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Abstract The ε-suboptimal set Xε for an optimization problem is the set of feasible
points with objective value within ε of optimal. In this paper we describe some basic
techniques for quantitatively characterizing Xε , for a given value of ε, when the orig-
inal problem is convex, by solving a modest number of related convex optimization
problems. We give methods for computing the bounding box of Xε , estimating its
diameter, and forming ellipsoidal approximations.

Quantitative knowledge of Xε can be very useful in applications. In a design prob-
lem, where the objective function is some cost, large Xε is good: It means that there
are many designs with nearly minimum cost, and we can use this design freedom to
improve a secondary objective. In an estimation problem, where the objective func-
tion is some measure of plausibility, large Xε is bad: It means that quite different
parameter values are almost as plausible as the most plausible parameter value.
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1 The ε-suboptimal set

We consider the general convex optimization problem

minimize f (x)

subject to x ∈ C (1)

where x ∈ Rn is the optimization variable, f is the (convex) objective function, and
C is the (closed convex) feasible set. We assume that p", the optimal value of the
problem, is finite, and achieved by at least one point. For ε ≥ 0, we say that x is
ε-suboptimal if x ∈ C and f (x) ≤ p" + ε. We will let Xε denote the set of all ε-
suboptimal points,

Xε = {x ∈ C | f (x) ≤ p" + ε}, (2)

which we call the ε-suboptimal set. When ε = η|p"|, we refer to Xε as the 100η%-
suboptimal set. The set of optimal points is X0; the problem (1) has a unique optimal
point if and only if X0 is a singleton, i.e., X0 = {x"}. The ε-suboptimal set Xε is
convex, and satisfies Xδ ⊇ Xε for δ ≥ ε.

At the crudest level, we can distinguish between two cases. If Xε is small, we say
that the problem (1) has a strong minimum. When Xε is large, we say that the problem
has a soft minimum or a weak minimum. These are vague labels, since they depend
on what is meant by ‘small’ or ‘large’, as well what value of ε is used. (We will see
that the term sharp minimum, however, has a formal definition given below.)

1.1 Our goal

We are interested in an approximate but quantitative characterization of Xε , for some
particular value (or values) of ε. As examples, we might like to know how big the
ε-suboptimal set is, or in which directions (or along which coordinates) it extends
far, and in which directions it does not. Our focus will be on techniques that can be
used in practical problems, and not on the analysis, or any mathematical details.

In this note we show how several useful quantitative measures of Xε can be com-
puted, by solving a modest number of convex optimization problems. The bounding
box, which gives the range of each variable xi over Xε , can be computed exactly;
we will also describe methods for finding approximations of the maximum deviation
from x" and the diameter of Xε , and ellipsoidal approximations of Xε .

The techniques we describe rely on basic ideas and methods of convex analysis
and optimization (see, e.g., Ben-Tal and Nemirovski 2001; Boyd and Vandenberghe
2004; Nesterov 2003), but we have not seen them described in the context of subopti-
mal set characterization. Nevertheless, we feel that these techniques are very useful,
and should be widely and routinely applied in practical problems.

1.2 Why

We mention here some general situations in which we might be interested in charac-
terizing Xε . First suppose that the problem (1) is a decision or design problem: The
variables xi are values that we can choose, C is the set of acceptable designs, and f (x)
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is some cost associated with the design or decision x. If Xε is small (i.e., the prob-
lem (1) has a strong minimum), we conclude that there are few designs that are nearly
minimum cost; we gain little design freedom by allowing ε-suboptimal designs. On
the other hand, if Xε is large (i.e., the problem (1) has a weak minimum), we conclude
that there are many designs that achieve nearly optimum cost. In this case, we may
wish to consider optimizing a secondary objective, or taking some other advantage of
the large set of design choices available to us, if we accept ε-suboptimal cost.

Now suppose that the problem (1) is some kind of inversion or estimation prob-
lem: The variables xi are parameters that we wish to estimate, C is the set of possible
parameter values, and f (x) gives the implausibility of the value x, given some ob-
servations and prior information. An optimal point x" is a most plausible point, and
therefore a natural one to choose as an estimate of the true value of the parameter.
In this setting, ε-suboptimal points correspond to parameter values that are almost
as plausible as the most plausible point. In this case, if Xε is small, we conclude that
only parameters near x" have near maximum plausibility, which suggests we can have
high confidence in our estimate x". On the other hand, if Xε is large, we conclude
that parameter values far from x" explain the observations almost as well as x"; thus,
we should have low confidence in the estimate x". Depending on exactly what f is,
we can sometimes interpret Xε as a confidence set for the estimate x".

1.3 Local analysis

Our interest here is obtaining quantitative information about Xε , for a particular prob-
lem instance and a particular value of ε, and not qualitative information about what
Xε looks like, for example, in the limit as ε → 0. Nevertheless we briefly mention
here the local analysis of the suboptimal set in two different cases, to show the range
of possibilities. (For more on local convex analysis, see, e.g., Bertsekas et al. (2003),
Borwein and Lewis (2000).)

The smooth unconstrained case. Suppose (1) is unconstrained (i.e., C = Rn), has
a single optimal point x", and f is twice differentiable, with ∇2f (x") > 0 (and, of
course, ∇f (x") = 0). In this case Xε can be approximated by the ellipsoid

Eε = {x | (1/2)(x − x")∇2f (x")(x − x") ≤ ε}, (3)

for ε small. This ellipsoid is centered at the optimal point x", has a fixed shape,
determined by ∇2f (x"), and scales as

√
ε. From this ellipsoidal approximation we

can derive useful (approximations of) quantitative measures of Xε . For example, the
diameter of Xε is approximately the diameter of Eε :

diam(Xε) ≈ diam(Eε) = (2ε/λmin(∇2f (x"))1/2.

In this case, we see that Xε is relatively ‘large’ when ε is ‘small’ (since its diameter
grows like

√
ε). When λmin(∇2f (x")) is small, Xε can be quite large, so we expect

a weak minimum.
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Fig. 1 The boundaries of X0.01 (dashed line) and X0.1 (full line) for an unconstrained problem (left) and
a nondifferentiable problem with constraints (right). The optimal point x" is shown as a star

The nondifferentiable (or constrained) case. At the other extreme, suppose that f

is piecewise-linear, C is a polyhedron with nonempty interior, and (1) has a single
optimal point x". In this case, Xε is a polyhedron, and for small ε can be exactly
represented as

Xε = {x | A(x − x") ≤ 0, B(x − x") ≤ ε1},
where A and B correspond to the active constraints defining C , and f , near x", and
1 denotes the vector with all entries one. (We have A = 0 if x" *∈ ∂C .) In this case
diam(Xε) is exactly linear in ε, for small ε. Moreover, x" is generally not well cen-
tered in Xε ; indeed, when x" ∈ ∂C , x" is on the boundary of Xε .

This case is very different from the smooth unconstrained case considered above.
In this case, we expect a sharp minimum, since diam(Xε) grows only linearly with
ε; moreover, we do not expect x" to be well centered in Xε , in general.

Polyak defines a point x" to be a sharp minimum point if for some α > 0, we have

f (x) ≥ f (x") + α‖x − x"‖2

for all x ∈ C (see Polyak 1987, Sect. 5.3). This is the case here.
Figure 1 shows two simple examples illustrating the difference between these two

cases. We plot the boundaries of X0.01 and X0.1, for two problems with x ∈ R2, one
unconstrained smooth problem, and one with piecewise-linear objective and linear
constraints. For the smooth problem (shown at left), we see that Xε is approximately
ellipsoidal and centered around x", with X0.01 roughly a factor

√
10 smaller than

X0.1. For the nondifferentiable problem (shown at right), we see that x" is on the
boundary of Xε , and that X0.01 is roughly a factor 10 smaller than X0.1.

1.4 Support function and boundary points

The support function Sε of the ε-suboptimal set Xε is defined as

Sε(y) = sup{yT x | x ∈ Xε} = sup{yT x | x ∈ C, f (x) ≤ p" + ε}.



Techniques for exploring the suboptimal set 323

Fig. 2 (Color online) Boundaries of the sets Xε (black), Pinner (purple), and Pouter (cyan), for an uncon-
strained problem (left) and a nondifferentiable problem with constraints (right). The optimal point x" is
shown as a star

It is convex and homogeneous in y, and concave and nondecreasing in ε (see Boyd
and Vandenberghe 2004, Ex. 3.7.)

Our characterization of Xε will rely on our ability to compute Sε(y), for a given
y, by solving the convex problem

maximize yT x

subject to x ∈ C, f (x) ≤ p" + ε,
(4)

with variable x. Suppose x"(y) is a solution of (4). Then x"(y) ∈ ∂Xε (i.e., x"(y) is
on the boundary of Xε ), and we have

Xε ⊆ {z | yT (z − x"(y)) ≤ 0}.

(In fact, x"(y) is on the relative boundary of C , if the dimension of C is less than n.)
Now suppose that we have solved (4) for the (nonzero) values y(1), . . . , y(N), with

associated optimal points x(1), . . . , x(N). From these data we can construct outer and
inner polyhedral approximations of Xε . We have Xε ⊆ Pouter, where Pouter is the
polyhedron

Pouter = {x | y(i)T (x − x(i)) ≤ 0, i = 1, . . . ,N}.
By convexity of Xε , we also have Xε ⊇ Pinner, where Pinner is the polyhedron

Pinner = conv{x(1), . . . , x(N)}
= {λ1x

(1) + · · · + λNx(N) | λ≥ 0, 1T λ= 1}.

Figure 2 shows Xε , Pinner and Pouter for two problems with x ∈ R2, one uncon-
strained smooth problem, and one with piecewise-linear objective and linear con-
straints. The sets Pinner and Pouter are generated from 8 values of y.

Warm-start. If the optimization method used to solve the problem (4) can use an ini-
tialization of primal or dual variables to reduce the solution time, i.e., take advantage
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of a warm-start, they can be initialized at an optimal point x" for the original prob-
lem (1). This can dramatically reduce the time required to solve the N problems. (For
more on warm-start methods, see, e.g., Wright (1997), Yildirim and Wright (2002).)

1.5 Connection to stability of solution

When ε = 0, the support function evaluation problem (4) is

maximize yT x

subject to x ∈ C, f (x) ≤ p".
(5)

Its feasible set is X0, the set of solutions to the original problem (1).
The support function evaluation problem (4) can be thought of as a perturbed

version of (5), where the constraint upper bound is perturbed from its nominal value
p" to p"+ε. If ‖y‖ = 1 (which we can assume without loss of generality), the change
in optimal value of (4) as ε changes is a lower bound on the change in the optimal
point x"(y), measured in the Euclidean norm. Thus, the size of Xε is closely related
to the stability of the solution of (4) under perturbation of the constraint bound. For
more on general perturbation theory and stability of solutions, see, e.g., (Bonnans and
Shapiro 2000; Lucchetti 2006; Rockafellar 1970).

2 Bounding box

The bounding box of Xε is the smallest box

B = [l1, u1] × · · · × [ln, un]

that satisfies B ⊇ Xε . The bounding box lower and upper bounds are just the mini-
mum and maximum values that each coordinate xi can take on, over Xε . The lower
bound li is the optimal value of the convex optimization problem

minimize xi

subject to f (x) ≤ p" + ε, x ∈ C,

and the upper bound ui is the optimal value of the convex optimization problem
obtained when we change ‘minimize’ to ‘maximize’. Both li and ui can be expressed
in terms of the support function of Xε as

li = Sε(y)(−ei), ui = Sε(y)(ei),

where ei ∈ Rn is the unit vector whose ith entry is 1. The bounding box corresponds
to Pouter in the case where the vectors y(1), . . . , y(N) are chosen to be ±ek , the unit
vectors and their negatives.

Figure 3 shows Xε and its bounding box for two problems with x ∈ R2, one un-
constrained smooth problem, and one with piecewise-linear objective and linear con-
straints.
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Fig. 3 (Color online) Boundaries of the sets Xε (black) and the bounding box (purple) for an uncon-
strained problem (left) and a nondifferentiable problem with constraints (right). The optimal point x" is
shown as a star

3 Approximate quantitative measures

To approximately characterize Xε , we compute points x(i) = x"(y(i)), for a set of
nonzero y(i), i = 1, . . . ,N . These points might include ±ek , the unit vectors (and
their negatives), which allows us to determine (exactly) the bounding box of Xε . Ad-
ditional points can be generated randomly, for example from a uniform distribution
on the unit sphere in Rn, which can be generated by choosing the components inde-
pendently from a unit normal distribution, and normalizing y to have length one. (In
fact, the normalization is not needed, since scaling y(i) by a positive constant does
not affect the corresponding x(i) = x"(y(i)).)

For general methods of characterizing convex sets using support functions, see,
e.g., Fisher et al. (1997), Prince and Willsky (1990), Skiena (1991).

Deviation from x". We can estimate the maximum deviation from x", in some norm
‖ · ‖,

sup{‖x − x"‖ | x ∈ Xε}
as

max
i=1,...,N

‖x(i) − x"‖.

This is a lower bound; it is the same as sup{‖x − x"‖ | x ∈ Pinner}.

Diameter. The diameter of Xε ,

diam(Xε) = sup
x, x̃∈Xε

‖x − x̃‖,

can be estimated as

diam(Xε) ≈ max
i,j=1,...,N

‖x(i) − x(j)‖.

This is a lower bound, and is the same as diam(Pinner).
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Chebyshev center. The Chebyshev center of a set is the center of the largest Euclid-
ean ball that lies in it. (Some authors use Chebyshev center to mean the center of the
smallest Euclidean ball that encloses the set). We can estimate the Chebyshev center
of Xε as the Chebyshev center of Pouter, which can be found by solving the linear
program (LP)

maximize r

subject to y(i)T (xc − x(i)) + r‖y(i)‖2 ≤ 0, i = 1, . . . ,N,

with variables xc, the center of the Euclidean ball, and r , its radius. For more on the
Chebyshev center, see, e.g., Boyd and Vandenberghe (2004), Sect. 8.5.1.

We can estimate the center of the smallest Euclidean ball that encloses Xε as the
center of the smallest Euclidean ball that encloses Pinner, which can be found by
solving the convex problem

minimize max
i=1,...,N

‖x(i) − z‖2,

with variable z ∈ Rn. This problem is readily reformulated as a convex quadratic
program (QP).

Ellipsoidal approximation. We can compute an ellipsoidal approximation of Xε in
several ways, using the computed boundary points x(1), . . . , x(N). We will assume
that Xε has nonempty interior; if it has empty interior, which means that it lies in
an affine space of lower dimension, we can compute an ellipsoidal approximation on
that affine space.

The simplest method is to compute their mean and covariance,

x̄ = (1/N)

N∑

i=1

x(i), Σemp = (1/N)

N∑

i=1

(x(i) − x̄)(x(i) − x̄)T ,

and to take our approximation as

Eemp = {x | (x − x̄)T Σ−1(x − x̄) ≤ α},

where α is chosen to enclose some number (e.g., 95%) of the points.
A more sophisticated method is to compute the Löwner-John ellipsoid of Pinner,

i.e., the minimum volume ellipsoid Emin that contains the computed boundary points
x(i) (see, e.g., Boyd and Vandenberghe 2004, Sect. 8.4.1; Grötschel et al. 1988; Sil-
verman and Titterington 1980; Sun and Freund 2004). This can be done by solving
the convex optimization problem

maximize log detP
subject to ‖Px(i) + q‖2 ≤ 1, i = 1, . . . ,N,

with optimization variables P = P T ∈ Rn×n and q ∈ Rn; the Löwner-John ellipsoid
is then

Elj = {x ∈ Rn | ‖Pv + q‖2 ≤ 1}.
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Another ellipsoidal approximation can be obtained by computing the maximum
volume ellipsoid that is contained in the polyhedron Pouter (see, e.g., Boyd and Van-
denberghe 2004, Sect. 8.4.2; Boyd et al. 1994, Sect. 3.) This can be done by solving
the convex optimization problem

maximize log detB
subject to ‖By(i)T ‖2 + y(i)T

(
d − x(i)

)
≤ 0 i = 1, . . . ,N,

with optimization variable B = BT ∈ Rn×n and d ∈ Rn. The maximum volume el-
lipsoid is then

Emve = {Bu + d | ‖u‖2 ≤ 1}.
An ellipsoidal approximation of Xε is useful for several reasons. A large deviation

between the center of the approximating ellipsoid and x" tells us that Xε is not cen-
tered at x" (as it would be, approximately, for an unconstrained smooth problem, with
small ε). The semi-axis lengths of the ellipsoid tells us how symmetric Xε is. If the
semi-axis lengths are not very different, then Xε extends roughly the same amount in
each direction, from its center; on other hand, if the semi-axis lengths vary consider-
ably, we conclude that Xε extends rather different amounts in different directions.

4 Examples

In this section we give four simple numerical examples to illustrate the ideas de-
scribed above.

4.1 Chebyshev approximation

Our first example is the (unconstrained) Chebyshev approximation problem,

minimize ‖Ax − b‖∞,

with problem data A ∈ Rm×n and b ∈ Rm, and variable x ∈ Rn. Local analysis tells
us that if the solution is unique, then this problem has a sharp minimum. This would
lead us to guess that Xε will be ‘small’, when ε is small.

We consider a problem instance with m = 100, n = 30, with all entries of A and b

chosen randomly from a unit normal distribution. This problem instance has a unique
solution x", so local analysis tells us that the problem has a sharp minimum. The
optimal value is p" = 1.2. We take ε = 0.01p", i.e., we look at the 1%-suboptimal
set.

Figure 4 shows x" (as stars) and the bounding box of Xε (as vertical intervals). We
can see that the variation in each xi over the bounding box is very considerable; for
many indices the sign of xi changes over the bounding box. The fractional variation
in xi , given by |ui − li |/|x"i |, ranges between 0.57 and 13.5, with an average value
of 2.5. (These can be compared to the difference in objective value obtained, which
is 1%.) This shows that the 1%-suboptimal set is relatively large, even though the
problem has a sharp minimum. (These two statements are in no way inconsistent.)
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Fig. 4 Solution (shown as
stars) and bounding box (shown
as vertical intervals) of
1%-suboptimal set

The figure also shows that x" is not too far from the center of the bounding box,
suggesting that x" is well centered in Xε .

In addition to the 60 boundary points obtained from the bounding box computa-
tion, we compute 940 additional boundary points from randomly chosen directions
y(i) (uniform on the unit sphere). From these boundary points we obtain an estimate
of (and lower bound on) the maximum deviation (in Euclidean norm) from x" of
0.29, around 35% of the (Euclidean) norm of x", which is 0.84. This too shows that
Xε is not small. We estimate the (Euclidean) diameter of Xε as 0.45, around half the
value of ‖x"‖2.

We find that the ellipsoids Eemp and Elj are not very different from each other (with
proper choice of α in Eemp). These ellipsoids are strongly asymmetric: Two semi-axes
are very small (but positive), and the sum of the largest 5 semi-axis lengths is larger
than the sum of the remaining semi-axis lengths. The centers of the ellipsoids are not
too far from x": ‖x" − x̄‖2 = 0.072, around 9% of ‖x"‖2, and ‖x" − xlj‖2 = 0.052,
around 6% of ‖x"‖2. This indicates that Xε is approximately centered around x".

Our estimate of (and lower bound on) the diameter of Xε , as ε varies between 0
and 0.02p", is shown in Fig. 5.

4.2 Minimax estimation

(We are grateful to Yonina Eldar for suggesting this example; see, e.g., Eldar et al.
(2007).) We are to estimate a parameter vector x ∈ C ⊆ Rn, given a noise-corrupted
linear measurement, b = Ax + v ∈ Rm, where C is a known closed convex set. We
use an unknown-but-bounded model for the noise vector v: It satisfies ‖v‖2 ≤ η, but
is otherwise unknown. We will judge the quality of our estimate x̂ by the worst-case
error, over all values of the true parameter consistent with the measurements,

E = sup{‖x̂ − x‖2 | b = Ax + v, ‖v‖2 ≤ η, x ∈ C}.

In minimax estimation, we choose x̂ to minimize E.
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Fig. 5 Estimate of normalized
diameter of Xε versus ε/p"

To put this problem in the present framework, we consider the constrained norm
minimization problem

minimize ‖Ax − b‖2
subject to x ∈ C,

(6)

with optimal value p". We must have p" ≥ η. The associated sublevel set Xε , for
the choice ε = η − p", is exactly the set of parameter values consistent with the
measurement b and the prior information. The bounding box, for example, tells us
the exact range of each xi , over all possible true parameter values.

The minimax estimate is the center of the smallest Euclidean ball that contains
Xε . This can be computed exactly in a few special cases, such as when C = Rn. In
many cases, however, it is difficult to compute the minimax estimate exactly. In these
cases we can compute an approximation of the minimax estimate as the center of
the smallest Euclidean ball that contains Pinner, which can be found by solving the
convex problem

minimize max
i=1,...,N

‖x(i) − z‖2,

with variable z ∈ Rn. (The constraint z ∈ C will hold automatically.) This problem,
in turn, is readily reduced to a QP. Here x(i) = x∗(y(i)), for some set of nonzero
directions y(1), . . . , y(N).

We illustrate this method with a numerical example, with n = m = 50, with the en-
tries of A chosen randomly from a unit normal distribution. We take C = {x | ‖x‖∞ ≤
1}, and η = 5. The true parameter value x is chosen from a uniform distribution on
C . Finally, v is chosen from a uniform distribution on the η-sphere. (Recall, however,
that the minimax problem itself does not involve any probability distributions.)

For this problem instance we compute the minimum norm estimate x̂mn, which is
the solution of (6). We also compute an approximation of the minimax estimate x̂amm
using the scheme outlined above, using y(i) as ±ej , and an additional 900 randomly
chosen y(i).
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Fig. 6 Distributions of
‖xmn − x(i)‖2 (top) and
‖xamm − x(i)‖2 (bottom) over
i = 1, . . . ,1000

We can then compare (our estimate of) the worst-case error E for x̂mn and x̂amm,
using

Ê = max
i=1,...,1000

‖x̂ − x(i)‖2.

The results are Ê = 3.82 for x̂mn, and Ê = 3.18, for x̂amm. The true errors are

‖xmn − x‖2 = 1.78, ‖xamm − x‖2 = 1.40,

where x is the true parameter. Thus, our (approximate) minimax estimate gives a
substantial decrease in (approximate) worst-case error, as well as in true error.

Figure 6 shows the distributions of ‖x̂ − x(i)‖2, over i = 1, . . . ,1000, for the two
estimates. (Again we remind the reader that the minimax estimation problem itself
does not involve any probability distributions; this is only to illustrate the range of
values of ‖x̂ − x(i)‖2, over our sample points x(i).)

4.3 Optimal control

Our next example is a discrete-time finite horizon optimal control problem. The sys-
tem dynamics are given by

x(t + 1) = Ax(t) + Bu(t), t = 0,1, . . . , tf − 1,

where t represents time (or period), tf is the horizon (or final time), x(t) ∈ Rn is the
state of the system, and u(t) ∈ Rm is the control input. The initial state x0 is given,
and we require the final state x(tf ) to be zero (this is called the regulation problem).
This is equivalent to

tf −1∑

t=0

Atf −t−1Bu(t) = −Atf x0. (7)
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Fig. 7 Optimal input, and lower
and upper bounds over
5%-suboptimal trajectories

Using the )1-norm of the input (which is a typical simple model for total fuel usage)
as objective, our problem is

minimize ‖u‖1 =
tf −1∑

t=0

‖u(t)‖1

subject to
∑tf −1

t=0 Atf −t−1Bu(t) = −Atf x0,

with variables u = (u(0), . . . , u(tf − 1)), and problem data A, B , x0, and tf . Lo-
cal analysis tells us that when the optimal point is unique, this problem has a sharp
minimum.

We now consider a specific problem instance with n = 8, m = 2, tf = 20, and
all coefficients in the problem data drawn from a unit normal distribution. We then
scale A so that its spectral radius is 1.05, i.e., the system is slightly unstable. For this
problem instance, the optimal point u" is unique, and the optimal cost is p" = 0.54.
Thus, for this example too, the problem has a sharp minimum. We take ε = 0.05p",
i.e., we look at the set of 5%-suboptimal input trajectories. To avoid confusion, we
will denote the ε-suboptimal set as Uε , since the variable here is u.

Figure 7 shows the optimal input trajectory u", and the bounding box for Uε . We
see immediately that Uε is large; for most values of t , ui(t) can vary over a relatively
large interval (and certainly far larger than 5%). Indeed, the upper bounds are all
positive, while the lower bounds are negative. This means that we can specify the
sign of any particular variable ui(t), and still find a 5% suboptimal input trajectory.

Using the 80 boundary points obtained from the bounding box computation and
920 additional ones computed from randomly chosen directions y(i), we estimate
(lower bound) the maximum deviation from u" over Uε as 1.06 in )1-norm, almost
twice the value of ‖u"‖1. This is quite surprising, since the triangle inequality tells us
that any point in u ∈ Uε must satisfy

‖u − u"‖1 ≤ ‖u‖1 + ‖u"‖1 ≤ p"(2 + ε),
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which means that ‖u−u"‖1 cannot be more than 2.05‖u"‖1. Again we see that there
are 5%-suboptimal input trajectories that are very different from the optimal input
trajectory.

Using the same 1000 points, we estimate the diameter of Uε as 1.13 in )1-norm.
We also compute the ellipsoid Eemp (on the 32-dimensional affine set defined by

(7)). On this lower dimensional space the ellipsoid extends different amounts in dif-
ferent directions. The sum of its largest 3 semi-axis lengths is larger than the sum of
the remaining semi-axis lengths. The distance between u" and ū, the center of Eemp,
is 0.1975 in )2-norm (0.5074 in )1-norm).

Our conclusion that Uε is large can be used in several ways. It suggests that, by
accepting a small increase in fuel usage, we might see a substantial improvement in
some secondary objective. For example, we can pick, from Uε , an input trajectory
that is maximally smooth.

4.4 Portfolio optimization

We consider a simple portfolio allocation problem with n assets held over a period
of time. We let xi denote the fraction that we invest in asset i. We do not allow short
positions, so the portfolio allocation x must satisfy x ≥ 0, 1T x = 1.

The vector of asset (percentage) returns is the random variable r ∈ Rn, with known
mean µ = Er and covariance Σ = E(r − µ)(r − µ)T . The overall return on the port-
folio is the scalar random variable rT x, which has mean µT x and standard deviation
(xT Σx)1/2.

The goal is to find a portfolio allocation x that minimizes the portfolio return
standard deviation (i.e., risk), subject to a minimum expected return rmin, and the
allocation constraints. This is the convex optimization problem

minimize (xT Σx)1/2

subject to µT x ≥ rmin,

x ≥ 0, 1T x = 1,

with variable x and problem data µ, Σ , and rmin. For more on the portfolio op-
timization problem, see, e.g., Markovitz (1952); Boyd and Vandenberghe (2004),
Sect. 4.4.

We consider the case where r is described by a single-factor model, i.e., ri =
µi + βiw + vi , for i = 1, . . . , n. Here βi ’s are the factor loadings, w is the (market)
factor, and vi ’s represent the residual risks. We take w and vi ’s to be independent
Gaussian zero-mean random variables, with respective standard deviations σm and
σi . We can think of σm as the market-related standard deviation and σi as the firm-
specific standard deviation. Under this model, the return covariance matrix is

Σ = σ 2
mββ

T + diag(σ 2
1 , . . . , σ 2

n ),

where β = (β1, . . . , βn).
We now consider a particular problem instance with n = 10 assets. We take market

standard deviation σm = 20; βi are chosen uniformly on [0.3,1] for i = 2, . . . , n, and
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Fig. 8 Optimal portfolio
allocation (shown as stars) and
bounding box (shown as vertical
intervals) for the
0.02p"-suboptimal set

σi are chosen uniformly on [0,20] for i = 2, . . . , n. We take the first asset to be risk-
free (i.e., β1 = 0, σ1 = 0). The mean returns of the assets are given by

µi = µrf + 0.4(E(βiw + vi)
2)1/2

= µrf + 0.4
(
β2

i σ
2
m + σ 2

i

)1/2
, i = 1, . . . , n,

where µrf = 5 is the risk-free return. (Here, σm, σi , and µi are all expressed in
percentage points, and the constant 0.4 is the reward-to-risk ratio.) The 10 assets
have risk (standard deviation) ranging from 0 (for the risk-free asset n) to 22.9, and
mean returns ranging from 5 (the risk-free return) to 14.15. We re-order the assets
by increasing risk (and return). We take the required minimum expected return to be
rmin = 10.

The optimal portfolio, which uses only 6 of the 10 assets, achieves the minimal
risk (standard deviation) p" = 7.84. We will examine Xε for ε = 0.02p" = 0.16, i.e.,
we look at the set of portfolios that result in standard deviation that is no more than
8, i.e., 1.02 times the optimal standard deviation. Figure 8 shows the optimal asset
allocation, and the bounding box of Xε . We see that the set of suboptimal portfolio
allocations is large; there seems to be considerable variation among the suboptimal
portfolio allocations. One exception is the allocation in the risk-free asset, which only
varies between 36.8% and 40.8% over all suboptimal asset allocations. But alloca-
tions of some other assets exhibit large deviations around the optimal allocation: for
example, the allocation of asset 7 varies between 0 and 16.3% over the suboptimal
portfolios.

Using the boundary points from the bounding box computations and 1000 addi-
tional ones computed from randomly chosen directions y(i), we estimate the maxi-
mum deviation (in Euclidean norm) from x" as 0.1028, around 22% of the (Euclid-
ean) norm of x", which is 0.47. We also estimate the (Euclidean) diameter of the
suboptimal set to be 0.203, around 43% of ‖x"‖2.

We also compute the ellipsoids Eemp and Elj (in the 9-dimensional affine set de-
fined by 1T x = 1). On this lower dimensional space, the ellipsoids extend roughly
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the same amount in 8 directions and are quite flat in the remaining direction. Further-
more, the (Euclidean) distance between x" and x̄ is 0.0056, i.e., 1.2% of ‖x"‖2, and
the (Euclidean) distance between x" and the center of Elj is 0.0139, i.e., around 3%
of ‖x"‖2. This strongly indicates that Xε is well centered around x".

Our observation that the set of suboptimal asset allocations is large (at least in one
direction) suggests that we may be able to substantially improve a secondary objec-
tive, such as the trading costs incurred, given a starting allocation, while increasing
the risk only slightly.

4.5 Constrained maximum likelihood estimation

Our last example is a constrained maximum likelihood estimation problem. We wish
to estimate a vector x ∈ Rn, which is known to satisfy m linear inequalities Fx ≤ g,
where F ∈ Rm×n and g ∈ Rm. We are given a noise-corrupted linear measurement of
x, given by y = Ax + v, where Ap×n and v ∈ Rp is a zero-mean Gaussian random
vector, with (positive definite) covariance Σ .

The likelihood function is

L(x) = (2π)n/2|det(Σ)|−1/2 exp
(
−(1/2)(y − Ax)T Σ−1(y − Ax)

)
.

The log-likelihood function is

l(x) = log(L(x)) = −(1/2)‖Σ−1/2(y − Ax)‖2
2 + c,

where c = −(n/2) log(2π) − (1/2) log |det(Σ)| does not depend on x. The max-
imum likelihood estimate xml is found by maximizing the likelihood function (or,
equivalently, the log-likelihood function) subject to the linear inequality constraints.
Thus, xml is the solution of the QP

maximize −(1/2)‖Σ−1/2(y − Ax)‖2
2

subject to Fx ≤ g,

with variable x ∈ Rn, and problem data (Σ−1/2y), (Σ−1/2A), F , and g. The ε-
suboptimal set Xε is the set of parameter values with log-likelihood within ε of the
maximum log-likelihood value. These correspond to parameter values that are almost
as plausible as the maximum likelihood parameter xml, given the observation.

We can give a more specific interpretation of Xε in terms of a hypothesis test. Let
us fix a particular z ∈ Rn. Given the observation y, which is generated either as y =
Axml + v, or as y = Az + v, we are to guess which of the two distributions generated
y. Thus we have two hypotheses: y came from the maximum likelihood distribution,
or from the distribution defined by z. We have two associated error probabilities: pfp,
which is the probability that we guess xml, under the distribution associated with z;
pfn, which is the probability that we guess z, under the distribution associated with
xml. The estimator that minimizes the weighted cost

wfppfp + wfnpfn,
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where wfp and wfn are positive weights, is a likelihood ratio threshold test; it has the
form

guess z when z ∈ Xε,

where ε = max{0, log(wfp/wfn)}. (If wfp ≤ wfn, we always guess xml.) This estimator
equalizes the weighted cost terms, i.e., we have

pfp/pfn = wfn/wfp = e−ε .

For example with ε = 0.1, Xε is the set of parameter values that would be chosen over
xml in a hypothesis test in which we weight false positives (choosing xml) a fraction
e0.1 times more than false negatives (choosing z).

We now turn to a more specific case: estimating a nondecreasing signal given
a noise-corrupted moving average. Our goal is to estimate a scalar signal x(t), for
t = 1,2, . . . , n, which is known to be nondecreasing, i.e., x(1) ≤ x(2) ≤ · · · ≤ x(n).
We are given a noise-corrupted moving sum of x, given by

y(t) =
max{k−1,t−1}∑

τ=0

x(t − τ) + v(t), t = 1, . . . , n,

where v(t) are independent N (0,1) random variables, and k is the width of the
moving-sum window. We can write this as y = Ax + v, where x, y and v ∈ Rn and
A ∈ Rn×n is the lower triangular Toeplitz matrix given by

Aij =
{

1 0 ≤ j − i ≤ k − 1
0 otherwise.

The monotonicity constraints on x can be expressed as a set of linear inequalities,
written in matrix form as Fx ≤ 0, where F is the backward difference matrix

D =





1 −1
1 −1

. . .
. . .

1 −1




∈ R(n−1)×n.

(Zero elements are not shown.)
We now consider a particular problem instance, with n = 25, k = 4, and y as

one sample from the distribution Ax̄ + v, where the (true) signal x̄ is a randomly
generated nondecreasing vector in Rn. The maximum log-likelihood is found to be
p" = −32.9. We take ε = 0.1.

Figure 9 shows the bounding box around Xε , as well as the maximum likelihood
signal xml. We see that for each xi , ui − li is around 3, except at the right end, where
fewer measurements of the variables are available. Any value in the interval [l1, ui]
can be defended as a plausible value for xi , since an x with this value would be chosen
in a hypothesis test against xml, with relative weight e0.1 = 1.052 of false positives.

Using the 60 boundary points from the bounding box computations and 940 ad-
ditional ones computed from randomly chosen directions y(i), we find that the maxi-
mum deviation (in Euclidean norm) from x" is 4.4450, around 8% of the (Euclidean)
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Fig. 9 (Color online)
Maximum likelihood estimate
(shown in black) and bounding
box, shown as lower (in purple)
and upper (in cyan) bounds

norm of x", which is 55.5051. We also estimate the (Euclidean) diameter of the sub-
optimal set to be 7.1780, around 13% of ‖x"‖2. This indicates that Xε is relatively
small.

We also compute the ellipsoids Eemp and Elj and discover that they extend different
amounts in different directions. For both ellipsoids, the sum of the largest 8 semi-axis
lengths is larger than the sum of the remaining semi-axis lengths. Furthermore, the
(Euclidean) distance between x" and x̄ is 1.2684, i.e., around 2% of ‖x"‖2, and the
(Euclidean) distance between x" and the center of Elj is 1.0116, i.e., around 1.8% of
‖x"‖2. This strongly suggests that Xε is well centered around x".

5 Conclusions

For an unconstrained problem with smooth objective, the suboptimal set is easily
characterized: For small enough ε, it is approximately ellipsoidal, centered at the op-
timal point, with shape determined by the Hessian evaluated at the optimal point.
In other cases, however, the suboptimal set can be, and often is, very different. The
examples above show that the suboptimal set can be much larger than one might ex-
pect: Allowing just a few percent suboptimality can allow individual components of
the variable to vary considerably, or even change sign. This is observed even in prob-
lems with a sharp minimum, for which local analysis suggests that the suboptimal
set is small. Of course the opposite can also occur: The suboptimal set can be small,
even when local analysis suggests that it should be large. Our examples show that
carrying out at least some analysis or exploration of the suboptimal set, for example,
computing its bounding box, can be quite informative in a practical setting.

The general idea of characterizing a convex set via its support function, as well as
the various approximations we have described, are well known. It is an elementary
exercise to compute the bounding box of the ε-suboptimal set. But we have not seen
these ideas described, or suggested, in the context of suboptimal set exploration.
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