
3162 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 7, JULY 2008

Filter Design With Low Complexity Coefficients
Joëlle Skaf and Stephen P. Boyd, Fellow, IEEE

Abstract—We introduce a heuristic for designing filters that have
low complexity coefficients, as measured by the total number of
nonzeros digits in the binary or canonic signed digit (CSD) rep-
resentations of the filter coefficients, while still meeting a set of
design specifications, such as limits on frequency response magni-
tude, phase, and group delay. Numerical examples show that the
method is able to attain very low complexity designs with only
modest relaxation of the specifications.

Index Terms—Coefficient truncation, filter design.

I. INTRODUCTION

WE consider a discrete-time filter defined by its transfer
function , where is the set of complex

numbers, and is the vector of (real) coefficients used
to parametrize the transfer function. We refer to (the coefficients
of) as the design parameters or coefficients in the filter. For
example, when the filter is an infinite impulse response (IIR)
filter implemented in direct form, is a rational function with
real coefficients, and are the coefficients in its numerator and
denominator.

We are given a nominal filter design, described by the coeffi-
cient vector , and a set of acceptable filter designs , which
is the set of transfer functions that satisfy our design or perfor-
mance requirements. We define

as the set of coefficient vectors that correspond to acceptable de-
signs. We assume that the nominal filter meets the performance
specifications, i.e., . Our goal is to find that has
lowest (or at least, low) complexity.

The complexity of a vector of filter coefficients is measured
by the function

where gives the complexity of the th coefficient of .
In this paper, we will focus on two complexity measures, even

Manuscript received November 30, 2007; revised January 16, 2008. This
work was supported in part by the Focus Center Research Program Center for
Circuit and System Solutions Award #2003-CT-888, by JPL Award #I291856,
by Army Award #W911NF-07-1-0029, by NSF Award #ECS-0423905, by NSF
Award #0529426, by DARPA Award #N66001-06-C-2021, by NASA Award
#NNX07AEIIA, by AFOSR Award #FA9550-06-1-0514, and by AFOSR
Award #FA9550-06-1-0312. The associate editor coordinating the review of
this manuscript and approving it for publication was Dr. Manuel Davy.

The authors are with the Information Systems Lab, Electrical Engi-
neering Department, Stanford University, Stanford, CA 94305 USA (e-mail:
jskaf@stanford.edu; boyd@stanford.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2008.919386

though the algorithms we describe are more general. In the first
measure, we take to be , the number of 1 s in the
binary expansion of the coefficient . In this case, gives
the total number of 1 s in the filter coefficients, and will be de-
noted . In the second complexity measure, we take
to be , the number of nonzero digits in the canonical
signed digit (CSD) representation of [1], [2], which we will
describe in more detail in Section II-A. In this case, we denote
the complexity measure as .

We can pose our filter design problem as the optimization
problem

minimize

subject to (1)

with variable . The filter design problem (1) is in general
very difficult to solve. With the complexity measure , it
can be cast as a combinatorial optimization problem, with the
binary expansions of the coefficients as Boolean (i.e., {0,1})
variables. In the case of CSD complexity, it can be cast as a
combinatorial optimization problem with the CSD digits taking
ternary values in as discrete variables. In general it
is very difficult to solve this problem exactly (i.e., globally),
even for a relatively small number of coefficients. But finding
the globally optimal solution is not crucial; it is enough to find
a set of filter coefficients with low (if not lowest) complexity.

In this paper we describe a greedy randomized heuristic al-
gorithm for the filter design problem (1). Our method starts
from the nominal design and greedily truncates individual coef-
ficients sequentially, in random order, while guaranteeing per-
formance, i.e., maintaining . We run this algorithm a
few times, taking the best filter coefficients found (i.e., with
least value of) as our final design. Examples show that our
method typically produces aggressively truncated filter designs,
with far lower complexity than the nominal design.

The idea of truncating or simplifying filter coefficients in re-
turn for a small degradation in performance goes back a long
way, at least to [3], [4]. Coefficient truncation subsequently ap-
peared in other fields like speech processing [5] and control [6].
Several methods have been proposed for coefficient truncation:
exhaustive search over possible truncated coefficients [3], suc-
cessive truncation of coefficients and reoptimization over re-
maining ones [4], [7], local bivariate search around the scaled
and truncated coefficients [8], tree-traversal techniques for trun-
cated coefficients organized in a tree according to their com-
plexity [9], [10], coefficient quantization using information-the-
oretic bounds [11], weighted least-squares [12], simulated an-
nealing [13], [14], genetic algorithms [15]–[17], Tabu search
[18], design of optimal filter realizations that minimize coef-
ficient complexity [13]. Other approaches have formulated the
problem as a nonlinear discrete optimization problem [19], or

1053-587X/$25.00 © 2008 IEEE

Authorized licensed use limited to: Stanford University. Downloaded on October 29, 2008 at 13:44 from IEEE Xplore. Restrictions apply.

SKAF AND BOYD: FILTER DESIGN WITH LOW COMPLEXITY COEFFICIENTS 3163

have used integer programming techniques [20]–[22]. Related
research explores filter realization forms that are relatively in-
sensitive to (small) changes in the coefficients (i.e., as occurs
when they are truncated); see, e.g., [23]. A survey of methods
for quantizing lifting coefficients for wavelet filters can be found
in [24].

We should mention one difference between our approach and
essentially all of the work cited above. In the work cited above,
the designer starts with a reference design, i.e., a set of coef-
ficients, of infinite complexity, that gives the desired perfor-
mance. Then some budget of total complexity is decided on.
Then the designer searches for a set of coefficients, over the grid
of coefficients that satisfy the total complexity budget, that min-
imizes some deviation from the reference design. In contrast, we
maintain a design that satisfies the performance specifications;
its complexity decreases as the algorithm proceeds.

II. COEFFICIENT REPRESENTATIONS AND

COMPLEXITY MEASURES

In this section, we describe two number representation sys-
tems, binary and CSD, and the associated complexity measures.

A. Binary and CSD Representation

We will consider numbers that can be represented in
the form

where and are nonnegative integers. In the case of the binary
representation, is the sign of , with (
when); are the bits in the binary expansion of

. In this case, and are the number of bits in the integer
and fractional part of , respectively.

In the case of CSD representation, we have , and
, with for (i.e., the rep-

resentation does not contain any consecutive nonzero digits.) In
this case, and are the number of digits in the integer
and fractional part of , respectively. The CSD representation
can be derived recursively from the binary representation of a
number, by noting that ones in succession, in a binary expan-
sion, is equal to , which can be written using two nonzero
digits and zeros in the CSD representation. As a simple
example, we have (in its binary
representation), which is equal to , its CSD represen-
tation.

We will assume that the nominal filter coefficients can be rep-
resented in binary or CSD form, with a given value of .

B. Complexity Measures

While it is possible to consider a variety of complexity mea-
sures, we will focus on two: The number of nonzero bits (digits)
in the binary (CSD) representation of the coefficients. We define

where are the bits in the binary expansion of . This com-
plexity measure is the number of adders needed to implement
multiplication by using a shift and add method. We will de-
note the associated complexity measure of the full coefficient
vector as , and refer to it as the binary complexity of .

The corresponding complexity measure for the CSD repre-
sentation is the number of nonzero digits in the CSD represen-
tation of ,

where are the digits in the CSD representation of . The as-
sociated complexity measure of the full coefficient vector will
be denoted . We will refer to this as the CSD complexity
of .

III. FILTER PARAMETRIZATION

We assume that the transfer function and its derivative
with respect to , , are continuous functions of for on
the unit circle. (In almost all cases of interest, has a much
more special form: it is typically rational in and , and for each

, bilinear in . But we will not exploit these properties.) While
it is often the case, we do not assume that the parametrization
is unique, i.e., that different filter coefficient vectors give rise to
different transfer functions. In other words, we allow the filter
to be over parametrized.

We give some standard examples below; for more details on
each of these filter structures, see, e.g., [25].

FIR filter: A finite impulse response (FIR) filter has transfer
function

Here we have filter coefficient vector
, with .

IIR filter in direct form I or II: The transfer function of an
IIR filter is

Here we have ,
with .
IIR filter in cascade form: In cascade form, the transfer
function is written as a product of second-order sections,
i.e.

Here we have

and with .

Authorized licensed use limited to: Stanford University. Downloaded on October 29, 2008 at 13:44 from IEEE Xplore. Restrictions apply.

3164 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 7, JULY 2008

IIR filter in parallel form: In this form the transfer function
is written as a sum of second-order sections

Here we have

and where .
IIR filter in lattice-ladder form: An IIR filter in lattice-
ladder form, with lattice coefficients , ,
and ladder coefficients , , where

, has the state-space form

where is the input, is the output,
is the state and

...
...

...
...

. . .

...

...

...

The transfer function is . Here
we have , with

.

IV. FILTER SPECIFICATIONS

Our algorithm requires only the ability to check whether a
given filter coefficient vector is acceptable, i.e., whether ;
the details of this procedure do not matter.

We list some simple examples of specifications, and methods
for checking that they hold. One basic requirement is that
should be stable, which is easily checked by computing its
poles, or the eigenvalues of the dynamics matrix in a state-space
realization.

Performance specifications are typically given as a collection
of constraints on the transfer function and (its
derivative with respect to), evaluated on the unit circle, i.e.,

with . Typical specifications are lower and
upper bounds on the magnitude, phase, and group delay

(2)

where is the group delay of the filter

The lower and upper bounds , , , , , and
are given functions from into . The inequalities in

(2) must hold for all . They can be verified in practice
by appropriately fine sampling, i.e., by checking that they hold
(possibly with some margin) at a finite number of frequencies.

V. THE ALGORITHM

A. High Level Algorithm

Our algorithm is a greedy randomized heuristic, which is ini-
tialized with the nominal design, which we assume has finite
(but possibly large) complexity. (This can be ensured simply
rounding the coefficients of the nominal design to, say,

.) At each step an index is chosen, and
all filter coefficients except are fixed. We use the procedure

(described below) to find a value of with (possibly)
lower complexity, while still satisfying the design specifica-
tions. We have experimented with various methods for choosing
the index in each step, and found the best results by orga-
nizing the algorithm into passes, each of which involves up-
dating each coefficient once; in each pass, the ordering of the
indices is chosen randomly. The algorithm stops when the filter
coefficient vector does not change over one pass.

At the highest level, the algorithm has the following form:

repeat

choose a permutation of

for to

until

Since the algorithm is random, it can and does converge to
different points in different runs. It can be run several times,
taking the best filter coefficient vector found as our final choice.

The algorithm is guaranteed to converge in a finite number
of steps, since in each pass for which (i.e., we ac-
tually change some coefficient), the total complexity decreases:

. (Since takes on nonnegative integer values,
it cannot decrease more than times.)

We now describe the procedure , which takes as input
a coefficient vector and an index , and
returns a value with that satisfies , where

Authorized licensed use limited to: Stanford University. Downloaded on October 29, 2008 at 13:44 from IEEE Xplore. Restrictions apply.

SKAF AND BOYD: FILTER DESIGN WITH LOW COMPLEXITY COEFFICIENTS 3165

. The procedure is
as follows.

if ,

; exit

,

repeat

if , exit

else

if ,

else

If , it already has the minimum possible complexity (zero)
so we leave it as it is. Otherwise, we maintain an open interval

, which will contain , our tentative guess at a suitable
value, and (the current value, which satisfies). The pro-
cedure returns a number in the open interval whose
complexity is less than or equal to ; it will be described in
detail later. By definition, we have .
We check if , and if so, we quit. Otherwise we change
either or to be , so we once again have an open interval
that contains . This loop can execute only a finite number of
times; one simple upper bound is the number of numbers with
precision in that satisfy .

B. Truncation Methods

We describe how to compute for the com-
plexity measures and . Here have precision

and satisfy .
Given a number written as , we introduce

the notation to denote

where is an integer satisfying . (Informally,
is , truncated to bits or digits.) It is easy to show that, for
integers satisfying ,

It is also obvious that .

We assume that and are represented as

respectively.
We describe a general procedure that returns a number

in with complexity less than or equal to . This pro-
cedure can be used if the complexity measure is or . The
number can be found as follows.

if

, exit

for to

if and

exit

The procedure starts by examining whether and have
opposite signs: if they do, it returns 0, which is obviously the
number in with smallest complexity. Otherwise, for

, it computes the numbers and and set to
be their average. Note that is the number with the smallest
number of 1 s in . The procedure then exits if

lies in and has complexity less than or equal to that of .
If is reached, must (and does) return since,
in that case, it is the only number with precision in
and therefore the one with smallest complexity in that interval.
(Note that we cannot have for
because that would imply that and, therefore, that

or , which is not allowed).
To illustrate how the procedure works, we consider a

numerical example. Let , ,
and . We take and . In the binary
representation case, we have

Since and are of the same sign, does not return 0. It
instead calculates the following quantities shown in the equation
at the bottom of the page. For ,1,2,3,4, does not lie
in . However, for , it does. Since

, returns
.

Authorized licensed use limited to: Stanford University. Downloaded on October 29, 2008 at 13:44 from IEEE Xplore. Restrictions apply.

3166 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 7, JULY 2008

In the CSD representation case, we have

Since and are of the same sign, does not return 0. It
instead calculates the following quantities:

For , does not lie in . However, for , it
does. Since , returns

.

C. Complexity Analysis

We can give a worst-case complexity analysis of our algo-
rithm for the cases where the binary complexity measure
is used and the CSD complexity measure is used. As afore-
mentioned, the main loop can be executed at most
times. Each pass over the main loop calls times. We
will show that, when is used, the number of passes over
the loop in is at most , where

. Here is the maximum number of bits in
the integer part of the initial coefficients, and is the max-
imum number of bits in the fractional part of the initial coeffi-
cients. In case is used, the number of passes over the loop
in is at most . This means that the oracle for
testing membership in (i.e., testing that a given filter design
satisfies the specifications) is called at most

when the binary complexity measure is used and at most
when the CSD complexity measure is

used. In both cases, our proposed algorithm therefore has poly-
nomial-time complexity in the problem data (i.e., the filter co-
efficients).

We will now derive the upper bound on the number of
passes over the loop in in the case where is the
complexity measure. Without loss of generality, let
be called on a coefficient which can be written as

, where . Since ,
we have . The worst-case scenario occurs when

, i.e., when fails to find a number of
lesser complexity than , in the interval , that
corresponds to an acceptable filter design. The following would
occur: in the first pass over the loop in , 0 is returned
by and fails to induce an acceptable filter design. Next,
the algorithm would go over all numbers in with

, and fail to find an acceptable filter design: there
are such numbers in . Let be
the largest number in with . Note that
and share a 1 in the th position of their binary expansion.
This implies that there are numbers in with

. Let be the largest number in with
. The same analysis can be carried out to show

that the algorithm will then look at numbers of com-
plexity 3 in , and so on until the algorithm stops. This

happens when it looks for the lowest complexity coefficient in
: this number is . We can therefore conclude

that the number of passes over the loop in is no more
than where

(since).
We follow a similar methodology to derive the upper bound

on the number of passes over the loop in in the case
where is the complexity measure. Without loss of gener-
ality, let be called on a coefficient which can
be written as , where
and . The worst-case scenario occurs when

, i.e., when fails to find a number of
lesser complexity than , in the interval , that
corresponds to an acceptable filter design. The following would
occur: in the first pass over the loop in , 0 is returned
by and fails to induce an acceptable filter design. Next,
the algorithm would go over all numbers in with

, and fail to find an acceptable filter design: there
are such numbers in . Let .
Note that and share the same digit . The coefficient

belongs to the interval if , or to the interval
otherwise. Let be the interval in which falls.

There are at most numbers in with .
Let . The same analysis is carried out to show
that the algorithm will then look at at most
numbers of complexity 3 in . (Here is either or

). This continues until the algorithm stops, which
happens when it looks for the lowest complexity coefficient in

: this number is . We can, therefore, conclude that the
number of passes over the loop in is no more than
where

(Since).
In numerical experiments, we have found that the ac-

tual number of steps required by our algorithm is always
far smaller than the upper bounds derived in this sec-
tion, i.e., when is used and

when is used.

VI. EXAMPLES

A. IIR Filter Design

For each of our examples we use the same set of filter speci-
fications, with frequency response magnitude bounds

otherwise

otherwise.

Authorized licensed use limited to: Stanford University. Downloaded on October 29, 2008 at 13:44 from IEEE Xplore. Restrictions apply.

SKAF AND BOYD: FILTER DESIGN WITH LOW COMPLEXITY COEFFICIENTS 3167

TABLE I
NOMINAL AND TRUNCATED FILTER COEFFICIENTS FOR DIRECT

FORM IMPLEMENTATION

This corresponds to a low-pass filter, with pass band ,
stopband , maximum passband ripple 1 dB, and
minimum stopband attenuation 35 dB.

The nominal filter has the form

with . The nominal filter coeffi-
cients are found using the spectral factorization method [26],
[27], by maximizing the minimum stopband attenuation subject
to maximum passband ripple 0.8 dB. This problem can be cast
as a convex optimization problem, so we can easily obtain the
globally optimal solution [28]. This globally optimal solution
achieves a minimum stopband attenuation of 37.5 dB. Thus, our
specifications involve relaxing the passband ripple from 0.8
to 1 dB, and relaxing the stopband attenuation from 37.5 to
35 dB. In particular, our set is quite small, since our specifi-
cations are quite close to globally optimal.

To find the nominal coefficients for each of our examples,
we first realize our nominal filter in the given form, and take

(i.e., round the resulting coefficients to 40 bits in
their fractional part).

IIR filter in direct form: The nominal filter coefficients have
binary complexity . We run our algorithm
100 times. The best result has binary complexity ,
which is around 4.3 1 s per coefficient; see Table I. The average
binary complexity of the designs returned by the algorithm over
these 100 random runs is around 32 1 s.

The nominal filter coefficients have CSD complexity
. We run our algorithm 100 times. The

best result has complexity , which is around
3.3 nonzero digits per coefficient; see Table I. The average CSD
complexity of the designs returned by the algorithm over these
100 random runs is around 27 nonzero digits.

Fig. 1 shows the frequency response magnitude of the
nominal filter and the filters with binary and CSD truncated
coefficients.

IIR filter in cascade form: The nominal transfer function is
expressed in cascade form with second-order sections

Fig. 1. Magnitude responses of the nominal filter (blue), the filter with coeffi-
cients truncated according to� (red), and the filter with coefficients truncated
according to � (green), for direct form implementation.

TABLE II
NOMINAL AND TRUNCATED FILTER COEFFICIENTS FOR CASCADE

FORM IMPLEMENTATION

with . (This
cascade form is over parametrized; there are many choices of
coefficients to realize the nominal transfer function. We simply
choose one reasonable realization.)

The binary complexity of our nominal cascade design is
. The best design obtained after 100 random

runs of our algorithm achieves a binary complexity of
, around 2 1 s per coefficient; see Table II.

The average binary complexity of the designs returned by the
algorithm over these 100 random runs is around 32 1 s.

The CSD complexity of our nominal cascade design is
. The best design obtained after 100 random

runs of our algorithm achieves a complexity of ,
around 2 nonzeros digits per coefficient; see Table II. The av-
erage CSD complexity of the designs returned by the algorithm
over these 100 random runs is around 23 nonzero digits.

IIR filter in lattice-ladder form: The nominal transfer func-
tion is expressed in lattice-ladder form, with lattice coefficients

, and ladder coefficients , as described in
Section III, i.e., .

The binary complexity of our nominal lattice-ladder de-
sign is . The best design obtained after
100 random runs of our algorithm achieves a binary complexity
of , around 3 1 s per coefficient; see Table III.

Authorized licensed use limited to: Stanford University. Downloaded on October 29, 2008 at 13:44 from IEEE Xplore. Restrictions apply.

3168 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 7, JULY 2008

TABLE III
NOMINAL AND TRUNCATED FILTER COEFFICIENTS FOR

LATTICE-LADDER IMPLEMENTATION

The average binary complexity of the designs returned by the
algorithm over these 100 random runs is around 24 1 s.

The CSD complexity of our nominal lattice-ladder design is
. the best design obtained after 100 random

runs of our algorithm achieves a CSD complexity of
, i.e., 2 nonzero digits per coefficient; see Table III. The av-

erage CSD complexity of the designs returned by the algorithm
over these 100 random runs is around 15.5 nonzero digits.

Comparison with simple truncation: We can compare the re-
sults obtained above with the simple approach of truncating the
binary expansions of the coefficients to precision (i.e., with

bits in their fractional part), choosing as small as possible
while still maintaining . For the direct form implemen-
tation, the largest value of for which is 14, and the
binary complexity of the resulting design is ; its
CSD complexity is . For the cascade form imple-
mentation, the largest value of with is 12, and which
gives and . For the lattice-ladder
implementation, we have , with 1 s, and

. In each case, our method finds a filter coefficient
vector with far smaller complexity.

B. FIR Filter Design

This example is based on the low-pass filter specifications
given in Example 2 of [8]: a 59-tap linear FIR filter, with
passband , stopband , maximum passband
ripple 0.2 dB, and minimum stopband attenuation 60 dB.
The nominal filter coefficients are found using the spectral
factorization method [26], [27], by maximizing the minimum
stopband attenuation subject to maximum passband ripple

0.15 dB. The globally optimal solution achieves a minimum
stopband attenuation of 71.2 dB. Thus, our specifications
involve relaxing the passband ripple from 0.15 to 0.2 dB,
and relaxing the stopband attenuation from 71.2 to 60 dB.

With the nominal coefficients rounded to 40 bits, the nom-
inal filter coefficients have CSD complexity .
We run our algorithm 100 times. The best result has complexity

, which is around 1.2 nonzero digits per coef-
ficient. In constrast, the procedure described in [8] failed to
find a 59-tap FIR filter, with quantized coefficients, that sat-
isfies the specifications. They repeated their procedure with a
(longer) 60-tap filter, however, and found a filter that satisfies the
specifications, with complexity , which is around
1.5 nonzero digits per coefficient.

Fig. 2. Magnitude responses of the 59-tap nominal filter (blue), the 59-tap filter
with coefficients truncated according to� (red), and the 60-tap filter obtained
in [8] (green).

Fig. 2 shows the frequency response magnitude of the 59-tap
nominal filter, the 59-tap filter that our truncation procedure re-
turns, and the 60-tap filter obtained in Example 2 of [8].

VII. CONCLUSION

We have presented an algorithm for designing filters with low
coefficient complexity that meet a set of design specifications.
We have shown, through numerical examples, that the method
presented is able to return designs with aggressively truncated
coefficients even with very modest relaxation of the specifica-
tions. More complex specifications, such as absence of overflow
induced instability, can be handled, for example using a Lya-
punov-based nonlinear stability certificate; see, e.g., [29].

We mention that when the method is applied to over-
parametrized, or otherwise nonminimal nominal realizations,
the results can be a final filter design with lower complexity
than if a lower order, or uniquely parametrized, form is used.
For example, when we apply the method with a sixth-order
nominal design (say), we can end up with a sixth-order filter
with fewer 1 s in its coefficients than when we start with a 4th
order filter, with the same specifications in each case.

Our final comment concerns the difference between binary
and CSD complexity measures. Although we have described a
customized method for CSD coefficient truncation, which per-
forms well, we should mention that a simpler approach leads
to filter designs with nearly as small CSD complexity: We first
design the filter for low binary complexity, and then simply ex-
press the resulting coefficients in CSD form.

ACKNOWLEDGMENT

The authors would like to thank several anonymous reviewers
for helpful suggestions.

REFERENCES

[1] S. Arno and F. Wheeler, “Signed digit representations of minimial
Hamming weight,” IEEE Trans. Computers, vol. 42, no. 8, pp.
1007–1010, 1993.

[2] F. Xu, C. Chang, and C. Jong, “Hamming weight pyramid: A new in-
sight into canonical signed digit representation and its applications,”
Comput. Elect. Eng., vol. 33, no. 3, pp. 195–207, 2007.

Authorized licensed use limited to: Stanford University. Downloaded on October 29, 2008 at 13:44 from IEEE Xplore. Restrictions apply.

SKAF AND BOYD: FILTER DESIGN WITH LOW COMPLEXITY COEFFICIENTS 3169

[3] E. Avenhaus, “On the design of digital filters with coefficients of lim-
ited word length,” IEEE Trans. Audio Electroacoust., vol. 20, no. 3, pp.
206–212, 1972.

[4] F. Brglez, “Digital filter design with short word-length coefficients,”
IEEE Trans. Circuits Syst., vol. 25, no. 12, pp. 1044–1050, 1978.

[5] A. Gray and J. Markel, “Quantization and bit allocation in speech pro-
cessing,” IEEE Trans. Acoust., Speech, Signal Process., vol. 24, no. 6,
pp. 459–473, 1976.

[6] R. Rink and H. Chong, “Performance of state regulator systems with
floating point computation,” IEEE Trans. Autom. Control, vol. 14, pp.
411–412, 1979.

[7] Y. Lim and Y. Yu, “A successive reoptimization approach for the de-
sign of discrete coefficient perfect reconstruction lattice filter bank,” in
IEEE Int. Symp. Cicuits Syst., 2000, vol. 2, pp. 69–72.

[8] H. Samueli, “An improved search algorithm for the design of multi-
plierless FIR filters with powers-of-two coefficients,” IEEE Trans. Cir-
cuits Syst., vol. 36, no. 7, pp. 1044–1047, 1989.

[9] J. Lee, C. Chen, and Y. Lim, “Design of discrete coefficient FIR digital
filters with arbitrary amplitude and phase response,” IEEE Trans. Cir-
cuits Syst. II, Analog Digit. Signal Process., vol. 40, no. 7, pp. 444–448,
1993.

[10] Y. Lim and Y. Yu, “A width-recursive depth-first tree search approach
for the design of discrete coefficient perfect reconstruction lattice filter
bank,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol.
50, pp. 257–266, 2003.

[11] P. Frossard, P. Vandergheynst, R. Figueras, and M. Kunt, “A posteriori
quantization of progressive matching pursuit streams,” IEEE Trans.
Signal Process., vol. 52, no. 2, pp. 525–535, 2004.

[12] Y. Lim and S. Parker, “Discrete coefficient FIR digital filter design
based upon an LMS criteria,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 30, no. 10, pp. 723–739, 1983.

[13] S. Chen and J. Wu, “The determination of optimal finite precision con-
troller realizations using a global optimization strategy: A pole-sensi-
tivity approach,” in Digital Controller Implementation and Fragility: A
Modern Perpective, R. Istepanian and J. Whidborne, Eds. New York:
Springer-Verlag, 2001, ch. 6, pp. 87–104.

[14] N. Benvenuto, M. Marchesi, G. Orlandi, F. Piazza, and A. Uncini, “Fi-
nite wordlength digital filter design using an annealing algorithm,” in
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), 1989, pp.
861–864.

[15] A. Fuller, B. Nowrouzian, and F. Ashrafzadeh, “Optimization of FIR
digital filters over the canonical signed-digit coefficient space using
genetic algorithms,” in Proc. 1998 Midwest Symp. Circuits Syst., 1998,
pp. 456–459.

[16] P. Gentili, F. Piazza, and A. Uncini, “Efficient genetic algorithm de-
sign for power-of-two FIR filters,” in Int. Conf. Acoust., Speech, Signal
Process. (ICASSP), 1995, pp. 1268–1271.

[17] R. Istepanian and J. Whidborne, “Multi-objective design of finite word-
length controller structures,” in Proc. Congress on Evolut. Comput. ,
1999, vol. 1, pp. 61–68.

[18] S. Traferro, F. Capparelli, F. Piazza, and A. Uncini, “Efficient allo-
cation of power-of-two terms in FIR digital filter design using Tabu
search,” in Int. Symp. Circuits Syst. (ISCAS), 1999, pp. III-411–III-414.

[19] B. Wah, Y. Shang, and Z. Wu, “Discrete lagrangian methods for opti-
mizing the design of multiplierless QMF banks,” IEEE Trans. Circuits
Syst. II, vol. 46, no. 9, pp. 1179–1191, 1999.

[20] D. Kodek, “Design of optimal finite wordlength FIR digital filters using
integer programming techniques,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 28, no. 3, pp. 304–308, 1980.

[21] Y. Lim and S. Parker, “FIR filter design over a discrete powers-of-two
coefficient space,” IEEE Trans. Acoust., Speech, Signal Process., vol.
31, no. 3, pp. 583–591, 1983.

[22] Q. Zhao and Y. Tadokoro, “A simple design of FIR filters with
powers-of-two coefficients,” IEEE Trans. Circuits Syst., vol. 35, no. 5,
pp. 566–570, 1988.

[23] T. Hilaire, P. Chevrel, and J. Whidborne, “A unifying framework for
finite wordlength realizations,” IEEE Trans. Circuits Syst. I, Reg. Pa-
pers, vol. 54, no. 8, 2007.

[24] S. Barua, K. Kotteri, A. Bell, and J. Carletta, “Optimal quantized lifting
coefficients for the 9/7 wavelet,” in IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), 2004, vol. 5, pp. V-193–V-196.

[25] A. Oppenheim and R. Schafer, Discrete-Time Signal Processing. En-
glewood Cliffs, NJ: Prentice-Hall, 1989.

[26] L. Rabiner, N. Graham, and H. Helms, “Linear programming design
of IIR digital filters with arbitrary magnitude function,” IEEE Trans.
Signal Process., vol. 22, no. 2, pp. 117–123, 1974.

[27] S. Wu, S. Boyd, and L. Vandenberghe, “FIR filter design via semidefi-
nite programming and spectral factorization,” in IEEE Conf. Decision
and Control, 1996, pp. 271–276.

[28] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge ,
U.K.: Cambridge University Press, 2004.

[29] J. Skaf and S. Boyd, “Controller coefficient truncation using Lyapunov
performance certificate,” in Proc. Europ. Control Conf., 2007, pp.
4699–4706.

Joëlle Skaf received the Bachelor of Engineering de-
gree in computer and communications engineering
from the American University of Beirut in 2003, and
the Master of Science degree in electrical engineering
from Stanford University, Stanford, CA, in 2005.

She is a graduate student pursuing the Ph.D. degree
in electrical engineering at Stanford University. Her
current interests include convex optimization and its
applications in control theory, machine learning, and
computational finance.

Stephen P. Boyd (S’82–M’85–SM’97–F’99) re-
ceived the A.B. degree in mathematics (summa cum
laude) from Harvard University, Cambridge, MA, in
1980, and the Ph.D. degree in electrical engineer and
computer science from the University of California,
Berkeley, in 1985.

He is the Samsung Professor of Engineering in the
Information Systems Laboratory, Electrical Engi-
neering Department, Stanford University, Stanford,
CA. His current interests include convex program-
ming applications in control, signal processing,

and circuit design. He is the author of Linear Controller Design: Limits of
Performance (with C. Barratt, 1991), Linear Matrix Inequalities in System and
Control Theory (with L. El Ghaoui, E. Feron, and V. Balakrishnan, 1994), and
Convex Optimization (with L. Vandenberghe, 2004).

Dr. Boyd received an ONR Young Investigator Award, a Presidential Young
Investigator Award, and the 1992 AACC Donald P. Eckman Award. He has re-
ceived the Perrin Award for Outstanding Undergraduate Teaching in the School
of Engineering, and an ASSU Graduate Teaching Award. In 2003, he received
the AACC Ragazzini Education award. He is a a Distinguished Lecturer of the
IEEE Control Systems Society.

Authorized licensed use limited to: Stanford University. Downloaded on October 29, 2008 at 13:44 from IEEE Xplore. Restrictions apply.

