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Abstract 

Coverage error asymptotics for confidence 
intervals arising in simulation are discussed~ 
Asymptotic expansions, to order O(n -I) (n is 
the sample size)~ are given for confidence inter- 
vals associated with sequences of independent and 
identically distributed random variables, as well 
as regenerative processes, Implications for 
simulatio, n are emphasized. 

i~ INTRODUCTION 

One of the major problems that arises in the 

statistical analysis of simulation output is the 

generation of confidence intervals for parameters 

of interest° However, a major practical obstacle 

remains: Coverage rates tend to be substantially 

lower than the confidence level indicated° This 

phenomenon manifests itself even in those cases in 

which the procedures have an asymptotically con- 

sistent large sample theory. For a ,discussion of 

this problem~ we refer the reader to Section 8°5~i 

of Law and Kelton (1982)o 

In this paper, we will study asymptotic 

expansions associated with the error of the 

coverage probability~ We begin, in Section 2, 
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with a discussion relating to the interpretation 

of a confidence interval° The asymptotics 

associated with confidence interval error turn out 

to be interpretation-dependento In Section 3, we 

consider error expansions for confidence intervals 

for the mean of a sequence of independent and 

identically distributed (i~i.d~) random vari- 

ables~ This case is of interest when the simu- 

lator is concerned with analyzing the output of a 

terminating simulation. It is also intimately 

connected to the application of the technique of 

replication to the steady-state confidence inter- 

val problem° In this context, we are able to 

precisely identify the primary sources of error in 

the converage rate, and we discuss the relevance 

of the error expansion to the choice between using 

a t-variate or normal in the confidence interval 

procedure~ In Section 4, we examine the regenera- 

tive confidence interval that arises when a simu- 

lator is interested in the steady-state mean of a 

regenerative stochastic process° We show that the 

coverage error has a form similar to that in the 

i~i.d, case° Our results indicate that the cover- 

age rate difficulty inherent in the regenerative 

confidence interval is of the same order of magni- 

tude as the coverage rate error faced in the 



Coverage Error for Confidence Intervals (continued) 

classical ioi~d~ case° Finally in Section 5~ we 

state some conclusions~ and briefly discuss two new 

small sample confidence interval methodologies Lhat 

a p p e a r  t o  h a v e  e s f n a n c e d  c o v e r a g e  p r o p e r t i e s ~  

2o THE INTERPRETATION OF A CONFIDENCE INTERVAL 

Let {Xn, ] n ~, 0} be a sequence of random 

variables representing the output of a simulation~ 

and suppose that a confidence interval for the 

parameter @ is required~ The goal of the simu- 

l.ator is to find a sequence of random variables 

L n = Ln(X 0 .... ~ X n) 

R = R (X0~ oo~, X ) n ~I in 

such that the random interval [Ln,Rn] eorre-- 

sponds to a ~confidence" set for @~ In precise 

terms~ [Ln,Rn] is a i00(i-~)% confidence 

interval for 0 if 

P{8 ~ [Ln~Rn]} = I-@ (2oi) 

However, (2oi) does not fully specify the choice 

of L n and Rn, as the following e×ample 

S 'how s 

(2°2) F~ampleo Let {Xn; n £ 0} be normal 

random variables with unknown mean e and known 

variance 02~ denoted N(e~d2)~ Let @(x) = 

P{N(0,1) i x}, and put z(p) = @-l(p) for 

0 < p < Io Then, it is easily verified that 

[Xn - z(P+l-@)@/nl/2' Xn - z(P)°/nl/2] ' 

where Xn = ~=i Xi/n' is a 100(l-~)Z confidence 

interval for 8, provided 0 < p < @~ 

In the above example~ most simulators would 

agree that the '%orrect" choice of p is @/2o 

T h e r e  a r e  two r e a s o n s  f o r  t h a t  c h o i c e s  F i r s t ~  N~e 

l e n g t h  o f  t h e  : i n t e r v a l  i s  m i n i m a l  f o r  p = ~ /2o  

S e c o n d l y ~  t h e  i n t e r v a l  [Ln~R n] o b t a i n e d  

t h r o u g h  t h a t  c h o i c e  h a s  t h e  p r o p e r t y  t h a t  

P{e  ~ L n} = P{@ . !  R n} = ] . -~ /2  ~ ( 2 ° 3 )  

P{@ < Ln} = P{@ > Rn} = @/2 o 

We shall call an interval [1,n~Rn] satisfying 

(2°3) a i00(i-@)% balanced confidence interval for 

@o Observe that (2~3) implies (2oi) so that any 

balanced confidence interval is a confidence 

interval in the sense of (2~I)o 

In many simulation problems, it appears that 

the simulation practitioner would have a prefer- 

ence for a balanced interval° For example~ 

suppose that a simulation of a queueing system 

produces a 90% confidence interval [Ln,R n] 

for the mean customer waiting time 8~ The simu- 

lator can conclude only that 

0iP{~< ~}, P{e> ~}i0o~ 

whereas, for a balanced interval, the conclusion 

P{@ > Rn} = P{@ < Ln} = 0,05 

is possible~ Clearly, a balanced interval gives 

more information to the simulators 

It should be pointed out that much of the 

statistical theory of confidence intervals in a 

parametric setting relates to balanced intervals° 

For a discussion of the desirability of balanced 

intervals from a Bayesian viewpoint, see Efron 

(1981)o 
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3o COVERAGE RATES FOR IoI~Do 

CONFIDENCE INTERVALS 

Let (Xn; n ~ 0) be a sequence of ioiodo 

random variables with 0 < 02 = var(X n) < ~o 

Let us first examine the results in the simplest 

possible setting: The goal is to produce a 

confidence interval for B = EXn, given that 

~2 is known° 

The standard confidence interval proeedure~ 

in this case~ starts from a Central Limit Theorem 

(CLT) for n I/2 (Xn-,~)/~o Simple algebraic 

manipulation shows that [Ln(P), Rn(P)] is an 

approximate i00(I-~)% confidence interval for ~, 

where 

Our error estimates will be written in terms of 

the "big O', "little o" notation (ioeo, g(n) = 

O(f(n)) if g(n)/f(n) is bounded; g(n) = o(f(n)) 

if g(n)/f(n) goes to zero)~ 

(3.1) Theorem° (i) If EX 4 < ~ then the 

~n(p ) r are all O(n-i/2). error terms , ~, en 

(ii) If, in addition, X n has a distribu- 

tion with a Lebesgue density component, then 

a) 
Sn(p) = ISk(X0)°(g(z(p)) 

- g(z(p+l-~)))I/6n I/2 + 0(~), 

Ln(P) = Xn - z(P+l-~)°/nl/2 b) % = ISk(X0)~g(z(~/2))I/6nl/2 + O(-~)= e r 
~n n ' 

Rn(P) = Xn - z(P)o/nl/2 

for 0 < p < ~o 

Before proceeding, let us observe that the 

coverage rate error in the interval [L (p), 

Rn(P)], denoted an(P) , is given by IP{~ne [en(P) , 

Rn(p)]} - (l-s) As for the balanced situa- 

t:ion, it is clear that the interval [Ln(P) , 

Rn(p)] is asymptotically balanced only if 

p = ~/2o Thus, we shall henceforth restrict our 

discussion of balanced error to this case, and 

designate (~% r n~Sn) as our error descriptor, where 

% = IP(P < Ln(~/2)} - ~/2 E n 

r IP{~ > R h ( = / 2 ) }  - ~ / 2  

where 

and 

g(x) = (l-x2)d/dx(@(x)) 

Sk(Xo) = E(Xo-b)3/O(Xo )3, 

Proof. Part (i) of the theorem is a direct conse- 

quence of the Berry-Esseen theorem (see Feller 

(1971), p. 542). The proof of the second half of 

the result follows from simple algebraic manipula- 

tion of the expansions cited in Theorems i and 3 

of Section 16o4 of Feller (1971)o 

The first part of the theorem tells us that 

under an appropriate moment assumption, the error 

s%, and s r decrease at least as fast 
Sn(P), as 

n n 

n-I/2, for all po The second half of the 
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Covera[e Error for Confidence Intervals (continued) 

result shows that when X n has a density eom- 

poaent~ then an(a/2) is O(i/n), whereas 

for p ~ ~/2~ an( p ) is O(n-i/2)o On the other 

handy the bal.anced error for [L (~/2)~ R (~/2)] 
R n 

is always O(n-']./2) ~ 

Thus, using p = ~/2 in the interval [Ln(P) ~ 

Rn(P)] produces a confidence interval with the 

"best" coverage rate (ioeo, O(I/n) as opposed to 

0(n-i/2)), as well as the asymptotically minimal 

length° However, [Ln(~/2) , Rn(~/2)] achieves 

this result in a very curious way° Part (ii.b) of 

Theorem 3~I shows that P{~ J Im(a/2)} will 

differ from ~/2 by 0(n-i/2)o Hence~ if 

P.[b J Ln(g/2)} is greater (say) than ~/2 by 

O(n-i/2), then P{b ~ R n (~/2)} must be less 

than ~/2 by precisely the same 0(n -I/2) 

error (:in order that an(a/2) be O(i/n))o 

This suggests, in this case, that a "better" 

confidence interval would be achieved by shifting 

the interval to the left slightly. It is also 

worth observing that the coverage rate accuracy of 

p = ~/2 is highly unstable in the sense that 

an(~/2+q)/Sn(~/2) + ~ for any non-zero q. 

Some caution should be exercised in trying to 

extend the second conclusion of the theorem to the 

case of discrete random variables. The result 

depends on an Edgeworth expansion which breaks 

down in the discrete case (see [3], p~ 539, for a 

related comment)~ 

Our above analysis required that o 2 be 

known~ Of course, in general the simulator does 

not know this parameter, and hence it must be 

estimated from the simulation output sequence 

{Xn}o The key result in forming confidence 
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intervals in this setting is the CLT for 

where t = nl/2(X )/s n n r- 9,t and 

The intervals 

tn 

2 1 ~ X2 (~n)2 
Sn = n~--?~ i~ 1 i - 

[Ln(p) , Rn(p)] are approximate 

i00(i-~)% confidence intervals for 0 < p < ~ 

provided 

Ln(P) = Xn.-Z(p+l-~)Sn/nl/2 

Rn(p) = Xn-Z(P)Sn/nl/2o 

(3°2) %heoremo (i) If EX 8 < ~, then the error 
n 

£ s r are all O(n-i/2)~ terms Sn(P)' Sn~ "n 

(ii) If; in addition, X n has a distribu- 

tion with a Lebesgue density component, then 

a) an( p ) = ISk(Xo)~(h(z(p)) 

- h(z(p+l-c~)))I/nl/2 + 0(~) , 

b) s £ n = ISk(Xo )~h(z(cJ2))/nl/2 + 0(~) = e r 
n 

where h(x) = [(l+2x)d/dx(~(x))]/6o 

The proof of this theorem is similar to that 

of Theorem 3.1~ The key step is to prove a 

Berry-Essen type result and obtain an Edgeworth 

expansion for tn; this can be found in Glynn 

(1982)o 

Notice that the conclusions of this theorem 

are qualitatively very similar to those of Theorem 

3.1, where d 2 was known° For example, en(~/2) 

r 
is again O(i/n), whereas ¢~._ s n are both 

O(n-I/2)o , However, the coefficient in n -I/2 has 

changed° The proof of the Edgeworth expansion 



mentioned above shows that the error of order 

-1/2 occurs precisely as a consequence of the 
n 

skewness Sk(X0)) of {Xn~ n ~ 0}, and the corre- 

lation between s 2 and X o This is in contrast 
n n 

to the situation where ~2 is known~ in which 

cese all the n -I/2 error emanates from 

skewness alone~ Recall that the coefficient of 

slewness Sk(X 0) measures the asymmetry of a 

distrlbetion~ 

Before concluding this section~ we turn to 

the .question of using t-variates rather than a 

normal distribution to generate confidence inter- 

rvalso Let T k have a Student's t-dlstribution 

with k degrees of freedom° Put ~k(X) = 

p(T k <, x}, and set zk(p ) = F~l(p)o Many simula- 

tors (eog~ [6], p. 288) advise the use of the 

interval {Ln(P)~ R (p)]~ where 

Ln(p) = <-Zn_l(P+l-~)Sn/nl/2, 

Rn(P) = Xn-Zn_l(P)Sn/nl/2, 

rather than the previously defined interval for 

~. Let 7n(p) ~,-r , E n be the coverage rate error 

and balancing errors associated with the t-variate 

confidence interval~ 

(3~3) Theorem. For 0 < p < ~, 

(i) 

(ii) 

~n(p) = en(p) + O(n -1/2) 

o o(n -I/2) ) ~t(p) + nip = n 

-r = ~(p) + Sn(p) o(n -I/2) 

The proof of this result can be found in 

[4]° The content of this theorem is the that 

t-variate modification is of "small order" in the 

sense that the leading term in the error (of order 

n -I/2) is precisely the same as that obtained 

via normal theory, However, it should be men- 

tioned that the coverage error ~n(~/2) may 

differ from 8 (~/2) in its leading terms In any 
n 

case, it seems clear that the desirability of 

using a t-variate, as opposed to a normal, 

deserves further study° 

4o COVERAGE RATES FOR REGENERATIVE 

CONFIDENCE INTERVALS 

Let {Xt; t ~ O} be a regenerative 

stochastic process. Then, there exist random 

times Ti, T2, .o~ such that for any (measur- 

able) real-valued function f~ {(Yk' Tk); k~ 

is i.i.d., where 

I} 

Tk+ 1 

Yk = f f(X s ) as 
T k 

~k = Tk+l - Tk " 

The goal of the simulator is to find a confidence 

interval for the steady-state mean of {f(Xt); 

t ~ 0}° It can be shown that this is equivalent 

to obtaining an interval for r = EYI/E~I 

(see Crane and Iglehart 41975)). The regenerative 

method for output analysis depends on a CLT, under 

the assumption 0 < ~2(Yk-r~ k) < ~, E~ k < % for 

the statistic nl/2(rn-r)/vn, where 
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Coverage Error for Confidence Intervals (continued) 

n n 

rn k l° Yk/k  

n n 

2 n (k~l 2 2r k~ 1Yk*k Vn = (T~I,i)2 Yk - n = = 

+ r 2 k~ 1 2 n = ~k ) 

As for the ioiodo case of Section 3, the normal 

approximation yields [Ln(P) ~ Rn(P)] as an 

approximate i00(i-~)% confidence interval for 

where 

r~ 

This theorem is a consequence of a Berry- 

Esseen result and Edgeworth expansion for regener- 

ative processes, which appears in [4]~ 

The important point here is the similarity to 

the i.i~d, case° The order of error is precisely 

the same as that which we encountered in Section 

3~ Hence, it could be argued~ on the basis of 

error comparison, that the steady-state simulation 

problem is no more difficult than the terminating 

simulation problem, provided that the regenerative 

method is used° 

Ln(p) = ~ -z(P+l-~)Vn/nt /2 ,  

Rn(P) = rn-Z(P)Vn/nl/2o 

(4oi) Theorem. i) If Ey 8 < co and Ez 8 < 0% 
n ii 

r 
then the error terms ~n (p) '  can' ~n are a l l  

O(n-1/2) o 

(ii) If, in addition, the distribution of 

(Yn,zn) has a component which is a Lebesgue 

density in the plane~ then 

a) en(p) = Ik(z(p)) - k(z(p+l-~))I/nl/2 + O(I/n). 

b) X = ik(z(~12)) I + O(11n) = r 
n n 

where 

k(x) = (~+~x 2) d/dx(~(x)) , 

= EZ~/3o3(Zi) - E~iZi/O(Zi)E~ I 

Zk = Yk - r~k ~ 

As for the form of the error coefficient in 

n -I/2, we observe that Sk(Z I) plays an 

important role, as in the i~i.d, case° Additional 

terms in ETiZi/E<i-o(Z I) also appear, however: 

These are contributed by the bias of rno Thus, 

the prime sources of error in the regenerative 

case are asymmetry effects, correlation between 

point and variance estimates, and bias problems in 

the point estimate° This has an important impli- 

cation for research efforts directed at producing 

"correct" coverage rates for confidence inter- 

vals. It shows that reducing one source of error, 

such as bias in the point estimate, should not be 

expected to necessarily improve coverages 

5. CONCLUDING REMARKS 

In this paper, we have provided an overview of 

the coverage error problem for confidence interval 

generation in simulation. We have shown that the 

qualitative character of the error appears reason- 

ably insensitive to the "fine" structure of the 

simulation output sequence. The regenerative case 

indicates that point estimate bias, correlation 
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between point and variance estimators, and asym- 

metry all play equally important roles in deter- 

mining coverage rates in the steady-state simula- 

tion problem° Our results also show the need for 

more research on the question of whether t-vari- 

ates or normals should be used to generate inter-. 

valso Furthermore~ we have shown that the para- 

meter p plays a critical role in determining the 

amount of error. However, we caution the reader 

that although p = ~/2 appears optimal in the 

sense of error, the result is highly unstable~ 

Finally, we have introduced the concept of a 

balanced confidence interval and shown that its 

error asymptotics are somewhat different from the 

standard error criterions 

In [4], we study two procedures that appear 

to have promising coverage characteristics° The 

first technique is a regenerative bootstrap (see 

[2] for the bootstrap in the i.iod0 case), and the 

second method involves an application of a 

so-called "normalization" transformations The 

latter procedure is based on an idea of Johnson 

(1978) o The asymptotic error expansion for these 

intervals indicates an improvement over currently 

used intervals° These improvements have also 

manifested themselves empirically. 
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