
International Journal of Control, 2014
http://dx.doi.org/10.1080/00207179.2013.875224

Minimum-time speed optimisation over a fixed path

Thomas Lippa,∗ and Stephen Boydb

aMechanical Engineering, Stanford University, Stanford, CA, USA; bElectrical Engineering, Stanford University, Stanford, CA, USA

(Received 6 June 2013; accepted 9 December 2013)

In this paper we investigate the problem of optimising the speed of a vehicle over a fixed path for minimum time traversal.
We utilise a change of variables that has been known since the 1980s, although the resulting convexity of the problem was
not noted until recently. The contributions of this paper are three fold. First, we extend the convexification of the problem to
a more general framework. Second, we identify a wide range of vehicle models and constraints which can be included in this
expanded framework. Third, we develop and implement an algorithm that allows these problems to be solved in real time,
on embedded systems, with a high degree of accuracy.

Keywords: minimum-time trajectory generation; optimal speed control; convex optimisation; interior point method;
embedded control

1. Introduction

Interest in calculating minimum-time trajectories dates
back at least to 1696 when Johann Bernoulli posed the
Brachistochrone Problem in Acta Eruditorum. Although
we may no longer be greatly concerned with the fastest
path for a frictionless ball falling along a curve, faster tra-
jectories can allow for the winning of races, interception
of enemies, rapid surveillance of an area or getting aid
more quickly to those who need it. Just a few of the ap-
plications that have desired minimum-time trajectories are:
aircraft climbing (Bryson & Denham, 1962) and turning
(Hedrick & Bryson, 1972), manipulator paths for robotics
(Bobrow, Dubowsky, & Gibson, 1985), point-to-point travel
for automated ground vehicles (Kalmár-Nagy, D’Andrea, &
Ganguly, 2004; Pin & Vasseur, 1990) and air vehicles (Hehn
& D’Andrea, 2011), optimal tracks for cars (Casanova,
2000; Hendrikx, Meijlink, & Kriens, 1996; Velenis &
Tsiotras, 2005), paths through obstacles for automated ve-
hicles (Donald, Xavier, Canny, & Reif, 1993; LaValle &
Kuffner, 2001) and virtual gaming (Cardamone, Loiacono,
Lanzi, & Bardelli, 2010).

In this paper, we focus on a subset of trajectory gener-
ation problems in which a specific path has already been
determined. The problem we then solve is to find an achiev-
able speed profile to produce the minimum time traversal
of that path, given the dynamics of the vehicle. These prob-
lems primarily arise in two ways. First, the path may be
completely determined by the problem. A vehicle may need
to adhere closely to a pre-specified path to avoid obstacles
in a highly cluttered environment, to avoid collisions by
following a specified flight path or to perform a precise

∗
Corresponding author. Email: tlipp@stanford.edu

task as in the case of manufacturing. In these applications,
there may be little room to modify the path for improved
performance. Second, a higher level algorithm may have
produced a series of collision-free paths that accomplish a
task, which now need to be evaluated. A final path is then
selected based on the minimum time required for traver-
sal. This second scenario often occurs because the general
minimum-time-trajectory problem is quite difficult and in
some environments even finding a feasible path can be chal-
lenging. Therefore, the problem is split into two compo-
nents where a higher level algorithm, like some discussed
in Section 2, may be run to find collision-free paths through
obstacles, while an algorithm like the one we develop is
used to evaluate the paths to determine if they are feasi-
ble, given the vehicle dynamics, and the speed profile and
control inputs necessary to traverse them in minimum time.

2. Previous work

2.1 General minimum-time trajectories

As the field of trajectory generation is a massive and long-
lived field, we cannot mention all approaches but will
touch on a few of the more common approaches to solving
the minimum-time-trajectory problem used over the years.
Since the minimum-time-trajectory problem is an optimal
control problem, many of the same approaches developed
for general optimal control are applied to the minimum-
time problem. One of the oldest methods which arose from
initial solutions to the Brachistochrone Curve problem was
the calculus of variations which is still used on occasions
(Bryson & Denham, 1962) and is the basis for many of the

C© 2014 Taylor & Francis

http://dx.doi.org/10.1080/00207179.2013.875224
mailto:tlipp@stanford.edu

2 T. Lipp and S. Boyd

methods mentioned. Trajectory generation is also tackled
from a nonlinear programming perspective with its direct
methods of discretisation and multiple shooting (Betts,
1998, 2001; von Stryk & Bulirsch, 1997) and indirect
methods (Bertolazzi, Biral, & Da Lio, 2005, 2007). Many
of these nonlinear optimisation formulations can be ap-
proached with the ACADO package (Houska, Ferreau,
& Diehl, 2011). Evolving from the nonlinear program-
ming approaches is the pseudospectral methods approach
in which Legendre, or similar, polynomials are used as basis
functions to find solutions (Elnagar, Kazemi, & Razzaghi,
1995). This approach is supported by the GPOPS (General
Pseudospectral Optimal Control Software) package (Darby,
Hager, & Rao, 2011; Garg et al., 2011; Rao et al., 2010).
Although many of these methods are promising, they are
often hampered by speed and suffer under the constraint of
exact path following.

There are also what we shall call graph methods that
discretise the entire configuration space to create nodes
and define edges as a minimum-time path between nodes.
The algorithms then perform a random search through this
graph in the hopes of finding a feasible, and then minimal,
path. These approaches include potential field methods
(Barraquand, Langlois, & Latombe, 1992; Caselli, Reg-
giani, & Rocchi, 2001) probabilistic road maps (Amato
& Wu, 1996) and more general graph-based approaches
(Donald & Xavier, 1989; Donald et al., 1993; Sahar &
Hollerbach, 1985; Shiller & Dubowsky, 1989). Of course,
as configuration spaces get larger, these methods become
impractical, and for many vehicles, even calculating the
minimum time between nodes is a substantial problem in
its own right. A modification on these graph approaches,
rapidly exploring random trees, removes the need to dis-
cretise initially, but is similar (Karaman & Frazzoli, 2011;
LaValle & Kuffner, 2001). These methods are particularly
popular when trying to find paths through environments
containing many obstacles, and with vehicle dynamics
removed, are well suited for finding collision-free paths.
In order to evaluate and compare these paths, we need
to know the minimum time required to traverse the path,
which is the focus of this paper.

2.2 Fixed-path minimum-time trajectories

Our work builds upon a transformation known since at least
1985 in which the path is reparameterised by a single vari-
able representing the distance travelled along the path. Once
the path is reparameterised in this manner, using the vehi-
cle dynamics, valid velocity regions are determined. The
goal then becomes to find valid velocity profiles along the
newly parameterised paths that stay below the maximum-
velocity regions (Bobrow et al., 1985; Constantinescu &
Croft, 2000; Dubowsky, Norris, & Shiller, 1986; Pfeiffer &
Johanni, 1987; Shin & McKay, 1985). Another approach
to the more general trajectory problem was to modify this

method to allow modest changes to the trajectory (Bayer &
Hauser, 2012; Shiller, 1994; Shiller & Dubowsky, 1989),
but we will not be exploring those extensions. More re-
cent research in this approach (sometimes called the Bo-
brow method) has focused on improving the robustness of
the approach, and often merging it with the global search
methods mentioned earlier, or allowing for more complex
dynamics (Hauser & Saccon, 2006; Kunz & Stilman, 2012;
Pham, 2013; Pham, Caron, & Nakamura, 2013; Zhao &
Tsiotras, 2013). While the early implementations focused
on iterative and geometric methods to find these veloc-
ity profiles, Verscheure, Demeulenaere, Swevers, Schutter,
and Diehl (2009a) observed that under this transformation,
the velocity profile for a standard six degree of freedom
robotic manipulator is convex (see also Verscheure, Diehl,
Schutter, & Swevers, 2009b). This allowed the problem to
be approached with the many tools that have been developed
for convex optimisation (Boyd & Vandenberghe, 2004),
greatly improving the efficiency, reliability and flexibility
of this formulation, and providing guarantees on optimality
trivially. The convexity of the problem also allows for sim-
ple verification of the feasibility of the desired path. Varia-
tions and extensions on this method have allowed the path to
vary, although this addition loses the benefits gained from
the convexity of the problem (Dinh & Diehl, 2009). Al-
though we will not be discussing it, alternative approaches
have been looked at, rather than convex formulations, dif-
ferentially flat formulations, which allow a broader class
of vehicles to be modelled, but again lose the benefits that
can be leveraged from convexity (Faiz, Agrawal, & Murray,
2001; Faulwasser, Hagenmeyer, & Findeisen, 2011).

2.3 Overview

In Section 3, we will review the problem formulation and
formally state the problem we address. We extend the per-
missible constraints, giving a general form for constraints,
rather than explicitly enumerating specific constraints. In
Section 4, we introduce a series of examples that show
how our model can be adapted to a wide range of vehi-
cles and situations. Although some work has already been
performed exploring how this model can be applied to vehi-
cles beyond the robotic manipulator (Dinh & Diehl, 2009),
our generalisation allows for new classes of vehicles and
better models to be considered. We will investigate the sim-
plest vehicle, the holonomic spacecraft, with modifications
that would cover a ducted fan. We then explore a num-
ber of friction circle models for cars including front wheel
drive, aerodynamic drag, a banked turn and independently
actuated wheels. Finally, we conclude the section with a
simple aircraft model. None of these models are possible
in the torque-constrained model presented in Verscheure
et al. (2009a). In Section 5, we demonstrate that the model
is indeed convex. We then shift our focus in Section 6 to
the development of an efficient algorithm for solving this

International Journal of Control 3

problem. In Section 6.1, we discretise the model making
several observations to improve the behaviour of the so-
lution. In Section 6.2, we discuss methods for solving the
discretised problem and introduce a standard log barrier in-
terior point solver that exploits structure. We then present
results in Section 7 validating the algorithm, and demon-
strating its improvement over existing solvers. We demon-
strate solve times that make the algorithm feasible for im-
plementation on embedded systems in real time.

3. Problem formulation

We address the problem of finding the control inputs that
allow a vehicle to traverse a specified path in minimum
time.

3.1 Dynamics

We consider vehicles that are represented by their gener-
alised position or configuration vector q ∈ Rp, which in-
cludes the position and orientation, and its time derivative
q̇ ∈ Rp, where p is the degree of freedom in the configura-
tion. The vehicles can move under the power of their own
actuators which take control inputs u ∈ Rr .

In this paper, we concern ourselves exclusively with
vehicles that have dynamics of the second-order form

R(q)u = M(q)q̈ + C(q, q̇)q̇ + d(q), (1)

where R : Rp → Rp×r is the control matrix, M : Rp →
Sp

++ is the mass matrix, Sp
++ is the set of symmetric positive-

definite matrices in Rp×p, C : R2p → Rp×p is the centrifu-
gal matrix and is linear in q̇ and d : Rp → Rp is the force
dependent on the configuration.

3.2 Control constraints

The vehicle is further defined by constraints on its control
inputs u which take the form

(q̇2, q̈, u) ∈ C(q), (2)

where C(q) ⊆ Rp×p×r is a set valued mapping to convex
sets. We use q̇2 to represent the element-wise square of q̇.
Previous formulations of this problem have only allowed for
bounds on the elements of u dependent on q. This formu-
lation allows the admissible control inputs to be coupled to
each other, the configuration, acceleration and square of the
velocity of the vehicle. Note that this representation means
that the set of admissible (q, q̇2, q̈, u) need not be convex.
Although we will usually think of these as constraints on the
control inputs, this formulation also allows for constraints
on the acceleration, and the square of the velocity related
to the position. For example, C could include speed limits
in certain regions of the configuration space.

3.3 Path

The path to be traversed is defined as s : [0, 1] → Rp in the
generalised position space. We say a vehicle moves along
path s when

s(θ (t)) = q(t), t ∈ [0, T], (3)

where θ : [0, T] → [0, 1] satisfies θ (0) = 0, θ (T) = 1, θ̇ ≥ 0,
and T is the time at which the vehicle reaches the end of the
path. Thus, the function θ provides the speed of the vehicle
along the path, specifically

q̇(t) = s ′(θ (t))θ̇(t),
q̈(t) = s ′(θ (t))θ̈(t) + s ′′(θ (t))θ̇(t)2,

(4)

where s ′ = ds
dθ

and s ′′ = d2s
dθ2 . Throughout this paper, we will

continue to use ′ to represent derivatives with respect to θ .

3.4 Problem statement

We can now represent our problem as

minimise T

subject to R(q(t))u(t) = M(q(t))q̈(t) + C(q(t), q̇(t))q̇(t)
+ d(q(t)), t ∈ [0, T],

s(θ (t)) = q(t), t ∈ [0, T],
(q̇(t)2, q̈(t), u(t)) ∈ C(q(t)), t ∈ [0, T],

(5)
where R, M, C, d, s and C are problem data and the functions
θ and u are the optimisation parameters.

Although the dynamics model presented in (1) and
problem formulation (5) may seem limiting, they include
a wide range of vehicles and constraints. In Section 4, we
will discuss robots, space vehicles, various car models and
aircraft.

4. Examples

In this section, we will present a series of vehicle models
which conform to the formulation presented in Section 3.
Although some aspects of these models could have been
handled in previous formulations, all of these models in-
volve coupling between control inputs and could therefore
not be handled in their entirety. The examples are by no
means exhaustive, but were chosen to highlight aspects of
this formulation and provide insight into how other vehicles
and situations can be included in this formulation.

4.1 Robotics

The application of this model to robotics has already been
well explored in Verscheure et al. (2009a, Verscheure et al.
2009b) which focused on a six degree of freedom robot.
The dynamics formulation (1) is the standard form for
robotics and will therefore accommodate almost all robotic
manipulators (Asada & Slotine, 1986; Lewis, Dawson, &
Abdallah, 2004). The model can handle many intricate

4 T. Lipp and S. Boyd

details of robotics, including centrifugal and Coriolis terms
without any modification. In Verscheure et al. (2009a), they
discuss how Coulomb friction can be included in the model,
which is simple, but will not be covered here. We will forgo
further discussion of robotic manipulators.

4.2 Space vehicle

A spacecraft can be modelled as a point mass that can be
subjected to a force in any direction and gravity. This model
corresponds to a vehicle with a primary thruster that can be
oriented in any direction by the vehicle’s attitude control.
In this way, we have abstracted the details of actuation
to produce a point-mass model with an allowable force
envelope. In addition to the canonical spacecraft, the point-
mass model and force envelope can cover most vehicles
for which the details of the dynamics and actuators are
abstracted. This is done for quadrocoptors in Hehn and
D’Andrea (2011) and for ground vehicles in Kalmár-Nagy
et al. (2004).

We take as the vehicle configuration its position in
space, that is, q = (x, y, z), and allow force inputs u =
(fx, fy, fz) in the Newtonian frame. Therefore, p = 3 and r =
3. Although we are working in three dimensions, it is trivial
to see that a similar model could be applied to a vehicle
operating in two dimensions.

We assume that the spacecraft is near some gravitational
body which is exerting a force in the negative z direction
resulting in dynamics

M = mI, C = 0, d = −gme3, R = I, (6)

where m is the mass of the vehicle and g is the acceleration
due to gravity. The gravitational force d could be removed,
or have its direction or magnitude changed without any vi-
olation of the problem formulation. Furthermore, the force
could vary with the vehicle’s position q for a more accurate
model.

For the spacecraft model, the set C is invariant with
respect to q and can be represented as

C = {
(q̇2, q̈, u) | ‖u‖2 ≤ umax

}
, (7)

where umax is the maximum force the primary thruster can
exert. In this example, we are able to represent the forces
in the Newtonian frame because the vehicle is holonomic,
thereby simplifying computation.

A spacecraft may have additional constraints such as a
minimum force that can be applied; a thruster must produce
some minimum force to operate. Such a constraint is non-
convex and does not fit in our formulation, but Blackmore
and Açikmeşe (2011) suggest methods for including such
constraints.

4.3 Space vehicle with vectored thrust

One modification to the space-vehicle model is to limit
the thrust to a cone aligned with the orientation of the

vehicle. This limitation corresponds to the attitude control
only being able to make modest modification to the orienta-
tion of the vehicle. Such a model would also be appropriate
for handling ducted fans.

Rather than adding the orientation to our configu-
ration parameters, we will instead introduce a function,
P : R3 → R3, which maps the position of the vehicle to an
orientation vector. For ease of representation, we will as-
sume that the position uniquely determines the orientation,
but it is simple to allow the same position to correspond to
multiple orientations at different points along the trajectory.
The dynamics of the system are the same as in (6), but now
the constraint set C has an additional constraint

C = {
(q̇2, q̈, u) | ‖u‖2 ≤ umax, ‖u‖2 cos(φ) ≤ P (q)T u

}
,

(8)

where φ is the maximum deviation angle from the primary
orientation that the attitude control can achieve.

4.4 Friction circle car model

Whereas the spaceship had three dimensions, our first car
model has only two. Although the model in (1) has been
applied to a car in Dinh and Diehl (2009), we will use a dif-
ferent model based on the friction circle which has coupling
between forces. We provide several variations on this model
in order to provide insight into the ways various constraints,
models and environmental factors can be incorporated into
these models.

For our vehicle model, we will use a standard friction
circle model with a limit on the available force in the ori-
entation of the vehicle. The friction circle model derives
from the observation that all forces that are applied to the
car must transmit through the contact surface between the
tyres and the road. As such, the maximum force that can be
applied to the car, assuming a sufficiently powerful engine,
is limited by the coefficient of friction between the tyres
and the road. If the car attempts to produce more force
than this limit, the tyres will slip. This will produce less
force as the sliding coefficient of friction is less than the
static coefficient of friction. Thus, the maximum achievable
force is the force required to overcome static friction. This
basic friction circle model assumes that by manipulating
the steering wheel, accelerating and breaking, force can be
produced in any direction desired (Milliken & Milliken,
1995; Rice & Alianello, 1970). With only these limitations
we have created a two-dimensional space vehicle. We add
a further constraint to model a front wheel drive vehicle.
In this configuration, the force in the direction of motion is
limited to the force required to overcome the static friction
of the two front tyres, as the rear tyres provide no drive
force. The front tyres typically support slightly more than
50% of the total mass of the car.

As in the spaceship model, we take as the vehicle con-
figuration its position in space: q = (x, y). The allowable
force inputs are now provided relative to the orientation of

International Journal of Control 5

the car as u = (flong, flat), where flong is the longitudinal
force in the direction the car is oriented and flat is the force
perpendicular to the orientation of the car. Therefore, p =
2 and r = 2. The dynamics of the car are quite similar to
those in (6) except u is now represented in the frame of the
vehicle, so R is a rotation matrix:

M = mI, C = 0, d = 0,

R =
[

cos(φ(q)) − sin(φ(q))
sin(φ(q)) cos(φ(q))

]
, (9)

where φ : R2 → R maps the position of the vehicle to an
orientation angle in the global frame, similar to the vectored
thrust approach. Thus, R maps u from the vehicle frame
back into the global frame. A typical implementation of φ

will assume that the vehicle is always facing the direction
of its instantaneous velocity, which is known from the path
s. Although this is generally true at low speeds, at high
speeds, the side slip angle (the angle between the heading
and velocity of the vehicle) may become substantial. We
will ignore these effects.

The constraint set C includes two constraints,

C = {
(q̇2, q̈, u) | ‖u‖2 ≤ μsFN, flong ≤ Wf μsFN

}
,

(10)

where μs is the static coefficient of friction between the
tyres and the road, FN is the normal force of the vehicle,
which on a flat surface is mg, where g is the acceleration due
to gravity, and Wf is the percentage of vehicle weight on
the front tyres. The first constraint represents the limits of
the friction circle, while the second constraint encodes the
acceleration limits from front wheel drive. Our constraint
set, C, is convex as it is the intersection of two convex sets;
norms are convex, and our upper bounds are fixed.

We could have represented u in the Newtonian frame in
which case the dynamics would have been the same as (6)
and the rotations would have been incorporated in C.

4.5 Vehicle with aerodynamic drag

To demonstrate the utility of the C term in the dynamics,
we will present a model for our vehicle which incorporates
aerodynamic drag. The drag, D, on the vehicle is

D = 1

2
ρACDv2,

where CD is the coefficient of drag, ρ is the air density, v

is the speed of the vehicle and A is the reference area (the
front area of the vehicle). We have assumed that the vehicle
is always oriented in the direction it is travelling, so we do
not need to be concerned about the way the surface area
varies based on the orientation of the vehicle. We then have

dynamics

M = mI, C =
[− 1

2ρACDẋ 0
0 − 1

2ρACDẏ

]
, d = 0,

R =
[

cos(φ(q)) − sin(φ(q))
sin(φ(q)) cos(φ(q))

]
, (11)

and the same constraint set C as in the earlier examples.

4.6 Banked turn

We now consider an example of a vehicle traversing a
banked curve. When a vehicle is on a banked road, there are
two effects which take place. First, there is a force applied in
the direction of descent of the road caused by gravity acting
on the mass of the vehicle. Second, the normal force from
the road decreases, and thus the available friction force at
the tyres is reduced.

In order to enforce the constraint that the vehicle is on
the road, rather than floating above it, we will take q = (x, y)
as before, where the height of the vehicle can be determined
from its position. We will take u = (flong, flat) which are still
in the vehicle frame, but due to the slope of the road, may
no longer be in the (x, y) plane.

The vehicle has dynamics

M = mI, C = 0,

R =
[− cos(α(q)) − sin(α(q))

sin(α(q)) − cos(α(q))

] [
cos(φ(q)) 0

0 1

]

×
[

cos(β(q)) sin(β(q))
− sin(β(q)) cos(β(q))

]
,

d =
[

cos(α(q)) sin(α(q))
− sin(α(q)) cos(α(q))

] [
cos(φ(q)) 0

0 1

]

×
[

mg sin(φ(q))
0

]
,

(12)

where β : R2 → R is the angle between the orientation
of the vehicle and the axis of maximum inclination (the
line in the tangent plane to the road with the maximum
vertical slope), φ : R2 → R is the angle of inclination and
α : R2 → R is the angle between the axis of inclination and
the x-axis in the (x, y) plane. To understand the formulation
of R, we first transform the forces from the vehicle frame to
a frame aligned with the axis of inclination (rotation by β).
We then project those forces into the Newtonian (x, y) plane
(projection by φ) and represent those forces in terms of their
components in the x and y directions (rotation by α). The
vector d is the force due to gravity from the inclination of
the road represented along the x- and y-axes. The functions
α, β and φ depend only on the state, q.

The constraint set C is similar to that seen in the friction
circle approach, except for the aforementioned change in

6 T. Lipp and S. Boyd

the available normal force:

C = {
(q̇2, q̈, u) | ‖(flong, flat)‖2 ≤ μs(q)mg cos(φ(q)),

flong ≤ Wf μs(q)mg cos(φ(q))
}
. (13)

The constraint set as a function of q is still convex, because,
as in the variable surface example, for a given q the upper
bounds on the norms are all constant over q̇2, q̈ and u.

4.7 Multiwheel car model

In all models considered so far, orientation has either been
irrelevant due to the holonomic nature of the vehicle (as
with the spacecraft) or assumed in the direction of travel.
Achieving the necessary orientation has been excluded
from the dynamics. In this example, we include the ori-
entation of our vehicle as one of the configuration states
and consider a vehicle with four independently actuated
wheels. As before, the orientation of the vehicle will be
known a priori, but unlike the earlier examples, the control
inputs chosen must achieve the proper orientation, not just
the position of the vehicle.

The vehicle has a generalised position, q = (x, y, θ),
where (x, y) are the Newtonian positions of the vehicle and
θ is the orientation of the vehicle with respect to the x-axis.
The vehicle has control inputs u = (fxfl, fyfl, fxfr, fyfr, fxrl,
fylr, fxrr, fyrr), where the x and y subscripts represent the
direction of the force, fl means the force comes from the
front (f) left (l) wheel and rr means the force comes from
the rear (r) right (r) wheel. We will assume that the weight
is evenly distributed between the right-hand and left-hand
side of the vehicle, and that there is no weight transfer due
to manoeuvres. This model has p = 3 and r = 8.

The vehicle has dynamics

M =
⎡
⎣m 0 0

0 m 0
0 0 J

⎤
⎦ , C = 0, d = 0,

R =
⎡
⎣ c(θ) −s(θ) c(θ) −s(θ) c(θ) −s(θ) c(θ) −s(θ)

s(θ) c(θ) s(θ) c(θ) s(θ) c(θ) s(θ) c(θ)
(1 − Wf)L −w/2 (1 − Wf)L w/2 −Wf L −w/2 −Wf L w/2

⎤
⎦,

(14)

where m is the mass of the vehicle, J is the moment of
inertia, c(θ) = cos (θ), s(θ) = sin (θ), Wf is the percentage
of weight on the front tyres, L is the length of the vehicle
and w is the width of the vehicle

The constraint set consists of limits to the force that can
be applied by the front wheel,

‖(fxf i, fyf i)‖2 ≤ Wf mg

2
i = l, r, (15)

and that can be applied by the rear wheel,

‖(fxri , fyri)‖2 ≤ (1 − Wf)mg

2
i = l, r, (16)

where Wf is the percentage of weight supported by the front
wheels, and the factor of 1

2 appears because the weight
is supported evenly by the left-hand and the right-hand
wheels. This gives the constraint set

C = {
(q̇2, q̈, u) | (15), (16)

}
. (17)

4.8 Aircraft model

In this example, we consider a simple aircraft model in two
dimensions to demonstrate the advantages of this model
allowing coupling, not just between control inputs as al-
ready shown, but between control inputs and the square of
velocity. We will take as the state of our system q = (x,
h), where x is the lateral displacement of the vehicle and
h is the altitude of the vehicle. We will take as our control
inputs u = (L, D, T), where L is the lift, D is the drag (both
induced and from spoilers) and T is the thrust. Therefore,
p = 2 and r = 3. As in our vectored thrust model, we as-
sume a nominal angle of attack that is dependent on the
lateral displacement, α : R → R, and allow the angle of
attack to vary by an amount αδ from the nominal angle of
attack. However, we assume that the direction of the lift and
drag forces are relative to the nominal angle of attack. The
dynamics of our system are

M = mI, C = 0,

R =
[− sin(α(x)) − cos(α(x)) cos(α(x) + αT)

cos(α(x)) − sin(α(x)) sin(α(x) + αT)

]
,

d = −mge2, (18)

where m is the mass of the plane, αT is the fixed angle of
the thrust and g is the acceleration due to gravity. Although
we have made the angle of attack dependent purely on the
lateral displacement, we could have made it a function of
q, that is, both x and h.

To determine our constraint set, we review some basic
aerodynamics. The lift produced by the plane is

L = 1

2
ρ(h)SCLv2,

International Journal of Control 7

where L is the lift, ρ : R → R is the air density dependent
on the altitude, S is the area of the lifting surface, v is the
true airspeed (which we will simply consider to be the speed
of the vehicle, ‖q̇‖2, meaning, there is no wind) and CL is
the coefficient of lift. Although we have represented ρ as a
function of h, it could also be represented as a function of
q. The coefficient of lift can be approximated in the linear
region as

CL = a0(α − aL),

where α is the angle of attack, and a0 and aL are coefficients
representing the lifting curve. The lift that can be produced
is therefore limited by the variation that we permit in the
deviation from the nominal angle,

1

2
ρ(h)S‖q̇2‖1a0(α(x) − αδ − aL) ≤ L

≤ 1

2
ρ(h)S‖q̇2‖1a0(min(α(x) + αδ, αstall) − aL), (19)

where αstall is the angle of attack at which the linear model
fails and the vehicle starts to stall. Although the lower bound
is clearly convex, it is not immediately evident that the
upper bound is convex. First, we observe that the minimum
function is only operating on q and therefore its convexity is
irrelevant. We next observe that ‖q̇2‖1 is linear in q̇2 since it
is simply a sum of its components ‖q̇2‖1 = x2 + h2 = v2.

In order to make our constraints set, C, convex, we
assume that the maximum drag that can be produced by
the spoilers is greater than the induced drag from the lift,
and that the spoiler drag is independent of the induced drag
and lift. We will then constrain the drag to be less than this
value. This means that in regions with high induced drag,
it may be possible to achieve greater drag than we permit.
From aerodynamics, we know that the induced drag is

Dind = 1

2
ρSCDi

v2,

where

CDi
= CD0 + C2

L

πeAR
,

where CD0 is the zero-lift drag coefficient, e is the Oswald
efficiency number and AR is the aspect ratio of the wing.
We can therefore define the induced drag as

Dind = 1

2
ρ(h)SCD0‖q̇2‖1 + 2L2

ρ(h)SπeAR‖q̇2‖1
.

However, this constraint is not convex, so we relax it by
saying that we produce at least Dind, but could produce
up to Dmax(α(x), h) by engaging spoilers and other control
surfaces where Dmax : R2 → R is the maximum drag that
can be produced by control surfaces independent of lift. We

can now represent the drag produced as

1

2
ρ(h)SCD0‖q̇2‖1 + 2L2

ρ(h)SπeAR‖q̇2‖1

≤ D ≤ Dmax(α(x), h). (20)

The first term on the left-hand side is linear in q̇2 as already
discussed and is therefore convex. The second term on the
left-hand side is in the form of a quadratic term (L2) over
a linear term (ρ(h)SπeAR‖q̇2‖1) which is known to be
convex (Boyd & Vandenberghe, 2004, , Section 3.1.5). As
before, the upper bound is fixed by q.

We can therefore define the constraint set as

C = {
(q̇2, q̈, u) | (19), (20), 0 ≤ T ≤ Tmax

}
, (21)

where Tmax is the maximum thrust that can be produced,
assumed independent of speed for simplification, although
more complex models would work. Our constraint set is the
intersection of three convex sets, and is therefore convex.

5. Convexification

Having seen the wide variety of models that fit this for-
mulation, we now apply the change of variables used in
Verscheure et al. (2009b) to reformulate (5), and thereby
all of the examples, as convex problems. Although much of
this analysis is performed in Verscheure et al. (2009a), we
repeat it here for completeness. We represent the dynamics
of (1) in terms of θ by applying (3) and (4) to produce

R̃(θ)u = m̃(θ)θ̈ + c̃(θ)θ̇2 + d̃(θ), (22)

where

R̃(θ) = R(s(θ)),
m̃(θ) = M(s(θ))s ′(θ),
c̃(θ) = M(s(θ))s ′′(θ) + C(s(θ))s ′2(θ),
d̃(θ) = d(s(θ)).

(23)

We next introduce two new functions,

a(θ) = θ̈ , b(θ) = θ̇2,

which are related by

ḃ(θ) = b′(θ)θ̇ = d(θ̇2)

dt
= 2θ̈ θ̇ = 2a(θ)θ̇

or more simply

b′(θ) = 2a(θ). (24)

8 T. Lipp and S. Boyd

Our objective function can be represented by

T =
∫ T

0
1d t =

∫ θ(T)

θ(0)
θ̇−1 dθ =

∫ 1

0
θ̇−1dθ

=
∫ 1

0
b(θ)−1/2 dθ. (25)

Our formulation (5) can now be represented as

minimise
∫ 1

0
b(θ)−1/2 dθ

subject to R̃(θ)u(θ) = m̃(θ)a(θ) + c̃(θ)b(θ) + d̃(θ),

θ ∈ [0, 1],

b′(θ) = 2a(θ), θ ∈ [0, 1],

(a(θ), b(θ), u(θ)) ∈ C̃θ , θ ∈ [0, 1], (26)

where

C̃θ = {
(a(θ), b(θ), u(θ)) | (s ′(θ)2b(θ), s ′(θ)a(θ)

+ s ′′(θ)b(θ), u(θ)) ∈ C(s(θ))
}
.

The optimisation parameters are the functions a, b, and u
while everything else is problem data. Our objective func-
tion is the integral of a negative power function and is
therefore convex, as the integral of a convex function is
convex. The dynamics constraint is affine in a, b, and u
and is therefore convex. The relation between a and b is
convex as the derivative is a linear operator. Finally, C̃θ is
an affine transformation of a convex set and is therefore
convex. We have now formulated the problem as an infinite
dimensional convex optimisation problem. Therefore, lo-
cally optimal solutions to this problem are guaranteed to be
globally optimal. Provided that C̃θ is numerically tractable,
this problem can be easily solved using discretisation
techniques.

6. Algorithm development

In the previous sections, our focus was on the general class
of problems outlined in Section 3. In the subsequent sec-
tions, our attention shifts to our specific implementation,
with a focus on developing an efficient algorithm for solv-
ing (26) that will rely on its convexity. In Section 6.1, we
will discuss the impact of various discretisation schemes
which will motivate the discretisation scheme used by our
algorithm. Then, in Section 6.2, we will introduce a primal
interior point method which exploits structure. The result
is Algorithm 6.1.

6.1 Discretisation

The problem stated in (26) can be readily solved using
well-established methods of discretisation to address the

differential constraints and continuous objective function.
To create a finite-dimensional problem, discretise a(θ), b(θ)
and u(θ) at the same n + 1 points in θ ranging from 0
to 1, replace the integral (25) with a sum and replace the
derivative (24) with a finite difference approximation. Many
discretisations of this problem, with an appropriately fine
mesh, will find the solution, but we present some techniques
we use to improve the accuracy of the results.

6.1.1 Exact discretisation of the objective function

Since it is often desirable to find a minimum-time trajectory,
given an initial starting and or ending velocity, we will
choose a discretisation that includes both θ = 0 and θ =
1. If either b(0) or b(1) is zero, we cannot evaluate the
integrand at this value. We will resolve this issue by exactly
evaluating the objective function as in Verscheure et al.
(2009a). We will make the assumption that on the interval
between two consecutive discretisation points, θ i and θ i + 1,
a(θ) is constant. From (24) we know, under this assumption,
that b′(θ) is constant across the interval and thus

b(θ) = bi + (θ − θi)

(
bi+1 − bi

θi+1 − θi

)
, θ ∈ [θi, θi+1],

(27)
where θ i and θ i + 1 are consecutive discretisation points,
bi = b(θ i) and bi + 1 = b(θ i + 1) . If both θ i and θ i + 1 are
zero, the path is not traversable as under the a constant
constraint, the vehicle is never able to progress through that
segment. Under these assumptions, we have

∫ θi+1

θi

b(θ)−1/2 dθ = 2(θi+1 − θi)

b
1/2
i + b

1/2
i+1

. (28)

To derive (28), we first apply (27) to our objective function
to get

∫ θi+1

θi

(
bi + (θ − θi)

(
bi+1 − bi

θi+1 − θi

))−1/2

dθ

=
2

(
bi + (θ − θi)

(
bi+1−bi

θi+1−θi

))1/2

(
bi+1−bi

θi+1−θi

) ∣∣∣∣
θi+1

θi

.

Carrying out algebra now yields

∫ θi+1

θi

b(θ)−1/2 dθ = 2
(
b

1/2
i+1 − b

1/2
i

)
(

bi+1−bi

θi+1−θi

) = 2(θi+1 − θi)

b
1/2
i + b

1/2
i+1

.

International Journal of Control 9

Thus, assuming a is constant across the interval, (25) is
equivalent to

2
n−1∑
i=0

(
θi+1 − θi

b
1/2
i + b

1/2
i+1

)
, (29)

where we have discretised θ and b at n + 1 points with θ0 =
0, θn = 1 and θ i < θ i + 1 for i = 0, . . ., n. Note that once the
discretisation is decided upon, the θ values are all known,
while the b values are found during the optimisation.

6.1.2 Enforcing differential constraints at the midpoints

Although we evaluated b(θ) at the discretisation points θ i,
according to the assumption that a(θ) is constant across the
interval, the value of a(θ) at θ i is discontinuous. Therefore,
we choose to evaluate our transformed dynamics constraint
at the midpoint of the interval, such that ai = a

(
θi−1+θi

2

)
and

ui = u
(

θi−1+θi

2

)
. Since a(θ) is constant across the interval

from (24), we have b
(

θi−1+θi

2

) = bi−1+bi

2 . Thus, our dynamics
constraint becomes

R̃
(
θ̄i

)
ui = m̃

(
θ̄i

)
ai + c̃

(
θ̄i

) bi−1 + bi

2
+ d̃

(
θ̄i

)
,

i = 1, . . . , n, (30)

where θ̄i = (
θi−1+θi

2

)
.

6.1.3 Enforcing C constraints

We will impose the C constraints at the discretisation points
θ i. This is different from the enforcement of the dynamics
constraints so that maximum velocity constraints are possi-
ble. Consider a velocity constraint of the form b(θ) ≤ f (θ),
for example, f (θ) = k. If we enforced this constraint at θ̄i ,
if bi + 1 = 0 and bi−1 = 0, then bi = 2k would satisfy our
speed constraint, which is clearly antithetical to the goal of
the speed constraint. Although we could apply the C con-
straints in different ways depending on the nature and goal
of the constraint, for uniformity and ease of implementa-
tion, we will enforce constraint Cθi

on bi, ui, ai. We note that
a and u are discontinuous at θ i and we therefore choose to
use the values of ui and ai to maintain the block structure
which we will exploit in Section 6.2. Under this discretisa-
tion, the b(θ) will always satisfy the maximum constraint
given earlier.

One will note that this formulation does not permit
constraints in C to apply to b0. We will resolve this issue
by requiring that b0, the initial velocity, be prescribed. The
problem can be solved as easily without prescribing an
initial velocity, but we will not be examining that case in
this paper. We implement discretised constraints

(ai, bi, ui) ∈ C̃θi
, i = 1, . . . , n (31)

b0 =
(‖vinit‖2dθ

‖s(θ1) − s(θ0)‖2

)2

, (32)

where vinit is the generalised initial velocity desired. Note
that to be feasible vinit = αs′(0), where α ∈ R++ so we
could also write constraint (32) as

b0 = α2.

6.1.4 Calculating derivatives of b

We estimate the first derivatives of b with a second-order
central difference. From here on we will assume that the
discretisation points are evenly spaced, that is, θ i + 1 − θ i =
dθ for all i. This does not mean that the s(θ i) need be evenly
distributed. In the case of b′(θ), since we have assumed a(θ)
is constant, the second-order approximation is exact:

bi − bi−1 = 2aidθ, i = 1, . . . , n. (33)

6.1.5 Estimating derivatives of the path

If the function s(θ) is known and differentiable, then the
calculation of s′(θ) is trivial. We will assume, in general,
that this is not the case, and instead, that we are given the
values of s evaluated at the discretisation points, that is,
s(θ i) for i = 0, . . ., n. We assume that s(θ̄i) needed in (30)
can be found as

s(θ̄i) = s(θi−1) + s(θi)

2
.

We calculate s ′(θ̄) as

s ′(θ̄i) = s(θi) − s(θi−1)

dθ
. (34)

Although the order of the model used to compute s′ appears
to have little impact on the solution, testing has shown that
the discretisation of s′′(θ) has a substantial impact on the
fidelity of the discretised solution, as shown in Figure 1.
When we talk about the fidelity of the discretised solution,
we are referring to the accuracy with which applying the
control inputs determined by the optimisation successfully
tracks the path desired. In particular when the derivative
calculation has a low order and offset stencil (Equations
(35) and (36)), results are poor. The derivative calculations
compared in Figure 1 are

s ′′ (θ̄i

) = s(θi−2) − 2s(θi−1) + s(θi)

dθ2
, (35)

10 T. Lipp and S. Boyd

Figure 1. Trajectories are shown using the friction circle model
from Section 4 to demonstrate the different methods for calcu-
lating s′ ′. After determining the fixed control input ui across the
interval, we then apply a sixth-order Runge–Kutta scheme from
Fehlberg (1968) to simulate the actual performance of the vehicle
under the calculated inputs.

s ′′ (θ̄i

) = s(θi−1) − 2s(θi) + s(θi+1)

dθ2
, (36)

s ′′ (θ̄i

) = s(θi−2) − s(θi−1) − s(θi) + s(θi+1)

2dθ2
, (37)

s ′′ (θ̄i

) = − 5
48 s(θi−3) + 13

16 s(θi−2) − 17
24 s(θi−1) − 17

24 s(θi) + 13
16 s(θi+1) − 5

48 s(θi+2)

dθ2
, (38)

where (35) and (36) are offset (more points on one side
than the other) second-order models, and (37) and (38)
are symmetric fourth- and sixth-order models, respectively.
The fifth-order model, which is also offset, was omitted but
has nearly identical performance to the sixth-order model.
We implement the sixth-order model for its symmetry and
improved performance.

In practice, these control laws would be implemented
with feedback in order to avoid a compounding error, so the
harm of a lower order discretisation would be diminished.
Improved fidelity could also be achieved by using a finer
mesh in the discretisation since all of the derivatives will
converge in the limit for a smooth path. Whereas the com-
putation time is linear in the size of the discretisation, the
derivatives of s only need to be calculated once at the start
of the algorithm, making their computation almost negligi-
ble. It is therefore better if higher fidelity can be achieved
with a high-order discretisation than with a finer mesh.

6.1.6 Calculating path derivatives at the start

Figure 1 suggests there is one final discretisation technique
we should employ, and which we have already used in Fig-
ure 1. Since the fidelity of our solution is heavily influenced
by the offset of our stencil and the order of the model,
for our calculation of s ′′(θ̄1) we will not use (36). Rather
than using a higher order model with a larger offset, we
will project back, and assume that prior to s(θ1) the path
was linear. Thus, we will create a ghost point at s(θ−1) =

2s(0) − s(θ1), and use (37) to create

s ′′(θ̄1) =
1
2 s(0) − s(θ1) + 1

2 s(θ2)

dθ2
. (39)

This approximation has the benefit of providing a symmet-
ric stencil and being of higher order. The benefits of this
approximation can be seen in Figure 2.

6.1.7 Discretised problem

Based on these results, our algorithm applies discretisations
to produce the discrete optimisation problem

minimise (29)
subject to (30), (31), (32), (33),

(40)

where the derivatives of s are calculated according to (34),
(38) and (39). The ai, bi and ui are problem data, while
everything else can be calculated from the given dynamics
and s. The problem is now a finite-dimensional convex
optimisation problem.

6.2 Optimisation

Problems like (40) are highly structured, and therefore
can be solved quite efficiently. There is a long history of

exploiting this structure in control problems dating back to
shortly after the popularisation of interior point methods
such as Wright (1993, 1997), Hansson and Boyd (1998),
Rao, Wright, and Rawlings (1998), Hansson (2000), Potra
and Wright (2000) and Wright and Nocedal (2006). While
we focus on a log barrier, infeasible start, interior point
method, targeted specifically at this problem, there are other
approaches.

Figure 2. The general discretisation is provided by (38) but for
the first point we have varied the scheme. As can be seen, the
calculation of s ′′(θ̄1) can have a significant impact on fidelity.

International Journal of Control 11

As demonstrated in Verscheure et al. (2009a), this prob-
lem can be transformed into a Second Order Cone Program
(SOCP) so that it may be solved by standard SOCP solvers
such as SeDuMi (Sturm, 1999) or SDPT3 (Toh, Todd, &
Tutuncu, 1999; Tutuncu, Toh, & Todd, 2003). In this for-
mulation, the problem can benefit from robust preexist-
ing solvers. However, these solvers must address all SOCP
problems and therefore are not always able to take advan-
tage of problem structure. One disadvantage of the SOCP
form is that the conversion to an SOCP requires the addi-
tion of three variables per time step which may as much as
double the size of the problem, diminishing the benefits of
the optimised SOCP solvers.

In Hauser (2013), a method that involves solving a se-
ries of linear programs is suggested, although this approach
is for a smaller class of problems (only velocity and accel-
eration constraints).

Another approach observes that different time steps are
only coupled by b values, and therefore we could implement
an operator splitting method (O’Donoghue, Stathopoulos,
& Boyd, 2013). This would allow advantage to be taken of
parallelisation allowing the computation time to scale lin-
early in the number of processors. This could be especially
advantageous if truly massive speed optimisation problems
were being considered.

6.2.1 Direct interior point barrier method

Our algorithm uses an infeasible start interior point method
using log barrier functions as described in Boyd and Van-
denberghe (2004). If faster solve times are needed, improve-
ments could be made through implementation of some of
the ideas in Wang and Boyd (2010) for fast model predictive
control.

Interior point methods operate by solving a series of
approximations of the optimisation problem desired using
Newton’s method. The approximations transform inequality

constraints into costs added to the objective that more closely
approach indicator functions in each subsequent step. Find-
ing each Newton step requires solving a Karush–Kuhn–
Tucker (KKT) system of equations representing a quadratic
approximation of the optimality conditions. Thus, to facil-
itate rapid solving, we must increase the speed with which
we can solve the KKT system.

6.2.2 Banded system

The KKT matrix for the optimisaiton problem

minimise f0(x) + φ(x)/t

subject to Ax = b,
(41)

where f0 is the desired function to minimise, φ is the barrier
function, t represents the accuracy of the barrier function
and the other constraints (dynamics and derivatives) are all
affine equality constraints that can be encoded as Ax = b,
has the structure[∇2f0(x) + ∇2φ(x)/t AT

A 0

]
. (42)

We have already observed that problem (40) is highly struc-
tured as between discretisation steps (corresponding to θ i)
only bi appear in multiple steps. Therefore, by an appro-
priate ordering we can make the KKT system banded. By
ordering our states b0, b1, a1, u1, b2, a2, . . . , un and in-
terweaving the dual variables after each set of b, a, u, our
KKT system is banded with bandwidth 6 + 2p + 2r. We
will in general ignore the b0 term as it is fixed by the initial
conditions and can therefore be eliminated before factoring
the matrix. Therefore, without interweaving, the Hessian
block of the KKT system has a predominantly block di-
agonal structure with of-block diagonal coupling on the b
terms. Assuming that r = 1, the Hessian of f(x) = f0(x) +
φ(x)/t is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ2f

δb2
1

δ2f
δb1δa1

δ2f
δb1δu1

δ2f
δb1δb2

0 0 0 · · · 0 0 0
δ2f

δb1δa1

δ2f

δa2
1

δ2f
δa1δu1

0 0 0 0 · · · 0 0 0
δ2f

δb1δu1

δ2f
δa1δu1

δ2f

δu2
1

0 0 0 0 · · · 0 0 0
δ2f

δb1δb2
0 0 δ2f

δb2
2

δ2f
δb2δa2

δ2f
δb2δu2

δ2f
δb2δb3

· · · 0 0 0

0 0 0 δ2f
δb2δa2

δ2f

δa2
2

δ2f
δa2δu2

0 · · · 0 0 0

0 0 0 δ2f
δb2δu2

δ2f
δa2δu2

δ2f

δu2
2

0 · · · 0 0 0

0 0 0 δ2f
δb2δb3

0 0
. . . · · · 0 0 0

...
...

...
...

...
...

...
. . .

...
...

...

0 0 0 0 0 0 0 · · · δ2f

δb2
n

δ2f
δbnδan

δ2f
δbnδun

0 0 0 0 0 0 0 · · · δ2f
δbnδan

δ2f

δa2
n

δ2f
δanδun

0 0 0 0 0 0 0 · · · δ2f
δbnδun

δ2f
δanδun

δ2f

δu2
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (43)

12 T. Lipp and S. Boyd

The equality constraints of our system also have structure
resulting in an A block of

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c̃1/2 m̃1 −R̃1 0 0 0 · · · 0 0 0 0 0 0
−1 2dθ 0 0 0 0 · · · 0 0 0 0 0 0
c̃2/2 0 0 c̃2/2 m̃2 R̃2 · · · 0 0 0 0 0 0

1 0 0 −1 2dθ 0 · · · 0 0 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

...
...

0 0 0 0 0 0 · · · c̃n/2 0 0 c̃n/2 m̃n R̃n

0 0 0 0 0 0 · · · 1 0 0 −1 2dθ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (44)

where c̃i = c̃(θ̄i), m̃i = m̃(θ̄i) and R̃i = R̃(θ̄i). By inter-
weaving the blocks of A after the blocks of the Hessian,
we can construct a system with bandwidth 6 + 2r + 2p.
The blocks and of-block elements in (43) contribute 4 +
2r to the bandwidth and the blocks and of-block elements
in (44) contribute 2p + 2 to the bandwidth. Given the slow
growth of the number of iterations required for interior
point methods with problem size (Boyd & Vandenberghe,
2004, , Section 11.5.3), the speed with which we can solve
the algorithm is almost entirely dependent on how rapidly
we can evaluate and solve the KKT system. By implement-
ing a simple LU factorisation, we can exploit the banded
structure to solve the system in only 4n(6 + 2m + 2p)3

flops. Thus, our solve time is linear in n. While other fac-
torisations, such as an LDLT factorisation, could be used,
the LU factorisation is sufficiently fast for our purposes. It
is worth noting that the KKT matrix is not positive defi-
nite, and therefore care must be taken during pivoting. We
implement the LU factorisation using Tim Davis’s sparse
matrix libraries (Davis, 2006).

6.2.3 An additional constraint

To improve the performance of the algorithm, we also add
a redundant constraint

bi ≥ 0, i = 0, . . . , n. (45)

This constraint is already enforced by the domain of (29),
and to keep the objective small, bi must be large. However,
because the denominator of the terms in the objective is

b
1/2
i + b

1/2
i+1, i = 0, . . . , n − 1,

the algorithm will sometimes leave one bi close to zero
while pushing bi + 1 larger. Once movement has begun in this
direction, numerical instabilities from very small numbers
can make it difficult for the algorithm to recover. By adding
the redundant constraint bi ≥ 0, we encourage the algorithm
to more evenly balance the bi throughout its optimisation.

Algorithm. We now combine these results together to pro-
vide an overview of the algorithm. We do not delve into the
details of interior point methods here; details can be found
in Boyd and Vandenberghe (2004) and other optimisation
texts.

Algorithm 6.1 Speed optimisation algorithm

Given the vehicle dynamics R, M , C, d, vehicle path s,
constraint set C and vinit

(1) Discretise s at n + 1 points, and construct
discretised problem (40), adding (45) to C.

(2) Solve for b0 using (32).
(3) Create barrier functions for the constraint set C.
(4) Choose a starting point for ai , bi , ui , that satisfies

the constraint set C, bi > 0.
In most cases, bi small and positive, ui and ai

zero will satisfy these constraints.
(5) Solve the infeasible start interior point problem.

Create KKT systems that interweave the blocks
of (43) and (44).
Solve the KKT systems using anLU factorisation
for solve times linear in n.

7. Results

7.1 Timing

In Figure 3, we compare our algorithm against SeDuMi
and SDPT3 for problem sizes ranging from 10 time steps
to 5000 time steps for the front wheel drive friction circle
model given in Section 4. As a reminder, in this example
p = 2, r = 2, and there are two constraints in C. From this
plot we see that the solve time is indeed linear in n and
that our direct solve computes a solution on the order of
100 times faster. These times were computed on a 2.66
GHz Intel Core 2 Duo. It is worth noting that SeDuMi
and SDPT3 are multithreaded, while our implementation
is single threaded and still achieves a marked increase in
performance.

International Journal of Control 13

Figure 3. Timing for different solvers on the front wheel drive
model given in Section 4 for problems with different values of n.
For each value of n, 10 problems were run and their times were
averaged. The solid line is Algorithm 1. The dashed line is SDPT3.
The dotted line is SeDuMi.

For problems with n = 50, we can find solutions in un-
der a centisecond, allowing us to update our control inputs
at a rate of 100 Hz. Given the high accuracy of our dis-
cretisation, we could use an even coarser discretisation (or
shorter horizon) and take n = 10 in which case we can solve
the problem in 1.7 milliseconds, corresponding to a rate of
580 Hz. At these speeds, the control could be implemented
on a system in real time, allowing the path to be updated
due to disturbances, drift in the vehicle or the need to avoid
eminent obstacles.

7.2 A trajectory example

To verify that the algorithm is indeed working, we present
an example with n = 100. As seen already, applying the

Figure 4. A sample trajectory for the front wheel drive model
presented in Section 4 as calculated by Algorithm 1. The per-
formance of the vehicle under the calculated control inputs was
then simulated using the sixth-order Runge–Kutta scheme from
Fehlberg (1968).

Figure 5. The force inputs found for the trajectory in Figure 4.
As expected, the force limits are almost always achieved.

calculated inputs tracks the desired path quite well. More
importantly, in Figure 5 we see that the algorithm has indeed
maximised the force used, which we would expect for a
minimum time traversal. The few points on the interior
arise from the discretisation.

8. Summary

In this paper, we have presented a general framework for
minimum-time speed optimisation of a vehicle along a fixed
path. We showed the way in which this framework can be
adapted for many types of vehicles, including cars, space-
craft and airplanes. We showed how various constraints can
be incorporated which couple the position, acceleration,
square of velocity and control inputs. Finally, we presented
an algorithm for solving these problems that significantly
outperforms SeDuMi and SDPT3 and is able to find solu-
tions on a time scale that is feasible for embedded systems.

Acknowledgements
We would also like to thank our reviewers for their comments and
suggested references which improved this paper.

Funding
This research was supported in part by a National Science Founda-
tion Graduate Research Fellowship [grant number DGE-1147470]
and by the Cleve B.Moler Stanford Graduate Fellowship.

References
Amato, N.M., & Wu, Y. (1996). A randomized roadmap method

for path and manipulation planning. In Proceedings of the
1996 IEEE International Conference on Robotics and Au-
tomation (Vol. 1, pp. 113–120). Minneapolis, MN.

Asada, H., & Slotine, J.J.E. (1986). Robot analysis and control.
New York, NY: Wiley.

Barraquand, J., Langlois, B., & Latombe, J.C. (1992). Numeri-
cal potential field techniques for robot path planning. IEEE
Transactions on Systems, Man, and Cybernetics, 22, 224–241.

14 T. Lipp and S. Boyd

Bayer, F., & Hauser, J. (2012). Trajectory optimization for vehicles
in a constrained environment. In Proceeding of the 51st IEEE
Conference on Decision and Control (pp. 5625–5630). Maui,
HI.

Bertolazzi, E., Biral, F., & Da Lio, M. (2005). Symbolic–numeric
indirect method for solving optimal control problems for large
multibody systems. Multibody system Dynamics, 13, 233–
252.

Bertolazzi, E., Biral, F., & Da Lio, M. (2007). Real-time motion
planning for multibody systems. Multibody System Dynamics,
17, 119–139.

Betts, J.T. (1998). Survey of numerical methods for trajectory
optimization. Journal of Guidance, Control, and Dynamics,
21, 193–207.

Betts, J.T. (2001). Practical methods for optimal control using
nonlinear programming. Philadelphia, PA: Society for Indus-
trial and Applied Mathematics.

Blackmore, L., & Açikmeşe, B. (2011). Lossless convexification
of a class of optimal control problems with non-convex control
constraints. Automatica, 47, 341–347.

Bobrow, J.E., Dubowsky, S., & Gibson, J.S. (1985). Time-optimal
control of robotic manipulators along specified paths. The
International Journal of Robotics Research, 4, 3–17.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization.
Cambridge: Cambridge University Press.

Bryson, A.E., & Denham, W.F. (1962). A steepest-ascent method
for solving optimum programming problems. Journal of Ap-
plied Mechanics, 29, 247–257.

Cardamone, L., Loiacono, D., Lanzi, P.L., & Bardelli, A.P. (2010).
Searching for the optimal racing line using genetic algorithms.
In Proceedings of the 2010 IEEE Conference on Computa-
tional Intelligence and Games (pp. 388–394). Copenhagen,
Denmark.

Casanova, D. (2000). On minimum time vehicle maneuvering: The
theoretical optimal lap (PhD thesis). Cranfield University,
Bedford.

Caselli, S., Reggiani, M., & Rocchi, R. (2001). Heuristic methods
for randomized path planning in potential fields. In Proceed-
ings of the 2001 IEEE International Symposium on Computa-
tional Intelligence in Robotics and Automation (pp. 426–431).
Banff, Alberta, Canada.

Constantinescu, D., & Croft, E.A. (2000). Smooth and time-
optimal trajectory planning for industrial manipulators along
specified paths. Journal of Robotic Systems, 5, 233–249.

Darby, C.L., Hager, W.W., & Rao, A.V. (2011). Direct trajectory
optimization using a variable low-order adaptive pseudospec-
tral method. Journal of Spacecraft and Rockets, 48, 433–
445.

Davis, T.A. (2006). Direct methods for sparse linear systems.
Philadelphia, PA: Society for Industrial and Applied Mathe-
matics.

Dinh, Q.T., & Diehl, M. (2009). An application of sequential con-
vex programming to time optimal trajectory planning for a car
motion. In Proceedings of the 2009 48th IEEE Conference on
Decision and Control held jointly with the 2009 28th Chinese
Control Conference (pp. 4366–4371). Shanghai, China.

Donald, B., & Xavier, P. (1989). A provably good approximation
algorithm for optimal-time trajectory planning. In Proceed-
ings of the 1989 IEEE International Conference on Robotics
and Automation (Vol. 2, pp. 958–963). Scottsdale, AZ.

Donald, B., Xavier, P., Canny, J., & Reif, J. (1993). Kinodynamic
motion planning. Journal of the ACM, 40, 1048–1066.

Dubowsky, S., Norris, M., & Shiller, Z. (1986). Time optimal
trajectory planning for robotic manipulators with obstacle
avoidance: A CAD approach. In Proceedings of the 1986
IEEE International Conference on Robotics and Automation
(Vol. 3, pp. 1906–1912). San Francisco, CA.

Elnagar, G., Kazemi, M.A., & Razzaghi, M. (1995). The pseu-
dospectral Legendre method for discretizing optimal con-
trol problems. IEEE Transactions on Automatic Controls, 40,
1793–1796.

Faiz, N., Agrawal, S.K., & Murray, R.M. (2001). Trajectory plan-
ning of differentially flat systems with dynamics and inequal-
ities. Journal of Guidance, Control, and Dynamics, 24, 219–
227.

Faulwasser, T., Hagenmeyer, V., & Findeisen, R. (2011). Opti-
mal exact path-following for constrained differentially flat
systems. In Proceedings of 18th IFAC World Congress
(pp. 9875–9880). Milano, Italy.

Fehlberg, E. (1968). Classical fifth-, sixth-, seventh-, and eighth-
order Runge-Kutta formulas with stepsize control (Technical
report). Washington, DC: National Aeronautics and Space
Administration.

Garg, D., Patterson, M.A., Darby, C.L., Francolin, C., Hunting-
ton, G.T., Hager, W.W., & Rao, A.V. (2011). Direct trajectory
optimization and costate estimation of finite-horizon and
infinite-horizon optimal control problems using a Radau pseu-
dospectral method. Computational Optimization and Appli-
cations, 49, 335–358.

Hansson, A. (2000). A primal-dual interior-point method for ro-
bust optimal control of linear discrete-time systems. IEEE
Transactions on Automatic Control, 45, 1639–1655.

Hansson, A., & Boyd, S. (1998). Robust optimal control of linear
discrete-time systems using primal-dual interior-point meth-
ods. In Proceedings of the 1998 American Control Conference
(Vol. 1, pp. 183–187). Philadelphia, PA.

Hauser, J., & Saccon, A. (2006). Motorcycle modeling for high-
performance maneuvering. IEEE Control Systems, 26, 89–
105.

Hauser, K. (2013). Fast interpolation and time-optimization
on implicit contact submanifolds. In Proceedings of
Robotics: Science and Systems (Vol. 8). Retrieved from
http://www.roboticsproceedings.org/rss09/p22.pdf

Hedrick, J.K., & Bryson, A.E. (1972). Three-dimensional,
minimum-time turns for a supersonic aircraft. Journal of
Aircraft, 9, 115–121.

Hehn, M., & D’Andrea, R. (2011). Quadrocopter trajectory
generation and control. In Proceedings of the 18th IFAC
World Congress (Vol. 18, pp. 1485–1491). Milan, Italy.
doi:10.3182/20110828-6-IT-1002.03178

Hendrikx, J.P.M., Meijlink, T.J.J., & Kriens, R.F.C. (1996). Appli-
cation of optimal control theory to inverse simulation of car
handling. Vehicle System Dynamics, 26, 449–461.

Houska, B., Ferreau, H.J., & Diehl, M. (2011). ACADO toolkit –
an open source framework for automatic control and dynamic
optimization. Optimal Control Applications and Methods, 32,
298–312.

Kalmár-Nagy, T., D’Andrea, R., & Ganguly, P. (2004). Near-
optimal dynamic trajectory generation and control of an om-
nidirectional vehicle. Robotics and Autonomous Systems, 46,
47–64.

Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms
for optimal motion planning. The International Journal of
Robotics Research, 30, 846–894.

Kunz, T., & Stilman, M. (2012). Time-optimal trajectory genera-
tion for path following with bounded acceleration and veloc-
ity. In Proceedings of the 2012 Robotics: Science and Systems
Conference (Vol. 8, pp. 9–13). Sydney, Australia.

LaValle, S.M., & Kuffner, J.J. Jr. (2001). Randomized kinody-
namic planning. The International Journal of Robotics Re-
search, 10, 378–400.

Lewis, F.L., Dawson, D.M., & Abdallah, C.T. (2004). Robot ma-
nipulator control theory and practice. New York, NY: Marcel
Dekker.

http://www.roboticsproceedings.org/rss09/p22.pdf

International Journal of Control 15

Milliken, W.F., & Milliken, D.L. (1995). Race car vehicle dynam-
ics. Warrendale, PA: SAE International.

O’Donoghue, B., Stathopoulos, G., & Boyd, S. (2013). A splitting
method for optimal control. IEEE Transactions on Control
Systems Technology, 21(6), 2432–2442.

Pfeiffer, F., & Johanni, R. (1987). A concept for manipulator tra-
jectory planning. IEEE Journal of Robotics and Automation,
3, 115–123.

Pham, Q.C. (2013). Characterizing and addressing dy-
namic singularities in the time-optimal path parameteriza-
tion algorithm. Retrieved from http://www.normalesup.org/
pham/docs/robust.pdf

Pham, Q.C., Caron, S., & Nakamura, Y. (2013). Kinodynamic
planning in the configuration space via velocity interval prop-
agation. In Proceedings of Robotics: Science and Systems.
Berlin, Germany.

Pin, F.G., & Vasseur, H.A. (1990). Autonomous trajectory genera-
tion for mobile robots with non-holonomic and steering angle
constraints. In Proceedings of the IEEE International Work-
shop on Intelligent Motion Control (pp. 295–299). Instanbul,
Turkey.

Potra, F.A., & Wright, S.J. (2000). Interior-point methods. Journal
of Computational and Applied Mathematics, 124, 281–302.

Rao, A.V., Benson, D.A., Darby, C.L., Patterson, M.A., Francolin,
C., Sanders, I., & Huntington, G.T. (2010). Algorithm 902:
GPOPS, a MATLAB software for solving multiple phase opti-
mal control problems using the Gauss pseudospectral method.
ACM Transactions on Mathematical Software, 37, Article 22.

Rao, C.V., Wright, S.J., & Rawlings, J.B. (1998). Application of
interior point methods to model predictive control. Journal of
Optimization Theory and Applications, 99, 723–757.

Rice, R.S., & Alianello, D.A. (1970). A driver characterizing
function – The g–g diagram (Technical report VJ-2882-K).
Buffalo, NY: Cornell Aeronautical Laboratory.

Sahar, G., & Hollerbach, J.M. (1985). Planning of minimum-
time trajectories for robot arms. In Proceedings of the
IEEE International Conference on Robotics and Automation
(pp. 751–758). St. Louis, MO.

Shiller, Z. (1994). Time-energy optimal control of articulated sys-
tems with geometric path constraints. In Proceedings of the
1994 IEEE International Conference on Robotics and Au-
tomation (Vol. 4, pp. 2680–2685). San Diego, CA.

Shiller, Z., & Dubowsky, S. (1989). Robot path planning with
obstacles, acuator, gripper, and payload constraints. The In-
ternational Journal of Robotics Research, 8, 3–18.

Shin, K.G., & McKay, N.D. (1985). Minimum-time control
of robotic manipulators with geometric path constraints.
IEEE Transactions on Automatic Control, AC-30, 531–
541.

Sturm, J.R. (1999). Using SeDuMi 1.02 a MATLAB tool-
box for optimization over symmetric cones. Optimization
Methods and Software, 11–12, 625–653. Retrieved from
http://fewcal.kub.nl/sturm.

Toh, K.C., Todd, M.J., & Tutuncu, R.H. (1999). SDPT3
– A MATLAB software package for semidefinite pro-
gramming. Optimization Methods and Software, 11, 545–
581.

Tutuncu, R.H., Toh, K.C., & Todd, M.J. (2003). Solving
semidefinite–quadratic–linear programs using SDPT3. Math-
ematical Programming, 95, 189–217.

Velenis, E., & Tsiotras, P. (2005). Minimum time vs maximum exit
velocity path optimization during cornering. In 2005 IEEE
International Symposium on Industrial Electronics (pp. 335–
360). Dubrovnik, Croatia.

Verscheure, D., Demeulenaere, B., Swevers, J., Schutter, J.D., &
Diehl, M. (2009a). Time-optimal path tracking for robots: A
convex optimization approach. IEEE Transactions on Auto-
matic Control, 54, (10), 2318–2327.

Verscheure, D., Diehl, M., Schutter, J.D., & Swevers, J. (2009b).
Recursive log-barrier method for on-line time-optimal robot
path tracking. In Proceedings of the 2009 American Control
Conference (pp. 4134–4140). St. Louis, MO.

von Stryk, O., & Bulirsch, R. (1997). Direct and indirect methods
for trajectory optimization. Annals of Operations Research,
37, 357–373.

Wang, Y., & Boyd, S. (2010). Fast model predictive control using
online optimization. IEEE Transactions on Control Systems
Technology, 18, 267–278.

Wright, S.J. (1993). Interior point methods for optimal control of
discrete time systems. Journal of Optimization Theory and
Applications, 77, 161–187.

Wright, S.J. (1997). Applying new optimization algorithms to
model predictive control. In Proceedings of the Fifth Inter-
national Conference on Chemical Process Control – CPC V
(pp. 147–155). Tahoe City, CA.

Wright, S.J., & Nocedal, J. (2006). Numerical optimization.
Berlin: Springer.

Zhao, Y., & Tsiotras, P. (2013). Speed profile optimization for
optimal path tracking. In Proceedings of the American Control
Conference (pp. 1171–1176). Washington, DC.

http://www.normalesup.org/pham/docs/robust.pdf
http://www.normalesup.org/pham/docs/robust.pdf
http://fewcal.kub.nl/sturm

	Abstract
	1. Introduction
	2. Previous work
	2.1. General minimum-time trajectories
	2.2. Fixed-path minimum-time trajectories
	2.3. Overview

	3. Problem formulation
	3.1. Dynamics
	3.2. Control constraints
	3.3. Path
	3.4. Problem statement

	4. Examples
	4.1. Robotics
	4.2. Space vehicle
	4.3. Space vehicle with vectored thrust
	4.4. Friction circle car model
	4.5. Vehicle with aerodynamic drag
	4.6. Banked turn
	4.7. Multiwheel car model
	4.8. Aircraft model

	5. Convexification
	6. Algorithm development
	6.1. Discretisation
	6.2. Optimisation

	7. Results
	7.1. Timing
	7.2. A trajectory example

	8. Summary
	Acknowledgements
	Funding
	References

