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Abstract Generalized additive models are an effective regression tool, popular in the
statistics literature, that provides an automatic extension of traditional linear models
to nonlinear systems. We present a distributed algorithm for fitting generalized ad-
ditive models, based on the alternating direction method of multipliers (ADMM). In
our algorithm the component functions of the model are fit independently, in parallel;
a simple iteration yields convergence to the optimal generalized additive model. This
is in contrast to the traditional approach of backfitting, where the component func-
tions are fit sequentially. We illustrate the method on different classes of problems
such as generalized additive, logistic, and piecewise constant models, with various
types of regularization, including those that promote smoothness and sparsity.

Keywords Convex optimization · Distributed optimization · Generalized additive
models

1 Introduction

In this paper we present a distributed algorithm for fitting generalized additive mod-
els. Generalized additive models are a powerful regression tool used to model non-
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linear regression effects by fitting nonparametric and parametric functions to ob-
served data. Generalized additive models have been well established in the statis-
tics literature (Hastie and Tibshirani 1986; Hastie et al. 2009) and implemented
in tools such as GLMNET (Friedman et al. 2010). They have been used effec-
tively in various applications such as biostatistics (Hastie and Tibshirani 1995;
Guisan et al. 2002). Their attractiveness arises from their ability to model nonlin-
earities in data nearly automatically. Furthermore, the traditional linear model (least-
squares) is a special case of the generalized additive model, which suggests that where
least-squares is commonly used, one might consider using a generalized additive
model instead.

A common algorithm used to fit generalized additive models is the backfitting
algorithm (Hastie and Tibshirani 1986; Hastie et al. 2009). The drawback, however, is
that this algorithm needs to perform computations sequentially. It has been explicitly
pointed out that for large data sets, a parallel algorithm for fitting generalized additive
models is needed (Hegland et al. 1999). In that paper, the data is split into chunks
and the solutions are merged in a single MapReduce operation, yielding a good (but
possibly suboptimal) model.

In this paper, we present an algorithm based on the alternating direction method
of multipliers (ADMM). ADMM was developed in the 1970s and is closely related
to many other algorithms such as dual decomposition, method of multipliers, and
Douglas-Rachford splitting (Douglas and Rachford 1956; Everett 1963). For a re-
view of ADMM, see Boyd et al. (2010). ADMM allows generalized additive models
to be fit in parallel; instead of distributing the data, ADMM distributes the computa-
tion. Thus, our algorithm will coordinate curve-fitting routines to obtain a generalized
additive model. Our algorithm is not approximate; it converges to an optimal gener-
alized additive model.

2 Generalized additive model

A predictor is a function φ that attempts to approximate a scalar observation y based
on a vector of features x; that is, y ≈ φ(x). In this paper, we are interested in the
particular class of predictors called generalized additive models, which can be repre-
sented as

φ(x) = ψ

(∑
i

fi(xi)

)
,

where each fi ∈ Fi is a scalar functional from the function class Fi . This formula-
tion generalizes many well-known predictors. For example, in a linear classifier we
have fi(xi) = wixi , and ψ(u) = sign(u). In a linear regression model, we again take
fi(xi) = wixi , but we take ψ(u) = u.

3 Fitting generalized additive models

Our goal is to find the best predictor of m observations y ∈ Rm based on N fea-
ture vectors x1, . . . , xN ∈ Rm. The predictor has the form ψ(

∑N
i=1 fi(xi)), where
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the scalar functions fi : R → R are applied elementwise to the feature vectors xi .
In what follows, we distinguish between the function fi and the vector fi(xi) ∈ Rm,
which consists of the value of fi(xi) at the m features. We use the notation (xi)j or
(fi(xi))j to denote the j th element of the vector. For simplicity, f = (f1, . . . , fN) is
a vector of functions. The data y and x1, . . . , xN and the function ψ are given; we are
to choose the component functions fi : R → R, i = 1, . . . ,N .

We can fit a generalized additive model by solving the following optimization
problem:

minimize L

(
N∑

i=1

fi(xi)

)
+ r(f )

subject to fi ∈ Fi , i = 1, . . . ,N,

(1)

where the optimization variables are scalar functions fi : R → R, r(·) is a regulariza-
tion functional, L is a loss function that measures the goodness-of-fit of the predictor
ψ at the observed data, and each Fi is a function space. In general, each Fi is an
infinite-dimensional vector space. However, we are most interested in fi ’s that can
be represented with a finite vector. This means either that fi is parametric, or we are
only interested in the value of fi at a fixed set of points. (For many practical appli-
cations, we can parameterize fi by discretizing the domain with a finite number of
values and work with those instead.) Thus, we are only interested in functions of the
form fi(·;pi), where pi ∈ Rn is a vector of parameters that specifies fi . For instance,
pi might be a vector of values at certain key points in the domain of fi ; the function
fi would be specified by linear or polynomial interpolation through these key points.

Subsequently, we instead solve the finite-dimensional problem

minimize L

(
N∑

i=1

fi(xi;pi)

)
+ r(p1, . . . , pN), (2)

where pi ∈ Rni are the parameters that specify each function fi , and the optimization
variables are the values of fi at each xi and the parameters pi .

We will consider the case where L is a sum of losses corresponding to the
mismatch between the model and each sample j , i.e., L(v) = ∑m

j=1 lj (vj ), and
r(p1, . . . , pN) is decomposable across the features, i.e.,

r(p1, . . . , pN) =
N∑

i=1

ri(pi).

Our goal is to find function values f � = (f1(x1;p�
1), . . . , fN(xN ;p�

N)) and function
parameters p� = (p�

1, . . . , p
�
N) that best explain the observed data as a solution to (2).

If lj is convex for j = 1, . . . ,m and ri is convex for i = 1, . . . ,N , then (2) is a convex
optimization problem and can be solved efficiently (Boyd and Vandenberghe 2004).
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4 Distributed generalized additive models

We propose a distributed method for fitting generalized additive models using the
alternating direction method of multipliers (ADMM); specifically, we use the sharing
formulation (Boyd et al. 2010).

We introduce dummy variables z1, . . . , zN ∈ Rm (representing the values of the
features) and write the problem of fitting a generalized additive model as

minimize L

(
N∑

i=1

zi

)
+

N∑
i=1

ri(pi)

subject to zi = fi(xi;pi), i = 1, . . . ,N.

(3)

Applying the method of Boyd et al. (2010), the ADMM algorithm for fitting gen-
eralized additive models becomes

pk+1
i := argmin ri(pi) + ρ/2

∥∥fi(xi;pi) − fi

(
xi;pk

i

) + f
k − zk + uk

∥∥2
2,

i = 1, . . . ,N (4)

zk+1 := argmin
z

L(Nz) + (Nρ/2)
∥∥z − uk − f

k+1∥∥2
2 (5)

uk+1 := uk + f
k+1 − zk+1, (6)

with zk+1 = (1/N)
∑N

i=1 zk+1
i and f

k+1 = (1/N)
∑N

i=1 fi(xi;pk+1). The standard
convergence theory for ADMM tells us that pk

i will converge to optimal and zk
i will

converge to the corresponding function values at the data xi .
Note that zk+1

i is not explicitly computed; we instead work with zk+1, the average
value of zk+1

i . The pi -update fits a function that minimizes the total square error of
the function evaluated at the data points in the vector xi . The kind of function fit
depends on the choice of ri . Since each pi -update is independent from the others,
they can be carried out in N parallel computations.

A common choice for ri is the �2 penalty for continuous functions,

ri(pi) = λi

∫
f ′′

i (t;pi)
2dt.

In this case, it is well known that the optimal solution to (4) is a cubic spline, with
knots at the data points (Reinsch 1967). Thus, pi is a vector of coefficients for each
data point (xi)j . The pi -update step can be carried out efficiently by fitting a cubic
spline to the data points and can be done in parallel.

For the z-update, we only need to evaluate the fitted fi ’s (specified by their pa-

rameters, pi ) at xi . We will average the vectors fi(xi;pk+1
i ) to form f

k+1 ∈ Rm,
which is then used in the z-update step. The z-update step involves solving a finite
dimensional optimization problem (since z ∈ Rm). Once the algorithm terminates,
each pi -update block contains the parameters for fi , which can be used on new data
to perform predictions.
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This approach allows us to perform N function fitting routines in parallel and
coordinate them via loss functions to produce a solution to (2). This is in contrast
to an algorithm such as backfitting, which is essentially sequential: the pi -update
depends on pk+1

1 , . . . , pk+1
i−1 and pk

i+1, . . . , p
k
N , the previously fitted parameters.

4.1 Computing the z-update

It is important to note that for any convex loss function L, finding a generalized
additive model also requires computing the proximal operator for L, defined as

proxL(v) = argmin
x

(
L(x) + (μ/2)‖x − v‖2

2

)
.

The z-update (5) can be expressed as

zk+1 := (1/N)proxL

(
Nuk + Nf

k+1)
,

with a choice of μ = ρ/N . Often, there are closed-form solutions for the proximal
operator for common choices of L, such as quadratic, logistic, or hinge losses. Even
when closed-form solutions do not exist or the loss function is nonsmooth, the prox-
imal operator is strongly convex and Newton’s method (or fast, first-order methods)
can be employed to find its value (Becker et al. 2011b).

4.2 Stopping criterion

The stopping criterion for ADMM is as follows: we stop when both the primal and
dual residual of problem (3) are small. Following the derivation in (Boyd et al. 2010),
the primal residual norm ‖rk‖2 and dual residual norm ‖sk‖2 are

∥∥rk
∥∥

2 =
(

N∑
i=1

∥∥fi

(
xi;pk

i

) − zk
i

∥∥2
2

)1/2

,
∥∥sk

∥∥
2 = ρ

(
N∑

i=1

∥∥zk
i − zk−1

i

∥∥2
2

)1/2

.

Since zk
i = fi(xi;pk

i ) + z̄k − f̄ k , the residual norms simplify to

∥∥rk
∥∥

2 = √
N

∥∥f̄ k − z̄k
∥∥

2,

∥∥sk
∥∥

2 = ρ

(
N∑

i=1

∥∥(
fi

(
xi;pk

i

) − fi

(
xi;pk−1

i

)) + (
zk − zk−1) − (

f
k − f

k−1)∥∥2
2

)1/2

.

We terminate ADMM when both the primal and dual residual norms are smaller than
some desired tolerance.

5 Examples

We will now consider the specific case of additive linear models and additive logistic
models. We will also explain how we can apply regressor selection to the additive
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models with a slight change in our algorithm. Finally, we will also consider piecewise
constant models.

In all cases, where possible, we verified that backfitting and ADMM obtain the
same (if not similar) solutions. Furthermore, we observed that ADMM (with a suit-
able choice of ρ) and backfitting require comparable iterations to converge to a simi-
lar accuracy; this is not surprising since both methods are first-order methods to solve
the optimization problem (2). We define an ‘iteration’ to mean a single pass over all
the component functions and computing their fits to the data. The main difference
with backfitting is that our ADMM approach can fit the component functions in par-
allel while backfitting requires fitting them in sequence.

Since both approaches require fitting functions to the data, each iteration of
ADMM—if fully parallelized—is dominated by the maximum cost of fitting any
function while each iteration of backfitting is dominated by the total cost of fitting all
the functions. Thus, without sacrificing accuracy, ADMM allows generalized additive
models to be fit in parallel and (almost) a factor of N times faster than backfitting.

5.1 Additive linear models

Although we do not present any numerical examples for additive linear models, we
present the algorithm here for completeness.

Consider an additive linear model of the form

y ≈
N∑

i=1

fi(xi;pi),

where the functions fi are to be estimated, and y ∈ Rm is a vector of observations.
We will take the loss function

L

(
N∑

i=1

fi(xi;pi)

)
= (1/2)

∥∥∥∥∥y −
N∑

i=1

fi(xi;pi)

∥∥∥∥∥
2

,

and we will use the �2 penalty for continuous functions for the regularization func-
tion. This reduces the pi -update to the fitting of cubic splines.

Because the loss function L is quadratic, the z-update can be expressed analyti-
cally:

zk+1 = ρ(uk + f
k+1

) + y

N + ρ
,

where f
k+1 = (1/N)

∑N
i=1 fi(xi;pk+1

i ).
Thus, the process of fitting generalized additive models to data y and x1, . . . , xN

reduces to alternating between fitting cubic splines in parallel and averaging the re-
sulting function values.
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5.2 Additive logistic models

We now consider an additive logistic model, where the observations are binary ran-
dom variables y ∈ {0,1}m with

Prob(yj = 1) = exp(
∑N

i=1(fi(xi;pi))j )

1 + exp(
∑N

i=1(fi(xi;pi))j )
.

A common algorithm to solve this problem is iteratively reweighted backfitting
which is presented in (Hastie et al. 2009; Friedman et al. 2010). The function param-
eters are fit sequentially (with weights) until a desired tolerance is achieved. Here, we
show how our algorithm presented in Sect. 4 can be used to solve this problem with
a parallel algorithm.

The loss function used to fit this model is the negative log-likelihood given by

L

(
N∑

i=1

fi(xi;pi)

)
=

m∑
j=1

log

(
1 + exp

(
N∑

i=1

(
fi(xi;pi)

)
j

))
−

q∑
j=1

N∑
i=1

(
fi(xi;pi)

)
j
,

where q = ∑m
j=1 yj is the number of positive samples. We want fi to be smooth, so

we again use the �2 penalty for regularization.
The pi -updates are the same as in the additive linear model example—they fit

cubic splines. However, since L is the logistic loss function, the z-update becomes

zk+1 := argmin
z

(
m∑

j=1

log
(
1+exp

(
N(z)j

))−
q∑

j=1

N(z)j

)
+(Nρ/2)

∥∥z−uk −f
k+1∥∥2

2,

where (z)i is the ith component of the vector z. Note that the z-update is strongly
convex and completely separable across the samples; so it can be solved efficiently.
This extends easily to the multi-class logistic regression (also known as softmax)
models; the only difference in the softmax model would be that there would be one
set of function parameters for each class.

Numerical instance We use the data from the spam example in §9.1 of Hastie et al.
(2009). The spam data comes from the UCI machine learning repository. The variable
y denotes whether a sample is email (0), or spam (1). There are 57 predictors: 48 of
them are based on frequency of word appearances in a message (such as free), 6 are
based in frequency of character appearances (such as !), and the last three predictors
are average length, longest length and sum of all lengths of uninterrupted sequence
of capital letters.

Figure 1 shows the predictors fitted using our algorithm. These agree with the
predictors found via iteratively reweighted backfitting. Again, the advantage of our
implementation over iteratively reweighted backfitting is that it can fit the parameters
pi in parallel.
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Fig. 1 Predictors for Hastie et al. (2009) spam example fitted using our algorithm

5.3 Additive logistic models with regressor selection

Often, we would like to automatically select a subset of the predictors xi that best
explain our observation y. When fi are linear functions, solving the Lasso problem
(Tibshirani 1996) is a good heuristic for choosing the relevant predictors xi that ex-
plain our observation y.

Similarly, we would like to choose a sparse subset of xi in the additive model
that best explain y. If a predictor xi is not used, then fi = 0. One approach might
be based on iteratively reweighted backfitting and the shrinkage operator, which has
been implemented in GLMNET (Friedman et al. 2010). We stress that GLMNET
is, in essence, a sequential algorithm; an ADMM-based solution results in a parallel
algorithm.

To encourage sparsity among the fi ’s, we use the sum-of-norms penalty on
fi(xi;pi) to obtain a sparse selection of xi ’s (Yuan and Lin 2006; Zhao et al. 2009).
This means that we would augment the regularization functional by μi‖fi(xi;pi)‖,
where the norm could by any norm on Rm. Note that the added norm term is a regu-
larization on the function values at the sample points, and not on the function itself.

For this example, we will take the logistic loss function as in Sect. 5.2, and we
will use the �2 regularization functional augmented with the �2 norm of the func-
tion values, i.e., ri(pi) = ∫

f ′′
i (t;pi)

2dt + ‖fi(xi;pi)‖2. Note that in this case, if
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the pi -update step returns an all zero (parameter) vector, we can conclude that the
corresponding cubic spline with minimum total curvature is the zero function.

The z-updates stay the same as the Sect. 5.2. However, with the added regulariza-
tion term, the pi -update becomes

pk+1
i := argminλi

∫
f ′′

i (t;pi)
2dt + μi

∥∥fi(xi;pi)
∥∥

2

+ ρ/2
∥∥fi(xi;pi) − fi

(
xi;pk

i

) + f
k − zk + uk

∥∥2
2.

The pi -update involves solving a convex optimization problem, which can be solved
in a number of ways. However, we choose to solve the optimization problem involved
in the fi -step using ADMM as well. This allows us to decompose the computation by
having a dedicated prox operator for ‖fi(xi;pi)‖2 (which is employed using group
Lasso), and reuse our prox operator for the smoothness penalty from Sect. 5.2.

Numerical instance We use the data from the spam example, as in Sect. 5.2. We
will first run the algorithm to find a sparse set of features, and we chose 16 features
that are most relevant, and then re-fit the logistic model using the chosen features.

Figure 2 shows the predictors refitted using the smaller subset of features. This
classifier uses fewer than 30 % of the original predictors while giving a minimal
(<5 %) increase in classification error.

Fig. 2 The top 16 predictors in the spam example of Hastie et al. (2009) selected by regressor selection,
fitted using our algorithm
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5.4 Additive piecewise-constant models

We again consider a logistic loss function but this time restrict our choice functions to
be monotone increasing piecewise-constant functions. This choice of function arises
in medical classification problems, where it is desirable to give some interpretation
on the resulting predictors (Bottomley et al. 2011). Piecewise-constant predictors au-
tomatically bin features in to different levels allowing for simple interpretations of
high- or low-risk bins.

The predictors will be modeled as piecewise-constant functions of the regressors,
so that

fi(x;pi) =
m∑

j=1

(pi)j I{x≥(xi )j }(x),

where the function parameters pi define the height of the function at each interval
and IS(x) is the indicator function of the set S,

IS(x) =
{

1 x ∈ S,

0 otherwise.

Since we would like to minimize the number of bins used for classification, we
instead use a heuristic to promote sparsity. To shape f �

i , we use a weighted �1 regu-
larization on the parameters

ri(pi) = λi‖Wipi‖1

where λi ∈ R+ and

Wi = diag

(
1

(xi)2 − (xi)1
, . . . ,

1

(xi)m − (xi)m−1

)

with the constraints that pi 	 0. Note that changing the desired properties of the fitted
function only requires that we change how (4) is computed. The pi -update in ADMM
can be done by solving the weighted �1 problem with nonnegative constraints,

minimize λi‖Wipi‖1 + ρ/2
∥∥fi(xi;pi) − f k

i

(
xi;pk

i

) − f
k − zk + uk

∥∥2
2

subject to pi 	 0.

This problem can be solved via standard �1 minimization packages such as l1_ls or
NESTA (Kim et al. 2007; Becker et al. 2011a). Without the nonnegativity constraint,
the update can be done analytically via a shrinkage operator.

Numerical instance We again use data provided by Hastie et al. (2009). The dataset
consists of nine predictors used to predict coronary heart disease. These predictors are
systolic blood pressure, cumulative tobacco consumption, ldl cholesterol levels, adi-
pose tissue, family history, type-A behavior, body-mass index, alcohol consumption,
and age. We fit monotone increasing piecewise constant functions to each predictor,
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Fig. 3 Piecewise constant predictors for heart disease classifier

except systolic blood pressure and body-mass index, to obtain interpretable predictors
for coronary heart disease.

Figure 3 shows the predictors with λ1 = 5 (corresponding to systolic blood pres-
sure), λ7 = 0.6 (corresponding to body-mass index) and λ2 = · · · = λ6 = λ8 = λ9 =
0.1 chosen subjectively to provide the most interpretable results. For instance, the age
predictor is divided in to three distinct levels which can be interpreted as low-risk up
to age 55, medium-risk up to age 60, and high-risk after 60 years of age.

6 Conclusion

We can think of generalized additive models as an extension of the simple regression
models to nonlinear problems, and as a result, generalized additive models are appli-
cable to many domains, from machine learning to health diagnostic problems. Fitting
a generalized additive model can be a computationally intensive task, especially if
we have a large number of features. In this paper we have presented a distributed ap-
proach for fitting generalized additive models using the alternating direction method
of multipliers (ADMM). This approach enables the parallel use of specialized func-
tion fitters to fit models of great complexity and in a distributed fashion. We show
the application of our method to linear and logistic additive models. We have also
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demonstrated how we can promote certain properties in the fitted model, such as
sparsity and interpretability.
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