversion would compute the expected utility by using the “worst” parameter set over the
set of all possible parameters and chooses its strategy to maximize the worst-case expected
utility. More generally, the worst-case approach explicitly incorporates a model of data un-
certainty in the formulation of a portfolio selection problem, and optimizes for the worst-case
scenario under this model; see, e.g., [11, 16, 14, 22, 20, 25, 29, 28, 35, 54, 47, 49]. The reader
is referred to a recent survey [18] and monographs [17, 42, 48] on robust asset allocation.

In this paper, we describe an extension of the asset allocation process, that takes into
account model mis-specification and investor uncertainty aversion. We show that when
the uncertainty model is convex, and the investor’s utility is quadratic, she separate her
investment problem into two steps: Find the portfolio of risky assets that maximizes the
worst-case SR (over all possible asset return statistics); then, decide on the mix of the risky
portfolio and the risk-free asset, considering her risk aversion. The risky portfolio is the
TP of the least favorable asset return statistics, with the portfolio weights chosen optimally.
We will also show that the least favorable statistics (and the associated TP) can be found
efficiently by solving a convex optimization problem.

We give a review of the two-fund separation theorem in Section 2, to set up our notation
and compare it to the extension we describe in Section 3. We illustrate the extension with



a numerical example in Section 4. We give our conclusions in Section 5.

2 Two-fund separation in MV asset allocation

We have n risky assets, denoted 1,...,n, and a risk-free asset, denoted n 4+ 1. These assets
are held over a period of time. We use a; to denote the relative price change of asset ¢ over
the period, that is, its change in price over the period divided by its price at the beginning
of the period. Let y = Ea and ¥ = E(a — u)(a — u)* denote the mean and covariance of
a = (ai,...,a,), where E denotes the expectation operation, and let u,; denote the return
of the risk-free asset n + 1. We assume that > is positive definite.

A portfolio will be denoted as a vector € R"™, with z; denoting the amount invested
in asset ¢, with a long position in asset ¢ corresponding to x; > 0, and a short position in
asset i corresponding to z; < 0. (For the risk-free asset, x,,1 < 0 corresponds to borrowing
at the interest rate p,r.) We assume the portfolio satisfies the budget constraint 17z = 1,
where 1 denotes the vector of all ones.

The portfolio = can be represented as an affine combination of (w, 0), a portfolio consisting
only of risky assets, and the portfolio (0, 1), consisting only of the risk-free asset:

r=((1-0w,0) =(1-0)(w,0)+00,1)cR".

(For column vectors v and v, (u,v) is the column vector obtained by stacking u on top of v.)
Evidently, we have 6 = z,,41, and w = (z1,...,2,)/(1 —0), for 0 # 1, and w = 0, for § = 1.
The all risky asset portfolio w € R" satisfies the portfolio budget constraint 17w = 1, and
0 can be interpreted as the fraction of the risk-free asset, and 1 — 6 as the leverage of the
risky portfolio w. When 6 < 0, the investor leverages the risky portfolio by borrowing at the
risk-free rate.

Let W C R" denote the set of all admissible or feasible portfolios w that consist of the
risky assets a1, ..., a, and satisfy the budge constraint 17w = 1. We assume that the set W
is convex. The set W can represent a wide variety of asset allocation constraints including
portfolio diversification and short-selling constraints [35, 36]. The set of all admissible or
feasible portfolios of the assets aq,...,a,41 is

X={((1-0w,0) cR"™ |wew, <1},

where the constraint # < 1 is imposed to rule out a short selling position in the risky
portfolio w. This set is convex; see Appendix A.1 for the proof.

2.1 Risk and return

At the end of the period, the return of a portfolio z = ((1 — §)w, 0) is a (scalar) random
variable (1 —0)>"" |, w;a; + 0a,1,. The mean return is

r(z, 1) = (1 — 0w’y + Opy,



and the return volatility or risk, measured by the standard deviation, is
o(z,%) = [1 — 0|(w'Sw)? = (1 — 0)(w? Sw)*/?
since we assume 6 < 1. For a portfolio of the form z = (w, 0), we use the shorthand notation
r(w, p) = r(w,0,u), o(w,X) =o(w,0,%).

As the leverage of the risky portfolio w is changed, the risk and return of the portfolio of
x=((1—=0)z,0) vary as

r((1—0)w,0,u) = (1 —0)r(w, p) + Oy, o(1=0)w,0,%) =(1—0)o(w,X),

which traces a line, parametrized by 6, in risk-return space.
The choice of a portfolio involves a trade-off between risk and return [39]. The optimal
trade-off achieved by admissible portfolios of risky assets a1, ..., a, is described by the curve

fus(@)= s w'p, 1)
weW, (wT Lw)l/2<o
which is called the (MV or Markowitz) efficient frontier (EF) for the risk assets. Each point
on the EF corresponds to the risk and return of the portfolio that maximizes the mean
return subject to achieving a maximum acceptable volatility level o and satisfying the asset
allocation and portfolio budget constraints. A basic property of the EF is that it is increasing
and concave.

When the risk-free asset is included, the optimal trade-off analysis becomes simpler. It
suffices to find a single fund (portfolio) of risky assets; any MV efficient portfolio can then be
constructed as a combination of the fund and the risk-free asset, as first observed by Tobin
[53]. In this case, the EF is a straight line.

2.2 SR maximization and optimal capital allocation line

The reward-to-variability or Sharpe ratio [51, 52] of a portfolio z = ((1 — 0)w,#), which
is denoted as S(x,u, ), is its excess return (relative to the risk free rate) divided by the
standard deviation of its excess return:

Sz, p,2) = %.

For a portfolio (w,0) of risky assets only, we use the shorthand notation
S(w, p, X)) = S(w, 0, u, X2).

The SR of x is invariant to the leverage of the risky portfolio w: for 6 < 1,

wT,u’ — Mt
S(1=0)w,0,p,%) = S(w,pu, X) = N



The problem of finding the portfolio of risky assets that maximizes the SR can be cast

as
maximize S(w, u,X) @)
subject to w € W,

where the variable is w € R" and the problem data are p and Y. This problem is called the
SR maximization problem (SRMP). With general convex asset allocation constraints, it can
be reformulated as a convex optimization problem [22, 30, 54]. Its optimal value is called
the market price of risk. We use Sy, (1, 2) to denote the optimal value, as a function of the
parameters p and X:

Smp(:ua E) = sup S(w7 s E)
weW

As the fraction 6 of the risk-free asset decreases from 1, the risk ¢ and the return r of
x = ((1 — #)w, H) move along the line

= e + S(wa Hs E)U
in the (o,r) space, which is called the capital allocation line (CAL) of w. The line

7 = frr + Swp (1, 2)0 (3)

is called the optimal CAL or capital market line (CML). When the SRMP has a solution
w*, the optimal CAL is tangential to the efficient frontier at the point (otan, r'tan) Where ogan
and 7., are the risk and return of the portfolio w*. For this reason, the portfolio w* is called
the tangency portfolio. Otherwise, the efficient frontier has an (upper) asymptote and the
optimal CAL is parallel to the asymptote. Figure 1 illustrates this key result in modern
portfolio theory.

2.3 Optimal allocation and two-fund separation

The following proposition follows from the observations made above.

Proposition 1 (Two-fund separation [53]). The CML is the optimal trade-off curve between
risk and return for portfolios x € X:

o The risk o and the return r of any admissible portfolio x € X cannot lie above the
optimal CAL:

r S Mt + Smp(:ua Z)U (4>

o [f the SR is maximized by w* € W, then for any 6 < 1, the risk o and the return r of
z = ((1—0)w*,0) lie on the optimal CAL:

r = s + Suplpt, 2o (5)
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Figure 1: Two-fund separation and expected quadratic utility maximization.

This proposition tells us that when lending or borrowing at the risk-free rate is allowed,
the best risk-return trade-off can be achieved by combining the two funds (portfolios):
(w*,0) € R™"!, consisting only of the risky assets, and (0,1) € R™*!, consisting only of
the risk-free asset. For this reason, Proposition 1 is called the two-fund separation theorem,
or the one-fund theorem [37], since it means we need only a single fund of risky assets, to
recreate any point on efficient frontier by combining it with the risk-free asset.

To decide on the mix of the risky portfolio and the risk-free asset, we take into account the
attitude of the investor toward risk. We consider an investor whose utility can be modeled
as an expected quadratic utility function

Ul ) = Ba"a) ~ 2V(Ta) = o [ » } Lo [ P 1 ., (6)

where v > 0 is a positive constant related to the investor’s attitude toward risk and V(z7a) is
the variance of the random variable 27a. For such an investor, the portfolio that maximizes
expected utility can be found by solving the problem

minimize Uz, p, ) (7)
subject to x € X.
This expected utility maximization problem (EQUMP) is a convex problem that can be

solved efficiently [5]. (In particular, when the constraint set X" is polyhedral, this problem
is a convex quadratic program (QP).)



The two-fund separation property allows us to find a closed-form solution for the EQUMP.

Proposition 2. The EQUMP (7) has a solution if and only if the SRMP (2) has a solution.
If w* € W solves the SRMP (2), then the portfolio x* = ((1 — 0*)w*,0*) € R"*', with
Lw Ty — g

V=T )

is the unique solution to (7).

Figure 1 illustrates the basic results in modern portfolio theory given above. The dotted
curve is the optimal optimal indifference curve

r=U"+(v/2)0?, U* =supU(x, i, X),
TEX
consisting of risk-return pairs which achieve the highest level of utility attainable subject
to the asset allocation and budget constraints. The point at which the optimal indifference
curve is tangential to the CML corresponds to the risk and return (o(z*, X), r(z*, p)) of the
portfolio x* = ((1 — 6*)w*, %) that maximizes the expected quadratic utility.

3 Two-fund separation under model mis-specification

We now consider the case when the input parameters in the asset allocation model are not
known, i.e., we take into account model mis-specification.

3.1 Risk and return under model mis-specification

We use Y € R" x S' | to denote the set of possible input parameters. This set could
represent, for example, the set of parameter values that are hard to distinguish from the
baseline or nominal values, based on historical returns. Here S’/ | denotes the set of all n xn
symmetric positive definite matrices; S denotes the set of all n x n symmetric matrices.

With model uncertainty, the risk and return profile of a portfolio = is described by a set
in the risk-return plane. We use P(x) to denote the set of possible risk-return pairs of a
portfolio x = ((1 — @)w, 6), consistent with the uncertainty model U:

P(z) ={(r(z,p), oz, 5)) | (1, 2) € U}.
As the leverage of the risky portfolio w is changed, the set P((1 — 0)w, #) varies as
P((1—0)w,0) = (1—0)P(w) + 6(0, ), (9)

where we use the shorthand notation P(w) = P(w,0), A + (u,v) means the translation of
the set A by the vector (u,v), and A means the scaling of A by a. As the risky portfolio
is more leveraged, the risk and return set of x = ((1 — 0)w, #) moves along a line, and grows
proportionally. Figure 2 illustrates the dispersion effect due to the leverage.
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Figure 2: Risk-return sets of portfolios with different leverages of a portfolio w of
risky assets under model uncertainty.

3.2 Worst-case SR analysis and optimization

We introduce the counterparts of several definitions, such as the SR and CAL, in MV analysis
under model mis-specification. We will then give a review of the minimax result for the SR
proved in [30], along with a geometric interpretation.

We make the following assumption:

inf @l > g 10
B 0> (10)

This assumption means that there exists an admissible portfolio w € W of risky assets whose
worst-case mean excess return is positive.

Worst-case SR analysis

For a given portfolio =, the worst-case SR analysis problem can be formulated as

minimize  S(x, u, X) (11)
subject to (p,X) € U,

in which g and ¥ are the variables and x is fixed. Here, we compute the ‘worst’ (smallest) SR
of the given portfolio when the mean return vector and covariance vary over the set &. The



optimal value of this problem is called the worst-case Sharpe ratio and is denoted Syc(x).
The worst-case SR of a portfolio x is equal to the minimum slope of the lines which connect
(0, ptre) and points in the set P(x):

T = Mot

S = inf .
o(7) (o,rl)IGlP(x) o

Optimal g and 3 for the problem (11) are called a worst-case mean return and a worst-case
covariance of x, respectively.
The worst-case SR satisfies

ch((l - 9)1’, 9) = ch(w>v (12)

for § < 1, where we use the shorthand notation Sy.(w) for Syc(w,0). Thus, the worst-case
SR is invariant with respect to the leverage of the risky portfolio.
The line
7= et + Sye(w)o

has the smallest slope among all CALs computed with model parameters in the set U.
The line is called the worst-case CAL of w. For any 6 < 1, the risk-return set P(z) of
x = ((1 — O)w,0) lies on or above the line and the set and the line meet at the point
(0(z, Bwe), (2, fhwe))-

Figure 2 illustrates the definitions introduced above.

A zero-sum game involving the SR

We consider the continuous zero-sum game in which the investor attempts to choose w from
the convex set W, to maximize the SR, and her opponent attempts to choose (i, %) from
the convex set U, to minimize it. The game is associated with the following two problems:

o Worst-case SR maximization problem. Find an admissible portfolio w that maximizes

the worst-case SR:
maximize  inf S(w,p,)
(n.X2)eu (13)
subject to w € W.

o Worst-case market price of risk analysis problem (MPRAP). Find the least favorable
asset return statistics, over the uncertainty set U, with optimal portfolio weights:

minimize  sup S(w, u, X)
wew (14)
subject to (u,X) € U.

We first address the questions of existence and uniqueness in these two problems. The
worst-case MPRAP (14) always has a solution, which need not be unique. The worst-case
SRMP (13) need not have a solution; but when it has a solution, it is unique. The proofs
are in Appendix A.2.



These two problems lead us to define two robust counterparts of the optimal CAL (3).
In the (o,7) space, the line

r =y + sup inf S(w,p,X)o (15)
weWw (u,X)elU

is called the robust optimal CAL. The line

r= s+ inf sup S(w,p,X)o (16)
(1,Z)eU weW

is the CML of the least favorable asset return statistics and called the least favorable CML.
The minimax inequality or weak minimax property

sup inf S(w,p, ) < inf sup S(w,p,X)
(1,X)eld wew (1, 2)eld wew

holds for any uncertainty set . That is, the slope of the robust optimal CAL is no greater
than that of the least favorable CML. As a consequence, when the inequality is strict, the
portfolio that maximizes the worst-case SR is not the TP of any asset return statistics in U.

The following proposition summarizes the minimax result for the zero-sum game men-
tioned above.

Proposition 3 (Saddle-point property of the SR [30]). Suppose that the uncertainty set U
is compact and convezx, and the assumption (10) holds. Then, the SR satisfies the minimaz
equality
sup inf S(w,u,X)= inf sup S(w,pu,X). (17)
WEW (u,3) €U (1,3) €U WEW
Moreover, if the least favorable pair (u*,3*) has the tangency portfolio w* € W, then the
triple (w*, p*, ¥*) satisfies the saddle-point property

S(w, p*, 3%) < S(w*, ", ¥%) < S(w*, 1, X), YweW, VY(uX)el, (18)

and w* is the unique solution to the worst-case SRMP (13) although there may be multiple
least favorable models.

This proposition tells us that when the uncertainty set I is convex, the two lines (15)
and (16) coincide with each other. When the saddle-point property (18) holds, the slope of
the robust optimal CAL can be written as

sup inf S(w,p,X) = inf sup S(w,u,X) = S(w*, ", X*) = Smp(p*, X).
weW (u,X)eU (B, 2)eld wew

With a convex uncertainty set U, the worst-case MPRAP (14) can be reformulated as
the convex optimization problem

minimize (g — peel + N)TE 7 (0 — gl + A)
subject to (i, X) €U, I e WP,
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in which the optimization variables are p € R", ¥ € S", and A € R". Here W% is the
positive conjugate cone of W,

W ={XeR"| Mw >0, Yw e W}

The details are given in [30]. Since convex problems are tractable, we conclude that there is
a general tractable method for computing the saddle point (if it exists).

The saddle-point property (18) for the SR has a geometric interpretation in the risk-
return space. The risk-return set P(w*) of the portfolio w* lies on or above the robust
optimal CAL, which in turn lies on or above the efficient frontier of the least favorable asset
return statistics (u*, X*):

T > g + S(w, @5, 550 > fone(0), V (o,1) € P(w*).

The lower boundary of the set P(w*) and the efficient frontier of the least favorable asset
return statistics (p*, £*) meet at (o*, %) = (r(w*, u*), o(w*, £*)):

= ot + S, 1, S0 = fese (o).

We conclude that the robust optimal CAL (15) is the CML of the least favorable asset
return statistics (u*, £*) and is tangential to the efficient frontier f,. s+ at the point (o*,77%).
The robust optimal CAL is called the robust CML, and the portfolio that maximizes the
worst-case SR is called the robust tangency portfolio. Figure 3 illustrates the geometric
interpretation given above.

3.3 Robust optimal allocation and two-fund separation

We can observe from the definition of the robust optimal CAL that the set of possible risk-
return pairs, consistent with the assumptions made on the model, of any admissible portfolio
cannot lie entirely above the robust optimal CAL. The following proposition follows from
the observation and (12).

Proposition 4 (Two-fund separation under model uncertainty). For any subset U of R"™ x
S' ., the line (15) is the worst-case efficient frontier in the following sense:

o The risk-return set P((1 —0)w,0) of any admissible portfolio (1 —0)w,0) € X cannot
lie entirely above the robust optimal CAL, that is, there exists a point (o,7) in P((1 —
w, 0) such that

r < pur + sup inf  S(w,p,X)o.
weWw (u,X)elU

o [f the worst-case SRMP (13) has a solution w*, then for any 0 < 1, the risk-return set
of the portfolio ((1 — 0)w*,0) lies above or on the robust optimal CAL:

> py + sup inf  S(w,p,X)o,  (o,7) € P((1 — 0)w*,0).
weW (u,X)eld

11
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Figure 3: Saddle-point property of the Sharpe ratio.

We show how Proposition 4 leads to an extension of the classical two-step asset allocation
process. The extension takes into account not only the attitude of the investor toward risk,
described by the utility function, but also her attitude toward uncertainty, described by the
set U. We assume that the investor has ambiguity or uncertainty aversion, meaning that
she would evaluate an investment strategy according to the expected utility under the worst
case scenario in a set of model parameters. The investor would judge the performance of a
portfolio = with the worst-case expected quadratic utility (over the uncertainty set U)

Usela) = inf Uo. ). (19)
The investor would want to solve the robust counterpart of the expected quadratic utility
problem (7), i.e., the problem of finding the portfolio that maximizes the worst-case SR,

maximize Uy ()

subject to = € X. (20)

The assumption (10) makes sense in worst-case expected quadratic utility maximization.
If there is no admissible portfolio of risky assets whose worst-case mean return is greater than
the return of the risk-free asset, the portfolio (0,1) € R™*" consisting of only the risk-free
asset maximizes the worst-case expected quadratic utility, and so an investor with quadratic
utility and uncertainty aversion would invest only in the risk-free asset, regardless of her
attitude toward risk.

12



The expected quadratic utility function is convex in (u, X) over R™ x S% for fixed
x, and concave in x for fixed (u,X). It follows from the standard minimax theorem for
convex/concave functions that when U is convex and compact, the minimax equality

sup inf U(z,pu,X) = inf supU(z,p,X)
zeX (pu,X)eU (WX)el zeX

holds. From a standard result in minimax theory, when the worst-case EQUMP (20) has a
solution, say z*, it along with the solution (u*,3*) to the worst-case MPRAP (14) satisfies
the saddle-point property

Uz, i, %) < U(a*, p*,35%) < U(x*,p,X), Veed, V(uX)el. (21)
The following proposition describes a closed-form solution to the worst-case EQUMP (20).

Proposition 5. Suppose that the uncertainty set U is conver and compact, and the as-
sumption (10) holds. Then, the worst-case EQUMP (20) has a solution if and only if the
worst-case SRMP (13) has a solution. If w* mazximizes the worst-case SR, then the affine
combination x* = ((1 — 0*)w*,0%) of w* and the risk-free asset, with

1 *T * .
- — 1 W Tt (22)

is the unique solution to (20).

The proof is deferred to Appendix A.3.

This proposition tells us that due to her uncertainty aversion, the investor would hold a
combination of the robust TP (when it exists) and the risk-free asset, regardless of her risk
aversion. The fraction 6* is determined by her attitude toward risk (i.e., the constant ) and
the risk-variance ratio of the robust TP when the asset return statistics are least favorable.

The saddle-point property (21) has a simple geometric interpretation in the risk-return
space. The quadratic curve

r—(y/2)0® = U, (23)

with U* = U((1 — 6*)w*, 6%, u*, ¥*), is the optimal indifference curve when the asset return
statistics are least favorable. We call this curve the robust optimal indifference curve. The
saddle-point property means that the quadratic curve lies entirely above the robust CML
except at the point (o*,r*) = (o(z*, 3*), r(z*, u*)):

fiat + Smp (1", 7)o" = %0*2 +U”
and

frt + Smp (15, XF)o < %02 +U*, o#o".

It also follows that the risk-return set of the portfolio ((1 — 8*)w*,0*) lies on or above the
curve (23),

r— gUQ >U*, Y(o,r) € P((1—0)w*,0%),

13
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Figure 4: Two-fund separation under under model mis-specification and worst-case
expected quadratic utility maximization.

and the lower boundary of the risk-return set and the curve meet at (o*,7*).

Figure 4 illustrates the extension of the theorem given above.

(With the singleton

U = {(u,X)}, it reduces to the illustration of the classical two-fund separation theorem
in figure 1).) The shaded region is the risk-return set P((1 — 6*)w*, 6*) of the robust opti-
mal portfolio ((1 — 6*)w*, §*) that maximizes the worst-case expected quadratic utility. The
dotted curve corresponds to the robust optimal indifference curve r = U* + (v/2)0?.

4 Numerical example

4.1 Setup and computation

We consider a synthetic example with 8 risky assets (n = 8) and

W={weR"|1Tw=1}.

The positive conjugate cone of W is

The risk-free return is u,s = 4.

W ={n1eR"|n>0}

14



The nominal returns ji; and nominal variances 62 of the asset returns are taken as

i = (7.1,6.9,13.7,11.0,14.99,10.4,11.9, 14.7),
& = (9.4,8.1,19.9,14.4,24.6,15.7,15.2, 27.8).

All units here are in percentage. The nominal correlation matrix € is taken as

(1 41 22 28 .11 .19 .19 .02
1 .03 .06 .08 .14 .39 .11
1 .69 .82 .58 .62 0.65

1 .69 81 .58 0.39

M) 8% 8
= 1 86 54 067 | SR
1 50 0.62
1 071
|

(Only the upper triangular part is shown because the matrix is symmetric.) The risk-less
return is u,r = 3. The nominal covariance is
¥ = diag(5)Q diag(a),

where we use diag(z1, .. ., z,) to denote the diagonal matrix with diagonal entries 21, ..., 2.
The risk-less return of the risk-free asset is taken as s = 3. The nominal TP is the TP
computed with the asset return statistics (f, 2).

We now descrine the uncertainty set &44. We assume that the possible variation in the
expected return of each asset is at most 20%:

i — il < 02|, i=1,...,7.
We also assume that the possible variation in each component of the covariance matrix is at
most 20%:
X — Syl < 028, 4i=1,...,7,
and, of course, we require that 3 € S be positive definite. We also assume that the variance

and return of the uniform portfolio w = (1/n)1 (in which a fraction 1/n of budget is allocated
to each asset of the n assets) is known to lie within an ellipse

E = {(U,T‘) eR?*| (r—w"p)*+0.01 (v — zI;Tth))Q < 1}

in the variance-return space.
The least favorable asset return statistics can be found by solving the convex problem
minimize (g — peel +n1)TE (1 — peel + 1)
subject to n >0,
(0" Y, 0" ) € &,
B0 = Byl < 0.225], 4, 5=1,....m,
‘:ul_/j’l| §02|ﬂ1|7 Zzlv"'ana

where 4 € R", ¥ = X1 € R"", and € R, are the variables. This problem can be
reformulated as a semidefinite program, which interior-point methods can solve efficiently.
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nominal SR worst-case SR
nominal TP 0.65 0.11
robust TP 0.58 0.48

Table 1: The nominal and worst-case SR of the two portfolios: nominal and robust
tangency portfolios.

4.2 Numerical results

Table 1 shows the nominal and worst-case SR of the nominal optimal and robust optimal
allocations. In comparison with the nominal optimal TP, the robust TP shows a relatively
small decrease in the SR, in the presence of parameter variation. The SR of the robust TP
decreases about 17% from 0.58 to 0.48, while the SR of the nominal TP decreases about 83%
from 0.65 to 0.11. We see that the nominal performance of the robust TP is not too much
worse to that of the nominal TP, but the robust TP is much more robust than the nominal
TP to parameter variation.

Figure 5 compares the weights of the nominal and robust TPs. The nominal TP has
short positions in some assets, while the robust TP has long positions in all assets. This
figure shows that the nominal TP has some relatively large weights, which is one reason it
is sensitive to variations in the parameters.

Figure 6 shows how the leverage of the risky portfolio varies as the constant  varies.
This proposition shows that uncertainty aversion reduces demand for the risky asset, which
is in line with the result in [38].

Figure 7 compares the nominal expected quadratic utility, computed with the baseline
model, achieved by the nominal optimal and robust optimal portfolios as v varies. Since
the nominal TP maximizes the SR for the baseline model, the combination of the robust
TP and the risk-free asset cannot outperforms the combination of the nominal TP and the
risk-free asset. Figure 8 compares the worst-case expected quadratic utility (EQU) achieved
by the nominal optimal and robust optimal portfolios as v varies. Since the robust TP
maximizes the worst-case SR, the combination of the robust TP and the risk-free asset
should outperforms the combination of the nominal TP and the risk-free asset, which is
confirmed by this figure. The gap is especially large when the risk aversion constant v is
small. We can see a significant improvement brought about by the robust combination. Of
course, the latter is less efficient than the nominal portfolio with the baseline model. Model
uncertainty makes the nominal TP a poor choice over the robust TP.
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Figure 5: Weights of assets in nominal tangency portfolio and robust tangency port-
folio.

robust TR ——

~"nominal TP

<
ot
T

-free asset

frgtion of the risk

_1 1 1 1 1
0.2 0.4 .06 008 1.0 1.2 1.4
coefficient of risk aversion ~

Figure 6: Fraction of the risk-free asset in the nominal optimal and robust optimal
portfolios, depending on the coefficient of risk aversion.
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Figure 7: Nominal expected quadratic utilities of nominal optimal and robust optimal
portfolios depending on the coefficient of risk aversion.
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Figure 8: Worst-case expected quadratic utilities of nominal optimal and robust
optimal portfolios depending on the coefficient of risk aversion.
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5 Conclusions

In this paper, we have described an extension of the two-fund separation theorem to MV
analysis under model mis-specification. The extension tells us that when the uncertainty
model is convex, an investor with quadratic utility and uncertain aversion would hold a
combination of the risk-free asset and the risky portfolio which is the tangency portfolio of
the least favorable asset return statistics in terms of the market price of risk. The fraction
is determined by her attitude toward risk, and the risky portfolio can be found efficiently
using convex optimization.

The two-fund separation property holds for other several standard utility maximization
problems than quadratic utility functions, when the asset returns are jointly normal; the
reader is referred to [10, 2] for more on utility maximization problems compatible with the
two-fund separation property. The two-fund separation property can be extended to certain
types of worst-case utility maximization problems including exponential utility functions,
when the asset returns are jointly normal. An exponential utility function has the form

Ule) = —e ™,

where A is the coefficient of absolute risk aversion. When the asset returns are jointly normal,
the expected exponential utility of a portfolio x is

EU(z"a) = —exp (—(E(:vTa) — ()\2/2)V($Ta))) ,

which is an increasing function of the expected quadratic utility. Therefore, worst-case ex-
pected exponential utility maximization is the same as worst-case quadratic utility maximiza-
tion with v = A2, so the two-fund separation property readily extends. It is an interesting
topic to clarify the class of worst-case utility maximization problems which exhibit the robust
two-fund separation property. The two-fund separation property has also been extended to
dynamic and other settings; see, e.g., [41, 46] to name a few. It is also an interesting topic to
extend the two-fund separation property to other settings while taking into account model
mis-specification and uncertainty aversion.

The two-fund separation property has an important implication for equilibrium prices of
assets, which is known as the CAPM. The extension of the two-fund separation theorem tells
us that as long as investors with uncertainty aversion and quadratic utility have the same
uncertainty model, they would hold a combination of the same portfolio of risky assets and
the risk-free asset, regardless of their risk tolerance. An implication for equilibrium prices of
assets is that under the standing assumptions of the CAPM and the additional assumption
that all investors share the same convex uncertainty model, the robust TP that maximizes
the worst-case SR is the market portfolio. An immediate observation we can make is that the
market portfolio is not necessarily MV efficient when the true model is not least favorable.
An interesting topic is to examine the implications of this observation in terms of uncertainty
premium and build an asset pricing model which takes into account not only risk premium
but also uncertainty premium. Related work in this direction includes [12, 33], which argue
that equity premium can be decomposed into two components, risk premium and uncertainty
premium.

19



Acknowledgments

This material is based upon work supported by the Focus Center Research Program Center
for Circuit & System Solutions award 2003-CT-888, by JPL award 1291856, by the Precourt
Institute on Energy Efficiency, by Army award W911NF-07-1-0029, by NSF award ECS-
0423905, by NSF award 0529426, by DARPA award N66001-06-C-2021, by NASA award
NNXO7AEIIA, by AFOSR award FA9550-06-1-0514, and by AFOSR award FA9550-06-1-
0312.

References

1]

[10]

[11]

V. Bawa, S. Brown, and R. Klein. FEstimation Risk and Optimal Portfolio Choice,
volume 3 of Studies in Bayesian Econometrics Bell Laboratories Series. Elsevier, New
York: North Holland, 1979.

J. Berk. Necessary conditions for the CAPM. Journal of Economic Theory, 73(1):245-
257, 1997.

M. Best and P. Grauer. On the sensitivity of mean-variance-efficient portfolios to
changes in asset means: Some analytical and computational results. Review of Fi-
nancial Studies, 4(2):315-342, 1991.

F. Black and R. Litterman. Global portfolio optimization. Financial Analysts Journal,
48(5):28-43, 1992.

S. Boyd and L. Vandenberghe. Convexr Optimization. Cambridge University Press, 2004.

M. Brandt. Portfolio choice problems. In Y. Ait-Sahalia and L. Hansen, editors, Hand-
book of Financial Econometrics. North-Holland, 2005.

M. Britten-Jones. The sampling error in estimates of mean-variance efficient portfolio
weights. Journal of Finance, 54(2):655-671, 1999.

M. Broadie. Computing efficient frontiers using estimated parameters. Annals of Op-
erations Research, 45:21-58, 1993.

S. Brown. The effect of estimation risk on capital market equilibrium. Journal of
Financial and Quantitative Analysis, 14(2):215-220, 1979.

D. Cass and J. Stiglitz. The structure of investor preferences and asset returns, and
separability in portfolio allocation: A contribution to the pure theory of mutual funds.
Journal of Economic Theory, 2(2):122-160, 1970.

S. Ceria and R. Stubbs. Incorporating estimation errors into portfolio selection: Robust
portfolio construction. Journal of Asset Management, 7(2):109-127, 2006.

20



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

[23]

[24]

[25]

[26]

X.-T. Deng, Z.-F. Li, and S.-Y. Wang. A minimax portfolio selection strategy with
equilibrium. European Journal of Operational Research, 166:278292, 2005.

D. Disatnik and S. Benninga. Shrinking the covariance matrix-Simpler is better. To
appear in Journal of Portfolio Management, 2007.

L. El Ghaoui, M. Oks, and F. Oustry. Worst-case Value-At-Risk and robust portfolio
optimization: A conic programming approach. Operations Research, 51(4):543-556,
2003.

L. Epstein. A definition of uncertainty aversion. Review of Economic Studies, 66(3):579—
608, 1999.

E. Erdogan, D. Goldfarb, and G. Iyengar. Robust active portfolio management. Sub-
mitted, 2006.

F. Fabozzi, P. Kolm, and D. Pachamanova. Robust Portfolio Optimization and Man-
agement. Wiley, 2007.

F. Fabozzi, P. Kolm, D. Pachamanova, and S. Focardi. Robust portfolio optimization.
Journal of Portfolio Management, 34(1):40-48, 2007.

P. Frost and E. Savarino. An emprical Bayes approach to efficient portfolio selection.
Journal of Financial and Quantitative Analysis, 21(3):293-305, 1986.

L. Garlappi, R. Uppal, and T. Wang. Portfolio selection with parameter and model
uncertainty: A multi-prior approach. Review of Financial Studies, 20(1):41-81, 2007.

[. Gilboa and D. Schmeidler. Maxmin expected utility theory with non-unique prior.
Journal of Mathematical Economics, 18:141-153, 1989.

D. Goldfarb and G. Iyengar. Robust portfolio selection problems. Mathematics of
Operations Research, 28(1):1-38, 2003.

R. Green and B. Hollifield. When will mean-variance efficient portfolios be well diver-
sified. Journal of Finance, 47(5):1785-1809, 1992.

R. Grinold and R. Kahn. Active Portfolio Management: A Quantitative Approach
for Producing Superior Returns and Selecting Superior Returns and Controlling Risk.
McGraw-Hill, second edition, 1999.

B. Halld6rsson and R. Tiitiincii. An interior-point method for a class of saddle point
problems. Journal of Optimization Theory and Applications, 116(3):559-590, 2003.

R. Jagannathan and T. Ma. Risk reduction in large portfolios: Why imposing the wrong
constraints helps. Journal of Finance, 58(4):1651-1683, 2003.

21



[27]

28]

[29]

[30]

[31]

[32]
[33]

[34]

P. Jorion. Bayes-Stein estimation for portfolio analysis. Journal of Financial and Quan-
titative Analysis, 21(3):279-292, 1979.

R. Kan and G. Zhou. Optimal portfolio choice with parameter uncertainty. To appear
in Journal of Financial and Quantitative Analysis, 2007.

A. Khodadadi, R. Tiitlincti, and P. Zangari. Optimisation and quantitative investment
management. Journal of Asset Management, 7(2):83-92, 2006.

S.-J. Kim and S. Boyd. A minimax theorem with applications to machine learning, signal
processing, and finance. Revised for publication in SIAM Journal on Optimization.
Available from www.stanford.edu/~boyd/minimax frac.html, 2006.

R. Klein and V. Bawa. The effects of estimation risk on optimal portfolio choice. Journal
of Financial Economics, 3(2):215-231, 1976.

F. Knight. Risk, Uncertainty, and Profit. Houghton Mifflin, New York, 1921.

L. Kogan and T. Wang. A simple theory of asset pricing under model uncertainty.
Manuscript. Available from http://web.mit.edu/lkogan2/www/KoganWang2002.pdf,
2003.

J. Lintner. The valuation of risk assets and the selection of risky investments in stock
portfolios and capital budgets. Review of Economics and Statistics, 47(1):13-37, Febru-
ary 1965.

M. Lobo and S. Boyd. The worst-case risk of a portfolio. Unpublished manuscript.
Available from http://faculty.fuqua.duke.edu/%7Emlobo/bio/researchfiles/
rsk-bnd.pdf, 2000.

M. Lobo, M. Fazel, and S. Boyd. Portfolio optimization with linear and fixed transaction
costs. Annals of Operations Research, 152(1):376-394, 2007.

D. Luenberger. Investment Science. Oxford University Press, New York, 1998.

P. Maenhout. Robust portfolio rules and asset pricing. Review of Financial Studies,
17(4):951-983, 2004.

H. Markowitz. Portfolio selection. Journal of Finance, 7(1):77-91, 1952.

H. Markowitz. Portfolio Selection. John Wiley & Sons, Inc., New York, 1959.

R. Merton. An intertemporal asset pricing model. Econometrica, 41(5):867-887, 1973.
A. Meucci. Risk and Asset Allocation. Springer, 2005.

R. Michaud. The Markowitz optimization enigma: Is ‘optimized’ optimal? Financial
Analysts Journal, 45(1):31-42, 1989.

22



[44]

[45]

[46]

[47]

[50]

[51]

[52]
[53]

[54]

[55]

[56]

L. Pastor. Portfolio selection and asset pricing models. Journal of Finance, 55(1):179—
223, 2000.

L. Pastor and Robert F. Stambaugh. Comparing asset pricing models: An investment
perspective. Journal of Financial Economics, 56:335-381, 2000.

S. Ross. Mutual fund separation in financial theory — the separating distributions.
Journal of Economic Theory, 17:254-286, 1978.

B. Rustem, R. Becker, and W. Marty. Robust minmax portfolio strategies for rival
forecast and risk scenarios. Journal of Economic Dynamics and Control, 24(11-12):1591—
1621, 2000.

B. Rustem and M. Howe. Algorithms for Worst-Case Design and Applications to Risk
Management. Princeton University Press, 2002.

K. Schottle and R. Werner. Towards reliable efficient frontiers. Journal of Asset Man-
agement, 7(2):128141, 2006.

W. Sharpe. Capital asset prices: A theory of market equilibrium under conditions of
risk. Journal of Finance, 19(3):425-442, September 1964.

W. Sharpe. Mutual fund performance. Journal of Business, 39(1):119-138, January
1966.

W. Sharpe. The Sharpe ratio. Journal of Portfolio Management, 21(1):49-58, 1994.

J. Tobin. Liquidity preference as behavior towards risk. Review of Economic Studies,
25(1):65-86, 1958.

R. Tiitiincii and M. Koenig. Robust asset allocation. Annals of Operations Research,
132(1-4):157-187, 2004.

Z. Wang. A shrinkage approach to model uncertainty and asset allocation. Journal of
Financial Economics, 18(2):673-705, 2005.

A. Zellner and V. Chetty. Prediction and decision problems in regression models from
the Bayesian point of view. Journal of the American Statistical Association, 60:608—616,
1965.

23



A Proofs

A.1 Convexity of the feasible asset allocation set X

To establish the convexity, we must show that a convex combination 2 = az® +(1—a)x® of
two admissible portfolios 2™ = ((1—6;)w™, ;) € X and 2® = ((1—0y)w?, 6,) € X, where
61,05 <1 and o € (0,1), belongs to X. The portfolio x can be written as z = ((1 — 0)w, 6),
where 6 = af; + (1 — a)fy < 1 and

a(l—61) (1) (1—a)(1—6) (2)
w— T w o w'?, 0<1
0, 0=1.

Here, a(1 — 6;),(1 — a)(1 — 63) > 0. The case of § = 1 arise only when w™) = (0,1) and
w® = (0,1). In this case, z = (0,1) is admissible, for any value of . When 6 < 1, we have
a(l—=01) (1—a)(1—26y) _ a(l —6y) (1—a)(1—6,y) 1

1-6 1—-106 1—0461—(1—04)92 1—0491—(1—06)92 ’

In other words, w is a convex combination of w™, w® € W, so z € X.

A.2 Existence and uniqueness
Existence of the solution to the worst-case MPRAP (14)

Due to the portfolio budget constraint, we have

T, —

VuTSw
The worst-case MPRAP (14) is equivalent to
L. wT(/JJ - /er)
minimize  sup ————

wew wTYw
subject to (p,X) € U.

From Proposition 1 in [30], we can see that this problem (and hence (14)) has a solution.

Uniqueness of the solution to the worst-case SRMP (13)

Suppose that the worst-case SRMP (13) has two solutions «* and v*, which are not identical.
Due to the portfolio budget constraint, u* and v* are linearly independent. By the definition
of the robust optimal CAL, the risk-return sets of u* and v* lie on and above, but cannot lie
entirely above, the line in the (o, r) space. Let w* = (u*+u*)/2. Using the Cauchy-Schwartz
inequality, we can show that

1
3 <\/u*TEu* + \/U*TZU*> > V! Yw*
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for any positive definite ¥, since u* and v* are linearly independent. We also have

1
W — el = 3 (u*Tu — gl 0T — ,urfl) .

The return of the portfolio w* has the same return as the middle point of the line segment
that connects the two points (Vu*? Su*, u*T p — pysl) and (VT Sv* v*T i — pel) but has a
smaller risk. Since the line segment of any two points from the risk-return sets of ©v* and v*
lies above the robust optimal CAL, we have that any point in the risk-return set of w* lies
strictly above the robust optimal CAL. Therefore,

P S sup inf S(w, 1, ), (o,r) € P(w*).
g weW (u,X)eU

It follows from the compactness of U that

inf LA sup inf S(w,p,>),
(or)eP(w*) O weW (u,X)eld
which contradicts the definitions of u* and v* as the solutions of the worst-case SRMP (13).
We conclude that if the worst-case SRMP (13) has a solution, then it must be unique.

A.3 Proof of Proposition 5

We start by observing that, in the variance-return space, the worst-case expected quadratic
utility of x can be expressed as

Use(x) = inf{r — (v/2)v | (v,7) € Q(x)},

where Q(x) is the set of possible pairs of variance and return of = (over the uncertainty
set U),
Qx) = {(o(z, %)%, r(w, 1) € R* | (1, %) € U}

The set Q(x) is convex, since the variance and return of x are linear in the mean return and
covariance.

In the variance-return space, the worst-case CAL of a portfolio w is transformed into the
strictly concave curve

h(v) = s + ch(w)\/ﬂ.

There is only one line with slope /2 which is tangential to the curve r = h(v), r = (v/2)v+U,
where U is the return-intercept of the line. The tangential point corresponds to the worst-
case risk-return pair (&, 7) of a portfolio 7 = (1 — 0)w, § with § < 1.

We show that

U = sup Uy ((1 — O)w, 9), (24)

o<1

and the supremum is uniquely achieved by the portfolio Z = (1 — #)w, . In the variance-
return space, indifference curves with the same utility are lines with slope v/2. The risk-
return set of any admissible portfolio, which is convex in the variance-return space, cannot
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lie above the curve r = h(v). Since there exists a point (v,r) in Q((1 — #)w, d) such that
r < h(v), we have

r < h(v) < %U+U,
so T — (v/2)v < U. Therefore, for any z = ((1 — 6)w, ) with § < 1,
Uwe(z) = inf U(z,u,X) =inf{r — (v/2)v | (v,7) € Q(z)} < U.

(w,X)eU
We next note that B
Jo+UZh(v), V(o) € Q@)

and

7= %@ + U = h(v), (25)

where © = 2. The set Q(x) is convex, and so its lower boundary is convex. A simple
argument shows that

rz2u+U, V(o) € Q)
To sum up, we have
r> 2040 2h0), V(o) e Q) (26)

From (25) and (26), we can also show that the worst-case utility of Z is U:

( i;l)fqu<£L‘,/L, ¥) = inf{r — (v/2v | (v,r) € Q(z*)} = U.

As a consequence of (24), we have

0 < Sie(w) < Sye(w) = sup Use (1 — O)w, ) < sup Uy((1 — 8)w,0).  (27)

o<1 o<1

This implication can be seen by noting that

Mt + ch(w)\/z < Hrf + SWC(’U_))\/E, v > 07

so the return-intercept of the line with slope v/2 which is tangential to the curve r =
fiet + Swe(W)4/v 18 larger than that of the line with the same slope which is tangential to the
curve r = fiyf + Sye(w)/v.

We consider the case when the worst-case SRMP (13) has a unique solution w*. In the
variance-return space, the robust CML is transformed into the strictly concave curve

R*(v) = pye + sup  inf  S(w, p, B)V0 = ot + Sunp (0, )V 0.
weW (u,X)eld

It follows from Proposition 4 that there is a unique 8* < 1 such that the tangential point on
the curve r = h*(v) corresponds to the risk o* = o(z*,¥*) and the return r* = r(z*, u*) of
a portfolio z* = ((1 — 0)w*, 6%):

r> %v LU > ), Y (o.r) € Q(z%) (28)
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and
r* > %v* +U* > h*(v*), (29)

where v* = ¢0*2. Tt follows from (27) that z* = ((1 — 6*)w*,6*) solves the worst-case
EQUMP (20). Since the solution of the worst-case SRMP (13) is unique, we can see that
(20) has also a unique solution. Moreover, the saddle-point property follows from (28)
and (29).

We next turn to the case when the worst-case SRMP (13) has no solution. Suppose that
the worst-case EQUMP (20) has a solution, say z* = ((1 — 6*)w*, 6*). Then, there is w € W
such that Sy.(w*) < Syc(w) and hence

sup U ((1 — 8)w™, 0) < sup Uy ((1 — 6)w, 0),

o<1 0<1

which along with (27) shows that 2* cannot be a solution to (20). We conclude that the
worst-case EQUMP (20) has no solution.

We complete the proof by deriving the formula (22) for the optimal ratio. The derivative
of h* at v* is equal to the return value of the tangential point (v*, izt + Sp (1%, £*)v/v*), that

is, Sup(p*, $*)/2/v = /2, where Syp(p*,3*) = (wTp* — urf)/(w*TE*w*)l/Q. Therefore,

v* = (Swp (1%, £¥)/7)?, so the tangential point is (Swp (%, ) /7, et + Smp (1%, 2*)2/7) . The
return at the tangential point satisfies the equation

(]_ — 6*)w*T,u* + Q*Mrf = Mt + Smp(u*7 Z*)Q/,y

We solve the equation to obtain (22).
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