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ABSTRACT

The performance of a kernel-based learning algorithm de-
pends very much on the choice of the kernel. Recently, much
attention has been paid to the problem of learning the ker-
nel itself from given training examples. The main empha-
sis has been on formulating the problem as a tractable con-
vex optimization problem. Only for a few very special cases
such as support vector machines are explicit convex formula-
tions known. In this paper, we show that, in a wide variety of
kernel-based learning algorithms, the kernel learning problem
can be formulated as a convex optimization problem which
interior-point methods can solve globally and efficiently. The
kernel learning method is illustrated with a regression prob-
lem that arises in petroleum engineering.

Index Terms— Convex optimization, kernel methods,
machine learning, support vector machine

1. INTRODUCTION

1.1. Kernel-based learning algorithms

Let X denote an arbitrary input or instance set and Y denote
an output set. An input-output pair (x, y) ∈ X × Y is called
an example. We call a symmetric functionK : X × X → R

a kernel (function) if it satisfies the finitely positive semidefi-
nite property: for any x1, . . . , xm ∈ X , the Gram matrixG ∈
R

m×m, defined by Gij = K(xi, xj), is positive semidefi-
nite [1]. Mercer’s theorem tells us that the kernelK implicitly
maps the input set X to a high-dimensional (possibly infinite)
reproducing kernel Hilbert space H equipped with the inner
product 〈·, ·〉H through a mapping φ : X → H: K(x, x′) =
〈φ(x), φ(x′)〉H, ∀x, x′ ∈ X . The mapping is called the fea-
ture mapping, and the space H is called the feature space.
The mapping and space will be denoted as φK andHK , when
it is necessary to indicate the dependence on the kernel K .
We will often write the inner product 〈φK(x), φK (x′)〉H as
φK(x)TφK(x′).
Let (x1, y1), . . . , (xm, ym) ∈ X × Y be given train-

ing examples. In kernel-based regression, from the training
example, we learn a function h : X → Y of the form
h(x) = 〈w, φ(x)〉 + v, where w ∈ H is the weight vector

and v ∈ R is the bias or intercept. This function inter-
polates the given training inputs to predict the value at a
new point x. In kernel-based (binary) classification with
Y = {−1,+1}, we learn a classifier h : X → Y of the form
h(x) = sgn (〈w, φ(x)〉 + v) , where sgn(·) is the signum
function. The function h predicts the binary label of x ∈ X .
A wide variety of kernel-based machine learning algo-

rithms can be formulated as optimization problems of the
form
minimize f0(w

TφK(x1), . . . , w
TφK(xm), ζ, 〈w,w〉HK

)
subject to fi(w

TφK(x1), . . . , w
TφK(xm), ζ, 〈w,w〉HK

)
≤ 0, i = 1, . . . ,M,

(1)
where w ∈ HK and ζ ∈ R

p are the variables and fi are
functions from R

m+p+1 into R. Here, the kernel function is
given and ζ represents auxiliary variables (including the in-
tercept). In this problem, w appears in a very specific form in
the objective and constraint functions: it appears in the inner
product wTφK(xi) with the value of the feature mapping at
xi and in the quadratic form 〈w,w〉HK

.
As an example, we consider the hard margin support vec-

tor machine (SVM), which can be formulated as

minimize 〈w,w〉HK

subject to yi(w
TφK(xi) + v) ≥ 1, i = 1, . . . ,m,

(2)
where the variables are w ∈ HK and v ∈ R. This problem
has the form in (1).
As another example, we consider the problem of finding

the weight vector and intercept that minimize a (regularized)
loss functional

1

m

m∑
i=1

ψ(yi, w
TφK(xi) + v) + λ〈w,w〉HK

, (3)

where w ∈ HK and v ∈ R are the variables, λ > 0 is a reg-
ularization parameter, ψ : R

2 → R is a loss function (e.g.,
the logistic, square, or hinge loss). This problem is called a
convex loss minimization problem when the loss function is
convex. Evidently, this problem has the form in (1) (with no
constraints) in which ζ represents the intercept. Many learn-
ing problems including 1-norm soft margin SVMs, 2-norm
soft margin SVMs, and kernel logistic regression are convex
loss minimization problems.
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1.2. Learning the kernel

Let K be a convex set of positive semidefinite kernel func-
tions. Here, the convexity of K means that for anyK1,K2 ∈
K, θK1 + (1 − θ)K2 ∈ K, ∀ θ ∈ (0, 1). A standard ex-
ample is the set of all affine combinations of given positive
semidefinite kernel functionsK1, . . . ,Kp:

K =

{
K : X ×X → R

∣∣∣∣K =

p∑
i=1

θiKi, 1
T θ = 1, θ ≥ 0

}
.

where 1 is the vector of all ones and θ ≥ 0 means θi ≥
0, i = 1, . . . , p. Often the kernelsKi are chosen to satisfy the
normalization constraint: the Gram matrices computed with
x1, . . . , xm have the same trace. (See [2] for a discussion
on the constraint in the context of generalization performance
analysis.)
The performance of a kernel-based learning algorithm

depends very much on the choice of the kernel. Typically, a
parameterized family of kernels, e.g., the Gaussian or poly-
nomial kernel family, is chosen and the kernel parameters
are tuned via cross-validation or generalized cross-validation.
Recently, much attention has been paid to the problem of
learning the kernel itself along with the classifier from given
training examples. For a kernel-based learning algorithm
which can be formulated as (1), the corresponding kernel
learning problem can be written as

minimize F (K)
subject to K ∈ K,

(4)

where F (K) is the optimal value of (1). In this problem, we
learn the kernel function and the parameters in the kernel-
based algorithm simultaneously from given training exam-
ples. The kernel set K should be chosen properly to provide
good generalization performance. The reader is referred to
[2] for a discussion on the merits of learning the kernel.

1.3. Prior work

There has been a growing interest in learning the kernel from
given training examples; [3, 4, 2, 5]. The main emphasis
has been on formulating kernel learning as a tractable con-
vex problem. However, only for a few very special cases such
as support vector machines and regression are explicit convex
formulations known. For instance, the problem of learning
the kernel in SVMs can be cast as a semidefinite program [2].
In [6], the authors consider the kernel learning problem

that arises in the convex loss minimization problem (3), which
can be formulated as

minimize inf
w∈HK

1

m

m∑
i=1

ψ
(
yi, w

TφK(xi) + v
)

+ λ〈w,w〉HK

subject to K ∈ K,
(5)

where the variable is the kernel function K : X × X → R.
The authors show through functional analysis and convex du-
ality that the loss function in (3) is a convex functional of the

variable, i.e., the kernel function, when the loss function ψ is
convex. Despite the convexity of the loss functional, the ker-
nel learning problem (5) is not tractable in this form, since it is
not computationally feasible to evaluate even the first deriva-
tive of the objective. Several authors have proposed solution
methods for the kernel learning problem (5) such as a semi-
infinite linear programming approach and an iterative method
that alternates between finding the weight vector and intercept
in (3) with a fixed kernel and updating the kernel [7].

1.4. Summary

The main purpose of this paper is to show that under suitable
assumptions on the functions in the objective and constraints
of (1), the corresponding kernel learning problem (4) can be
formulated as a convex optimization problem which interior-
point methods can solve globally and efficiently. We illus-
trate the kernel learning method on a regression problem that
arises in petroleum engineering. This example shows that the
kernel learning method has the potential of replacing cross-
validation in tuning kernel parameters, which is in line with
the observation made in the literature.

2. CONVEX FORMULATION

2.1. An extension of the representer theorem

We can easily extend the representer theorem [1] to (1).

Proposition 1. Suppose that the functions fi that appear in
the objective and constraints in (1) are nondecreasing in the
last argument. If α� and ζ� solve

minimize f0(w
TφK(x1), . . . , w

TφK(xm), ζ, 〈w,w〉HK
)

subject to fi(w
TφK(x1), . . . , w

TφK(xm), ζ, 〈w,w〉HK
)

≤ 0, i = 1, . . . ,m,
w =

∑m
i=1 αiφK(xi),

(6)
then w� =

∑m
i=1 α

�
i φK(xi) and ζ� solve (1).

Suppose that w is in the span of the set

{φK(xi) | i = 1, . . . ,m}.

For any w =
∑m

i=1 αiφK(xi), we then have

wTφK(xi) = eT
i GKα, 〈w,w〉HK

= αTGKα

where GK ∈ R
m×m is the Gram matrix computed with the

kernel K at x1, . . . , xm. It is now clear from Proposition 1
that problem (6) is equivalent to

minimize f0(GKα, ζ, α
TGKα)

subject to fi(GKα, ζ, α
TGKα) ≤ 0, i = 1, . . . ,M,

(7)
with variables are α ∈ R

m. (The two problems are equiv-
alent in the sense that a solution of each problem is readily
determined from a solution of the other.)
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Once the optimal α� is found, for a given point x ∈ X ,
we can compute the inner product 〈w�, φK(x)〉HK

as

〈w�, φK(x)〉HK
=

m∑
i=1

α�
i φ

T
K(xi)φK(x) =

m∑
i=1

α�
iK(xi, x).

To compute the inner product, we evaluate the kernel function
at the pairs (xi, x), i = 1, . . . ,m, not the feature mapping,
which is known as the kernel trick [1].

2.2. Convex formulation

Let G be the set of Gram matrices consistent with the assump-
tion made on the kernel function:

G = {GK

∣∣ K ∈ K} ⊆ S
m
+ .

Here we use S
m
+ to denote the set of all m × m positive

semidefinite matrices. This set is convex since K is. The
kernel learning problem (4) is equivalent to

minimize f0(Gα, ζ, α
TGα)

subject to fi(Gα, ζ, α
TGα) ≤ 0, i = 1, . . . ,M,

G ∈ G,
(8)

in which the variables are α ∈ R
m, ζ ∈ R

p, and G = GT ∈
R

m×m, which are all finite-dimensional.
We will reformulate (8) as a problem in which the vari-

ables are z = Gα and G instead of α and G. Let G† be the
pseudoinverse ofG, which is not necessarily invertible. Then,
GG†G = G, which is a basic property of the pseudoinverse.
We can now see that (7) can be equivalently written as

minimize f0(z, ζ, z
TG†z)

subject to fi(z, ζ, z
TG†z) ≤ 0, i = 1, . . . ,M,

G ∈ G,
(9)

where the variables are z ∈ R
m, ζ ∈ R

p, and G = GT ∈
R

m×m. The two problems are equivalent in the following
sense: if (z�, ζ�, G�) solves (9), then (α�, ζ�, G�) with α� =

G�†z� solves (8), and conversely if (α�, ζ�, G�) solves (8),
then if (α�, ζ�, G�) solves this problem, then (z�, ζ�, G�)
with z� = G�α� solves (9).
The function g(z,G) = zTG†z is convex on R

m × S
m
+

[8, §3]. The convexity can be seen from the fact that for any
t > 0,

xTG†x ≤ t if and only if
[

t x
xT G

]

 0, (10)

which is known as the Schur complement technique. (The
right-hand side is a convex constraint.)
We can easily check the convexity of the equivalent for-

mulation (9). Suppose that the functions fi that appear in the
objective and constraints in (1) are convex and nondecreas-
ing in each argument. Then, the functions fi are convex and
hence (9) is a convex optimization problem. The convexity

of fi follows from the composition rule: h ◦ g is convex if
h : R

p → R is convex and nondecreasing in each element,
and g : R

n → R
p is convex. (See [8, §3] for more on opera-

tions that preserve convexity.)
Using the change of variables described above, we can

show that the kernel learning problem (5) in convex loss min-
imization is equivalent to the convex problem

minimize
∑m

i=1 ψ(yizi + yiv) + λzTG†z
subject to G ∈ G,

(11)

where the variables are z ∈ R
m, v ∈ R, and G = GT ∈

R
m×m. Similarly, we can see that the kernel learning problem
in the hard margin SVM (2) can be reformulated as a convex
problem using the change of variables.
We should point out that the meaning of the convexity

of (11) is different from that of the convexity of the original
kernel learning problem (5); we can solve (9) efficiently using
standard methods for convex optimization such as interior-
point methods, since there is an efficient way of evaluating
the first and second derivatives the objective and the constraint
functions.
When the loss function ψ in (11) is the hinge loss func-

tion, i.e., ψhin(y, u) = max{0, 1 − yu}, in [2], the authors
show that the kernel learning problem (5) can be cast as a
semidefinite program, using an argument based on convex du-
ality and the minimax theorem for convex/concave functions.
The convex problem (11) can be cast as the same semidefinite
program, using the Schur complement technique described
above.

3. NUMERICAL EXAMPLE

In this section we describe an application that arises in
petroleum engineering. One of the main challenges in this
field is to devise an algorithm that optimally chooses the start
and end drilling locations of a well, called a well-placement
scenario, so as to maximize the oil output over a given time
period. For this purpose a number of oil reservoir simula-
tors have been developed that can accurately estimate the
performance of a given well-placement scenario [9]. Such a
simulator can be used in conjunction with a local optimiza-
tion algorithm so as to choose a good well location for a given
reservoir.
The problem with such an approach is that reservoir sim-

ulations are computationally expensive. As the optimization
algorithm explores the space of possible scenarios, it wastes
a significant amount of time by simulating scenarios that are
obviously not of interest. Therefore a better approach is to
compute an estimate of the performance of a new simulation
based on the results of previous simulations and then decide
wether or not it is worth simulating this scenario based on the
performance estimate. This approach is investigated in [10],
which describes an estimator which is a slight variation of k-
nearest neighbors.
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Fig. 1. Relative rms error vs. training set size

We compared the performance of optimal kernel-based
regression with the quadratic loss function ψquad(y, u) =
(y − u)2 against the baseline method used in [10]. The data
set consists of the results obtained from 2000 scenario simu-
lations and there are 11 features including geometric param-
eters; see [10] for the details. We used a convex combina-
tion of 10 Gaussian kernelsK(x, z) =

∑10

i=1 θie
−‖x−z‖2/σ2

i ,
where θi are the nonnegative weights of the kernels to be de-
termined and satisfy 1

T θ = 1. The bandwidths σi were cho-
sen uniformly spaced in the interval [100, 103] on a logarith-
mic scale. The regularization parameter was fixed at λ = 0.2
in all cases. The two performance metrics that we used are
the relative root mean square (rms) error erms(ŷ, ytest) =
‖ŷ − ytest‖2/‖ytest‖2 and the correlation ρ(ŷ, ytest).
In order to compare these methods we varied the training

set size from 10% to 90% of the available data and in each
case trained each method for 15 random training and test set
partitions. Figure 1 shows the average relative rms error and
figure 2 shows the average correlation as a function of training
set size for both methods, as well as for nominal least-squares
regression. Kernel-based regression (with a kernel learned
from the training examples) clearly outperforms the baseline
and least squares (LS) methods in both performance metrics.
Because our kernel learning method can support any convex
loss function in regression, we also applied other convex loss
functions, such as the ε-sensitive quadratic loss and �1 loss,
to the data set, but we found no noticeable performance im-
provement.

4. CONCLUSIONS

We have shown how to formulate a kernel learning prob-
lem in a general kernel-based classification problem as a
convex optimization. Since convex problems are computa-
tionally tractable, optimal kernel selection is tractable in a
wide variety of kernel-based learning algorithms. The convex
formulation given in (9) also serves as a generic prototype
for developing an efficient solution method for learning the
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Fig. 2. Mean correlation vs. training set size

kernel.
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