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EFFICIENT SIMULATION
VIA COUPLING

PeTER W. GLYNN* AND EUGENE W. WONG

Department of Operations Research
Stanford University
Stanford, California 94305-4022

This paper is concerned with how coupling can be used to enhance the eff‘icien?y
of a certain class of terminating simulations, in Markov process settings in
which the stationary distribution is known. We are able to theoretically estab-
lish that our coupling-based estimator is often more efficient than the naive
estimator. In addition, we discuss extensions of our methodology to Markgv
process settings in which conventional coupling fails and show (for Doeblin
chains) that knowledge of the stationary distribution is sometimes unnecessary.

1. INTRODUCTION

There exists a substantial number of stochastic processes for which a great deal
is known about the steady-state behavior but for which the transient behavior
is analytically intractable. Among the systems that have this property are
product-form Markovian queueing networks (see, e.g., Kelly [15]), BCMP‘net-
works [6], loss networks [16], and models of polymerization and random flfellds
[22]. Other such examples are scattered throughout the applied probability
literature.

In this paper, we focus on how such steady-state information can be usejd
to enhance the efficiency of a certain class of terminating simulations. The main
idea that we shall exploit is that of coupling. This concept has had tremendous

#This research was supported by the National Science Foundation under grant DDM-9101580 and
the Army Research Office under contract DAAL03-91-G-0319.
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166 P. W. Glynn and E. W. Wong

impact on Markov process theory over the last 20 years. It involves running a
stationary version of a Markov process, concurrently with the nonstationary
version, until the two processes meet (or couple). As might be expected, the
magnitude of the coupling time yields significant theoretical information about
the rate at which the nonstationary version of the Markov process converges
to its steady-state (see, e.g., Lindvall [18]). This has also been exploited, in a
simulation context, to obtain a computational algorithm for estimating upper
bounds on the rate of convergence to stationarity (see Kalashnikov [14]).

In Section 2 of this paper, we describe how coupling can be used to obtain
a new class of estimators that take full advantage of knowledge of the station-
ary distribution. We then provide some simple examples of how such couplings
can be constructed for discrete-time and continuous-time Markov chains.

Section 3 is concerned with analysis of the efficiency of this new class of
estimators. We show that when coupling is applied the computation of o =
Ef(X(t)) (for X = { X(t):t = 0} a Markov process) actually becomes easier as
t — oo, This contrasts with the degradation of the naive estimator’s efficiency
as { — oo (because X must then be simulated to time ¢ along each replication,
making replications more expensive as { — o), We are similarly able to estab-
lish the superiority of our coupling-based estimator for estimation of expected
cumulative cost over intervals [0, ¢] with 7 large.

In Section 4, we discuss the construction of couplings in the context of
Harris chains and describe two different implementations. We also give an ex-
tension of our methodology to periodic chains; these are chains to which con-
ventional coupling does not apply. We close the section by showing that for the
class of Doeblin chains a modified version of our proposed algorithm can be
applied without any knowledge of the stationary distribution. Although not as
efficient as our original coupling-based estimator, the modified estimator con-
tinues to be more efficient than the naive estimator for estimating Ef(X(¢))
with ¢ large.

For many processes, and particularly those in continuous time, the con-
struction of a coupling is problematic, both from a theoretical standpoint and
from a programming standpoint. However, a concept known as shift-coupling
(see Aldous and Thorisson [2]) substantially weakens the requirements de-
manded of the coupling and is, in general, much easier to implement compu-
tationally. A major drawback of the shift-coupling methodology described in
Section 5 is that it applies only to performance measures that can be expressed
as an expected cumulative cost.

Section 6 is devoted to how knowledge of the stationary distribution can be
exploited in Markov process settings in which both coupling and shift-coupling
are inapplicable. We describe an approach, based on control variates, that as-
ymptotically dominates naive sampling from an efficiency viewpoint. Finally,
in Section 7, we provide a brief account of our computational experience with
our algorithms.
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2. THE BASIC IDEA

Let X = {X(¢):t = 0} be a continuous-time Markov process living on state-
space S. (To handle a chain { X, :n =0}, we embed the process in continuous
time by setting X (z) = X|,,, where [?] is the greatest integer less than or
equal to ¢.) Our goal is to compute, via simulation, an expectation of the form

o = f Ef(X(s)G(ds), 2.0
[0,00)

where f: S — % is a real-valued performance measure and G(.) is a determin-
istic finite measure on [0,0).

Example 1: The problem of estimating the transient quantity o = Ef (X (¢)) %s
a special case of the preceding, as can be seen by setting G (ds) = 6,(ds). (6;1s
a point mass probability concentrated at 7.)

Example 2: If f(x) is interpreted as the rate at which “cost” accrues while X oc-
cupies state x, then

o= Eftf(X(s)) ds 2.2)
0

is the expected cumulative cost incurred over the interval [0,¢]. Note that if we
set G(ds) = I(0 < s < 1) ds, we can incorporate Eq. (2.2) into the framework

associated with Eq. (2.1).

Example 3: For y > 0, consider the infinite-horizon discounted cost given by
o= Ef e ¥ f(X(s))ds. 2.3)
[0,00)

Here we can set G (ds) = e ds to fit the problem into the setting of Eq. (2.1).

To apply our coupling idea to the estimation of the expected value of
Eq. (2.1), we need to make several assumptions about X:

Al. EY' < oo, where Y’ € [ [f(X ()| G(ds).
A2. X possesses a stationary distribution 7 such that » = [sf(x)w(dx) can
be computed.
A3. We can simulate a process {(X'(£),X*(¢)) :¢ = 0} such that
1. X'(¢8) 2x (¢) for t = 0, where 2 denotes equality in distribution,
2. {X*(t):t= 0} is a stationary version of X under which X (0) has
distribution 7, and : .
3. there exists a finite-valued random time 7 such that X'(7) = X™(¢)
fort=T.
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The random time T hypothesized in Assumption A3.3 is known, in the
literature, as a coupling time (see, e.g., Lindvall [18]).

We will now show how the preceding assumptions can be fruitfully exploited
to produce coupling-based simulation estimators for «. Assumption Al guar-
antees that the estimation problem is well defined, whereas Assumption A3.1
permits us to substitute the process X' for X, yielding

oz——-f Ef(X'(s)G(ds). 2.4
Y 10,00)

On the basis of Assumption A3.3, we find that
Ef(X'(s)) = E(f/(X'(5); T<5) + E(S(X'(s)); T >5)
=E(f(X™(s); T=s)+ E(S(X'(5);T>5)
= Ef(X*(s)) + E(f(X'(s)) = f(X*(5); T >s). (2.5

But Assumptions A3.2 and A2 ensure that Ef(X™(s)) = v is known.
Hence, we may rewrite « in the form « = EY;, where

Yi=8+ f (S(X'(s)) = F(XH ()G (ds) (2.6)
[0,00)
and 8 Ly f (0,00 G (ds). Note that Y; is a random variable that is (by assump-
tion) simulatable. The idea is now to estimate o by generating independent and
identical replicates of the random variable Y.
We now provide some illustrations of how couplings satisfying Assump-
tion A3 may be constructed.

Example 4: Let X be a positive recurrent irreducible continuous-time Markov
chain with (unique) stationary distribution = having discrete state-space S, and
set X’ = X. Assume that we know how to generate variates from . (This will,
for example, be feasible for product-form queueing networks.) To construct
(X', X*), simulate X in any way desired, and generate X *(0) (independent of X)
from distribution . We then let X* evolve independently until 7=inf{7 = 0:
X*(t) = X(t)}, after which we set X *(¢) = X(¢). The coupling time 7 con-
structed here, under which X and X* evolve independently until they meet, is
easily shown to be finite almost surely (see Lindvall [17]).

Example 5: Let X be a positive recurrent irreducible aperiodic discrete-time
Markov chain, with discrete state-space S. Again, if we assume that X *(0) can
be generated (independently of X) from =, the independent coupling of Exam-
ple 4 works in this setting. (Note that the construction fails if X is periodic.)

Example 6: Let W = {W,: n = 0} be the waiting time sequence of the GI/G/1
queue, and assume that the traffic intensity of the queue is strictly less than
unity. Suppose that the stationary distribution = of W is known (as is the case
in the M/G/1 and G/M/1 settings). The chain W is an aperiodic Harris chain
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with state-space S = [0,00) (see Meyn and Tweedie [19]), and the independent
coupling again works here. (It turns out that both W and W’ will typically be
at the origin at the coupling time.)

Although the preceding examples all utilize an independent coupling (in
which X’ and X* evolve independently up to T), there exist certain applica-
tions in which only dependent couplings can fulfill our conditions. For exam-
ple, if X is the residual life process associated with a renewal process having a
spread-out interrenewal time distribution, then any independent coupling of the
type described in Examples 4-6 will never occur in finite time. However, by clev-
erly creating certain dependencies between X’ and X * prior to 7, finite-valued
coupling times can be constructed; these “dependent couplings” underlie many
recent proofs of the renewal theorem.

It should further be pointed out that dependent couplings can be used to
construct coupling times 7 that occur earlier than those associated with inde-
pendent coupling, thereby potentially reducing computational effort.

These issues will be addressed in greater detail in Section 4.

3. COMPUTATIONAL EFFORT OF THE
COUPLING-BASED ESTIMATOR

Our goal here is to compare the computational efficiency of the coupling-based
estimator introduced in Section 2 to that of the naive estimator.

To be more precise, the naive estimator is based on generating i.i.d. repli-
cates Y (1), Y(2),... of ther.v. ¥, where

Y= fX(s)G(ds). 3.7
[0,0)
Let 7(i) be the computer time required to generate Y (7), and assume (rea-
sonably) that the (Y(i), 7(i))’s are i.i.d. If N(c) is the number of Y (/)’s pro-
duced in ¢ units of computer time, then

LSV vy itw
i) i >1
i) = | Nio 2 YO N

0 otherwise

is the naive estimator for « based on ¢ units of computer time. Glynn and Whitt
[12] proved that if 0 < E7(l) < o and var Y < o, then

¢ a(c) — a) = aN(0,1)

as ¢ — oo, where ¢ = E7(1)var Y.

A similar analysis can be performed on the coupling-based estimator of Sec-
tion 2. Let Y;(1), Y;(2),... be a sequence of i.i.d. replicates of Y;, and let
7;(i) be the computer time required to generate Y;(i). If a;(c) is the corre-
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sponding estimator available upon expending ¢ units of computer time, it fol-
lows (under appropriate regularity conditions) that

c(ai(c) —a) = o N(0,1)

as ¢ — o, where o = Er,(1)var Y. Thus, a comparison of asymptotic effi-
ciency reduces to comparing ¢f to o2,

In general, no universal statement about the relative magnitudes of of and
o2 can be made. This should come as no surprise, given the fact that the mag-
nitude of o} depends critically on both the computational and statistical effi-
ciency of the coupling that is chosen. Instead, we shall settle for an asymptotic
analysis for o2 and of.

Example I (continued): We are concerned here with a class of estimation prob-
lems that clearly depends on the time parameter ¢. Our notation will now suit-
ably reflect this dependence on ¢ (i.e., o? = a*(1), ¥ = Y (1), etc.).

To analyze ¢2(f), note that it is reasonable to expect E7(1,7) to grow lin-
early in ¢, so that E7(1,¢) ~ ct for some ¢ > 0. As for var Y(¢), assume that X
is a positive recurrent irreducible continuous-time Markov chain. Then, we can
typically expect that var Y(1) - d « var f(X*(0)) > Q as > .

On the other hand, Y;(f) requires only that one simulate to time 7T A £.
Consequently, it is reasonable to expect that E7;(1,£) »>¢; >0 as { — . Fur-
thermore, var Y, (¢) = var Z(¢), where Z(¢) = (f(X'(1)) = /(XMW I(T > 1).
Bvidently, var Z(¢) = E[Z*(¢) |T > [|P(T>1t)— (E[Z(1) |T>t]P(T> )%
In the typical coupling, (X', X*) jointly evolve as a time-homogeneous Mar-
kov process up to the first time 7 at which (X', X™) hits the “diagonal” D =
{(x,x’) € S x S:x=x’}, after which X" and X * run together. Hence, the cou-
pling time 7 can be viewed as the “hitting time” of D. The typical behavior for
Markov processes is that the tail of such a hitting time is asymptotically expo-
nential, so that there exits @', A > 0 such that P(T > ) ~ d’ exp(—A¢) as { — o
(see, e.g., Kielson [17]). In addition, the same theory provides general conditions
under which P(Z(¢) € -|T>t) = P(Z" €-), from which we may conclude
that the typical behavior of o#(¢) is that o2(t) ~ ¢, d; exp(—At) for some d, > 0.

Comparison of ¢%(¢) and o2(t) suggests that the coupling-based estimator
will be (much) superior to the naive estimator, at least for large values of 7. This
is to be expected because, for large ¢,7,(1,7) is roughly constant, and Y;(7) is
essentially deterministic.

Example 2 (continued): As in Example I, this problem has a clear dependence
on ¢ and we will again allow our notation to reflect this dependence. Here,

Tnt

Yl(t)=6(t)+f (S(X'(s) = f(X7(s)) ds
0

and, as in Example 1, it is evident that E7,(1,¢) — ¢; > 0. Clearly,
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-
Yi(t) - B(t)*f (f(X'(s)) —S(X7(s)) ds
0

as t — oo, so that (under appropriate uniform integrability conditions)
var Y;(t) — d, > 0 as t —> . On the other hand, Y (¢) typically satisfies a cen-
tral limit theorem (CLT) of the form

V(Y (t) — tEf(X*0))) = dN(0,1)

as ¢ — oo, Again, under appropriate uniform integrability conditions, it follows
that £~" var Y(¢) — d? as t — o0, so that we may conclude that 02(¢) ~ cd*t? as
t — o, whereas of(t) - ¢,d, as t — o. Thus, the coupling-based estimator is
again (much) superior to the naive estimator, for large ¢.

In Example 3, it is clear that the computational effort required to compute
Y via naive simulation is infinite, whereas the time required to compute

T
Y, =f e (f(X'(s)) — f(X7(s)) ds
0

is, of course, finite. In particular, the naive estimator is infeasible to compute
exactly in finite time, so that the coupling-based estimator Y; again dominates.
(A complete analysis of some alternatives to the naive estimator, including finite-
horizon truncations of the naive estimator, are given in Fox and Glynn [9].)

As indicated earlier, the nature of the coupling used can have a significant
impact on the relative efficiency of estimators based on Y; versus those based
on Y. For example, if the independent coupling of Section 2 is employed, the
effort required to simulate the joint process (X', X ™) up to the coupling time
T is essentially twice that required to simulate X up to time 7. (Of course, Y;
requires no additional simulation beyond T, whereas Y may require such addi-
tional simulation.)

An example of an alternative coupling will now be provided, in the setting
of a positive recurrent irreducible continuous-time Markov chain. Let Z be a
random variable having the stationary distribution =, distributed independently
of X. Set

S=inf{r=0:X(t) = Z},

def . . .
and note that X*(t) = X(S + ¢) is a stationary version of X. Hence, if we set

T=inf{r=0: X(1) = X(S + 1)},

T is a coupling time that requires simulation of only one process, namely X,
up to T (actually, to 7+ S). (Of course, the coupling time T just proposed
may be much larger, on average, than that associated with the independent
coupling.)
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A concept closely related to that of coupling is that of “strong uniform
times,” introduced by Aldous and Diaconis [1]. Specifically, let X be a positive
recurrent irreducible Markov chain living on a discrete state-space S and sup-
pose that T is a finite-valued stopping time satisfying

P(X(t)ye - |T=t)=7()

for all # = 0; such a random time 7 is called a strong uniform time. Prescrip-
tions for constructing such random times exist for certain Markov chains with
special structure.

Given such a random time 7, it is easily shown that oo = [ 10,00) B (X ()G (ds)
can be expressed as

Ot=B+Ef [f(X(s) —»]G(ds).
(0,7)

One can then construct estimators for « analogous to that described earlier
in the coupling context. Note, however, that the computational efficiency com-
parison in this setting is often even more favorable than that obtained in the
coupling context, because of the fact that no stationary version X * need be
simulated, thereby reducing the computational effort. On the other hand, con-
struction of strong uniform times appears to demand that more structure be
present in X than that required for coupling times.

4. EXTENSIONS TO HARRIS CHAINS

As mentioned in Section 2, dependent couplings are needed for certain Markov
process applications. For example, consider a Markov chain, taking values in
a general state space, that visits no point infinitely often. (There exist such pro-
cesses for which stationary distributions can be computed, as evidenced, for ex-
ample, by the skeleton chain associated with the residual life process.) Here, it
is clear that the associated independent coupling will not couple in finite time
with probability 1.

Consequently, dependent couplings must be constructed for such chains.
We will focus here on the class of aperiodic, positive recurrent Harris chains;
this turns out to be precisely the class of chains for which finite-valued couplings
exist for all possible initial distributions (see Lindvall [18, p. 102]).

Recall that {X,: n = 0} is said to be a Harris chain if there exists a nonneg-
ative function A(+), e > 0, m = 1, and a probability distribution ¢ on S such that

P(M\(X,) = e infinitely often | Xo = x) = 1, 4.8)
for all x € S;
P(Xn € - | Xo=x) 2 NX)e("), .9
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for all x € S. The crucial observation relating to the preceding is that Eq. (4.9)
permits us to write the m-step transition probabilities in the form

P(Xy €| Xo=x) = NX)e() + (I = Nx)0(x,"), 4.10)

where Q(x,) is a probability distribution on S for each x € S. (This is due to
Athreya and Ney [5] and Nummelin [20].) Relation (4.10) can be interpreted
probabilistically, as follows. When the chain is in state x, we flip a coin. If the
coin flip is successful (with probability A (x)), we distribute X according to ¢ m
time units later. Otherwise, we distribute X according to Q(x,-) m time units
later. (The intermediate values of the chain are then filled in by conditioning
on the initial value x and the “final state” corresponding to the chain m time
units later.)

This randomization, based on coin flips, can be used to construct a depen-
dent coupling for aperiodic, positive recurrent Harris chains. We initialize X’
and X* independently, With probability A (Xg) A A(X{), we force both chains
to simultaneously distribute themselves according to ¢ m time units later. Specif-
ically, we generate a point from distribution ¢ and send both chains simulta-
neously to that point; this, of course, constitutes a coupling time for (X’, X™).

We now discuss what happens if coupling does not occur. With probabil-
ity M(X5) — (MXG) ANXE) (MXG) — (MXG) AN(XG ), X¥(X") distrib-
utes itself according to ¢ m time units later, whereas X' (X™) distributes itself
according to Q(X¢, )(Q(Xg,-)). Finally, with probability 1 — (N(Xy) v
M(X()), we distribute X, (X)) according to Q(X§, - )(Q (X5, ).

This process is then repeated at the time epochs m, 2m, 3m,.... Because
of Eq. (4.8) and the aperiodicity, successful coupling is then guaranteed to occur
in finite time.

One problem with the preceding approach is that it requires the simula-
tionist to write code to generate variates from the probability distributions
O(x,-),x € §S. In addition, when m > 1, additional code for generating the
“intermediate values” from the appropriate conditional distributions needs to
be produced. We now describe a method of producing a coupling that avoids
this difficulty.

Note that Eq. (4.9) guarantees that, whenever A > 0, ¢ is absolutely con-
tinuous with respect to P(X,, € - [ Xy = x). The Radon-Nikodym theroem
then ensures that there exists a function w such that

o(dy) = w(x, y)P(X,, € dy| X, = x).

The function w necessarily takes values almost surely in [0,1]. The idea now is
that, rather than explicitly generating variates from Q(x, -), we implement this
via acceptance-rejection. In particular, suppose that a segment (X,, X,i15- - +»
X,.m) of the chain is simulated (by any algorithm consistent with the transi-
tion probabilities of X). If an independent uniform random variable U is now
generated (independently of X), X,,,, turns out to be distributed according
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to ¢ if U = w(X,,X,+m) and according to Q(X,,-) otherwise. Thus, this
acceptance-rejection approach offers an alternative to the method described ear-
lier in this section. (For details, see Glynn and L’Ecuyer [12].)

The goal is now to produce a coupling that takes advantage of this idea.
Here, we generate X, and X§ independently and simulate X’ and X™* inde-
pendently to time m. A uniform random variable U is then generated. If U <
w(X{, Xm) A w(Xg,X ), then both chains simultaneously have distribution ¢
at time m. Thus, although X, # X, in general, the distributions are now iden-
tical. If U does not satisfy the inequality, this process is repeated at times m,
2m, 3m, ... until the uniform r.v. generated does satisfy the appropriate in-
equality. This algorithm concludes with the construction of a random time T’
such that X 2 x %, this is known, in the literature, as a weak coupling (or dis-
tributional coupling). However, it turns out that Eq. (2.5) continues to hold for
such weak couplings (see Lindvall [18]), so that estimators based on Y; con-
tinue to be valid. It should be noted that the main computational obstacle to im-
plementing this algorithm is the need to compute the function w.

In addition, it is easily seen that for this coupling

E(Y,| X', X*)
o m—1 Jj—1
=643 S (K ~S K T [ G ds),
J=0 k=0 =1 [jm+k, jm+k+1)

where V; = 1 — (W(X{j—1ym: Xjm) A W(X{;_1ym>»Xjm))- In the case that the sup-
port of G is bounded, E(Y;|X’,X*) can be computed in finite time, has a
smaller variance than does Y, and requires no uniform random variables (but
may require more time to compute, on average, than does Y1).

We now turn to the periodic case. Specifically, we shall now describe how
our coupling-based estimator can be extended to periodic Harris chains. Sup-
pose that the period of X is ¢ and that the cyclic classes are C;, G, ..., Cy. TO
construct an appropriate coupling in this context, we generate X, from

() =dn(- N C)
on { X} € C;} for 1 <i < d and then use one of the couplings just described in
the aperiodic setting. By starting both X and X¢ in ]ghe same cyclic class, it is
guaranteed that there will exist a time 7 at which X7 = X7. However, Eq. (2.5)

no longer holds, in general, because X * is no longer stationary. The quantity
8 now needs to be replaced by

B =2 Ef(X])e:
i=0
where g; = [, ;,,, G (ds). Of course,

d
Ef(X7)=d 3, v((j + Hmod d)P(X, € C}),

Jj=1
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where y (/) =[5 f(x)I(x € C))w(dx). To construct an estimator of « based on
this coupling requires more information than is the case in the aperiodic setting.
In particular, to compute 8’, one needs to know the v (/)’s as well as P(X, €
Chforl=j=d.

We conclude this section with a discussion of aperiodic Doeblin chains. In
this context, it turns out that we can construct a variant of our algorithm in
which knowledge of v is not necessary. Such a chain satisfies a uniform version
of Eq. (4.9), namely,

P(X, € | Xo = x) = Ne () @.11)

for all x € S, where A > 0; this type of chain is automatically positive recurrent.
Perhaps surprisingly, it is possible here to generate X, without any explicit
knowledge of the stationary distribution of 7. One approach to generating such
as X would be to exploit an algorithm proposed in Asmussen, Glynn, and
Thorisson [4]. However, it has the undesirable property that the expected com-
puter time required to compute X * is infinite. Instead, let Q(x,-) be defined
as in Eq. (4.10) with A () = . Then, the following algorithm generates X{ in
finite expected time.

1. Generate a geometric random variable with parameter A\—call it N.

2. Using initial distribution ¢ and transition function Q, simulate the Mar-
kov chain (Z,:0 < k < N) up to time N.

3. Generate Z’ according to distribution ¢.
4, Generate [ uniformly on {0,1,...,m — 1}.
5. Generate Xg from P(X; € - | Xo = Zn, X =Z').

Thus, even without explicit knowledge of 7, we can potentially construct
couplings satisfying Assumption A3. Of course, in such a setting, it is unlikely
that » would be known, so that Y; cannot be computed. Instead, part of the
computational budget must be assigned to estimating 3.

Example 1 (continued): Suppose that we partition our computer budget ¢ so
that 100p% is assigned to estimating 8 and 100(1 — p)% is assigned to estimat-
ing £ 2 E[(f(X'(2)) — f(X*)))I(T > t)]. The two quantities are estimated
independently of one another. The estimator for 8 is v ( pc)g, where v(c¢) is the
time-average sample mean produced from a simulation of X over the time ho-
rizon associated with a budget of ¢ time units and g £ [, ., G(ds). The second
expectation is estimated by simulating independent replicates of ( f(X'(¢)) —
S(X¥(NI(T > t), thereby yielding an estimator £((1 — p)c). Both estimators
typically satisfy CLTs, namely,

c2(v(e) = v) =9 N(0,1),
c2(E(e) = &) =, N(0,1),

as ¢ — oo. Consequently,
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nig? 73

+
l—p

c(r(pe)g + E(1 —p)e) —a) = N(0,1) 4.12)

as ¢ — oo, It is easily calculated that the value p*, which minimizes the variance
of the limiting normal random variable in Eq. (4.12), is

* _ Inilg
Inilg + Im2|”
in which case
c(v(p*e) + E((1 = p*)e) —a) = (Im]g + [n2DN(0,1) (4.13)

as ¢ — oo,

As in Section 3, it is worth noting that the parameter o = Ef(X (7)) is a
function of ¢, so that an asymptotic analysis of the preceding algorithm can po-
tentially be enlightening. First, observe that |n,| is independent of  and that,
in this problem, g = 1. The behavior of |n,| is precisely that obtained in our
analysis of Section 3, namely, |1,| = |12(2)] ~ c;e™ for some ¢;, Ay > 0.
Consequently, (|7;]g + [72(2)]) = |n1g| > 0 as £ — oo, so that the asymptotic
variance of this algorithm is insensitive to . This is to be contrasted to the na-
ive algorithm, which, as pointed out in Section 3, has an asymptotic variance
that grows linearly in 7. Hence, for large ¢, the algorithm just proposed for
Doeblin chains is more efficient than the naive algorithm.

Example 2 (continued): We now perform a similar analysis on the cumulative

cost estimation problem. The structure of the algorithm is precisely that just -

described in the setting of Example 1, except that now g = ¢ and £ must be suit-
ably modified. CLT (4.13) continues to hold.

However, the results of an asymptotic analysis are now quite different. As
in Section 3, |n| = |12(¢)| = d, > 0 as t — 0. However, because g =, it is
now evident that (|7 (¢)|g + |72(¢)]) ~ |m|? as ¢ —» . Consequently, the lim-
iting variance now increases quadratically in ¢, matching the behavior of the na-
ive estimator for this problem (see Section 3). Hence, there is no clear (large ¢)
advantage to using this algorithm rather than the naive estimator.

It is worth noting that corresponding to every Harris chain there exists
a (classically) regenerative sequence with identical marginal distributions and
possessing independent (regenerative) cycles (see Glynn [11]). (In general, Har-
ris chains for which the minorization of Eq. (4.9) holds with m > 1 have only
1-dependent cycles.) Rather than applying the preceding coupling methods di-
rectly to the Harris chain, one could instead apply them to the corresponding
classically regenerative sequence. It is for this reason that we included postu-
late A3.1.
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We close this section with a brief comment related to the use of simulation
for numerically computing the total variation rate of convergence for a Markov
process. It was already shown that in the Doeblin context the simulationist need
not know y in order to exploit the coupling ideas of this paper. Similarly, note
that if X is a finite state-space Markov process, our coupling identity of Eq. (2.5)
implies that |P(X(z) € :) — w(-)| can be estimated via

2 1 2IX()=xT;>1t) - ! 21Xy =x,T,> 1),

xes |1 i=1 ni=y
here (X1, X[, T1),...,(X,,X,,T,) are i.i.d. replicates of the random triple
(X,X* T). In particular, explicit knowledge of the stationary distribution is
unnecessary; only the ability to generate a stationary version X* is required.
This approach differs from that suggested by Kalashnikov [14], which provided
only upper bounds on the total variation distance (but, on the other hand, does
not require the ability to generate X ™).

5. ESTIMATION BASED ON SHIFT-COUPLING

An important recent development in the theory of coupling has been the real-
ization that a concept known as “shift-coupling” plays a key role in certain
Cesaro-type limit theorems for stochastic processes (see Aldous and Thorisson
[2] for details). It turns out that the concept can also play a useful role in sim-
ulation. We will now replace Assumption A3 with the following assumption:

Ad. We can simulate a process {(X'(¢),X*(t)):t = 0} such that
1. X'(t) 2 X*(¢) for 1 = 0;
2. {X*(t):1 =0} is a stationary version of X under which X(0) has
distribution =7; and

3. there exist finite-valued random times 7°and 7™ such that { X' (T + s) :
s=0) 2 {X*T*+s):s=0].

The key idea is that we no longer require that 7= 7, so that a “shift” of
T* relative to T is now permitted.

One major drawback of the shift-coupling idea that we will now present
is that it appears to be appropriate only for cumulative costs, in which case
G(ds) =1(0 < 5 < t) ds. Assume Assumptions Al, A2, and A4. Then, for this
class of estimation problems, we find that

fEf(X(S))dS=f Ef(X'(s)) ds
0 0

T+t

T T+r
=Ef fX(s)ds+E F(X'(s) ds—Ef F(X(s)) ds.
0 4

T
(5.14)
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Similarly, we conclude that

ftEf(X*(s)) ds=FE T$f()(*(5_)) ds + Efi*+[f(X*(s)) ds
' 0 T+t '
- Ej: F(X7(s)) ds. (5.15)
But [ Ef(X*(s)) ds = vt by Assumptions A2 and A4.2. Also,

E TTH f(X'(s)ds=E f:“ F(X*(s)) ds. (5.16)

Combining Eqs. (5.14)-(5.16), we obtain the identity o = EY,, where

Y, =vi + er(X’(S)) ds — OT*f(X*(S)) ds

+ J;HT*f(X*(S)) ds — fIH‘Tf(X’(S)) ds. 5.17)

Estimation based on Y, is often much easier to implement than that based
on Y,. For example, as indicated in Section 2, coupling in continuous time (as
exemplified by the residual life process of a renewal process with spread-out in-
terrenewal times) can require fairly complicated dependent couplings that may
require substantial effort to develop and program. On the other hand, it is of-
ten much easier to shift-couple such processes. This is nicely illustrated by the
residual life process; one can independently simulate X and X ™ and let 7 and
T* be the first time that X and X*, respectively, visit the origin. (Another good
example is the queue-length process of the single-server GI/G/1 queue.)

In fact, there exist processes for which couplings, in the sense of Assump-
tion A3, do not exist, whereas shift-couplings do exist. Perhaps the simplest
such example is that of a periodic positive recurrent Harris chain. Such chains
do not couple in finite time almost surely; however, if one defines 7 and 7™ as
the first times at which X and X *, respectively, possess distribution ¢, a shift-
coupling is easily obtained. Note that the estimator based on Y, then requires
significantly less information from the simulationist than that suggested in Sec-
tion 4, in which the y(/)’s and P(X, € C;)’s must be known.

A more subtle example is given by the residual life process associated with
interrenewals that are neither spread-out nor arithmetic. The same shift-coupling
as described earlier works here; however, it is a consequence of the coupling
inequality (and the failure of this residual life process to converge in total vari-
ation norm to its steady state) that couplings of the form in Assumption A3 can-
not exist here. This difficulty extends, more generally, to (positive recurrent)
Harris recurrent Markov processes in continuous time (for definitions and ba-
sic properties, see Sigman [21]). Such processes are known to possess shift-
couplings but do not, in general, couple as in Assumption A3.
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From an implementation standpoint, the shift-coupling can often be con-
structed without the need to explicitly simulate a stationary version X*. For ex-
ample, suppose that X is a discrete state space irreducible, positive recurrent
continuous-time Markov chain, and let Z be generated (independently of X)
from the stationary distribution w. Set T = inf{r = 0: X(¢) = Z}, X*(s) =
X(T + ), and T* = 0. A slightly different implementation of this idea is to
simulate X*, generate Z (independently of X*) from the distribution of X(0),
and set T* = inf{¢t = 0: X*(t) = Z}, with X'(5s) = X*(T* + s), T = 0. (This
second variant works, for example, with the waiting time sequence of Exam-
ple 6 with W, = 0 almost surely, whereas the first version fails.)

We conclude this section with an asymptotic (large ¢) analysis of the effi-
ciency of the shift-coupling estimator introduced in Eq. (5.4). Let 7,(i) be the
computer time required to generate Y, (i), where {Y,(i),7,(i)}’s are i.i.d. ran-
dom vectors with Y, (i) 2 Y,. If ay(c) is the estimator, based on the Y5(i)’s,
available after an expenditure of ¢ units of computer time, then (under suitable
moment hypotheses)

c"?(aa(c) — @) = 0, N(O,1)

as ¢ — oo, where o5 = E7,(1)var Y,. Note that Y,(¢) — vt typically converges in
distribution as 7 — oo, from which it is evident that var Y,(¢) - d, > 0 is to be
expected. On the other hand, ¥, requires that the process (X', X ™) be simulated
tot+ (T'v T*), so that the typical behavior of Er,(1,7) is that Er,(1,1) ~ ¢t
as ¢ — oo, for some ¢, > 0. We conclude that 0#(¢) ~ ¢,d,t as  — oo, so that the
shift-coupling estimator proposed in this section is more efficient than the na-
ive estimator for large ¢ but less efficient than the estimator based on coupling.

6. USE OF STEADY-STATE INFORMATION FOR PROCESSES
THAT DO NOT ADMIT COUPLING

As noted in Section 5, there exist processes for which couplings do not exist for
all possible initial distributions; these include periodic Harris chains and certain
Harris recurrent Markov processes in continuous time (such as the residual life
process corresponding to interrenewals that are neither spread-out nor arithme-
tic). In Section 5, the notion of shift-coupling was used to construct estimators
for expected cumulative costs that are more efficient (for large time horizons)
than those associated with naive sampling.

However, this leaves open the question of whether there exist other ways
of taking advantage of steady-state information for such processes that apply
to expectations other than expected cumulative costs. In addition, it should
be noted that there exist Markov processes to which even the notion of shift-
coupling does not apply.

Example 7: Consider a real-valued autoregressive process of order 1, satisfy-
ing the recursion

Xn+1 = %Xn + V;H—la
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where {V,:n =1} isii.d. If P(V; = 1) = P(V, =—1) = 1, then it is straight-
forward to verify that

X, = Xo

as n— oo, where X, 2 2(U - %)_ and U is uniform on [0,1]. Note that if X, =1,
then the X,’s take values in the dyadic rationals D. Hence,

1 n—1

-2 P(X,eD|X,=1)—~1
n j=0

as n — oo, whereas P(X, € D) = 0 (because D is countable). This implies that

S |-

E}IP(X,E | Xo=1)

does not converge in total variation norm to 7w () = P(X. € -), which (in
turn) implies that { X, : # = 0} cannot be shift-coupled (see Aldous and Thoris-
son [2]).

Our goal here is to (partially) address this issue by suggesting an alterna-
tive estimation strategy for such problems. We require that the state-space S of
our process X be a metric space, equipped with metric p. (An important special
case is that in which S is Euclidian with p equal to Euclidian norm.) Our key
assumption will be the following:

AS. We can simulate a process {(X’(¢), X *(¢)): ¢ = 0} such that
1. X'(t) 2 X(¢) for t = 0;

2. [X*):¢= 0} is a stationary version of X under which X (0) has
distribution 7; and

3. p(X*1),X'(t)) > 0as.ast— oo,
This assumption is closely related to the notion of e-coupling (for details, see
Asmussen [3]). Let

Y' = S(X'(s)G (ds),
[0,0)

Yr = S(X*(5)G(ds),
[0,2)

and consider the “controlled” estimator
Y;(\) =Y = NMY™ —vg), (6.18)

where g = [|y .., G(ds), and N\ € . The idea is that if f is suitably continuous,
then Assumption A5.3 will guarantee that Y’ and Y™ will be close to one an-
other and, hence, highly correlated. This is known to be a highly favorable set-
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ting for the use of control variates (see, e.g., Bratley, Fox, and Schrage [8]). By
suitable continuity, we mean the following:

A6. P(X*(0) € Dy) =0, where Dy is the set of discontinuities of f: S — R.

If f is bounded, then Assumption A6, in conjunction with Assumption A5.3,
guarantees that Ef(X'(¢)) — Ef(X™(¢t)) — 0 as t —» o (see Billingsley [7]).

The choice of A in Eq. (6.1) can, of course, be optimized so as to minimize
the variance of Y;(A\). Assume that var Y’ < o, 0 < var Y* < o. The optimal
choice of \ is then

Ne =cov(Y’,Y™)/var Y,
with a resulting minimizing variance of
var Y3(\,) = var Y'(1 — corr(Y’, Y*)?),

where corr(Y’, Y*)? is the squared coefficient of correlation between Y’ and
Y* given by cov(Y’, Y*)?/var Y’ var Y*. Although A, is not known a priori, it
can easily be estimated from a sample of i.i.d. replicates from the population
(Y’, Y*). This estimation comes at no loss of asymptotic efficiency.

In particular, let a;(c) be the estimator constructed in ¢ units of computer
time by independently replicating the random vector (Y’, Y*) and estimating
A+ in the obvious way (by replacing population moments by sample moments).
Suppose 75 (i) is the time required to generate the ith replicate (Y}(i), Y3(i)).
Then, if the appropriate moments are finite,

2 (as(c) — a) = 03 N(0,1) (6.19)

as ¢ — oo, where o5 = E75(1)var Y3(\,). We can use Eq. (6.19) to analyze the
(large t) efficiency of our proposed estimator as(c).

Example I (continued): First, observe that the computational effort 75(1, ), for
this problem, grows linearly in ¢ so that E75(1,7) ~ c3t as t — oo for some ¢3 > 0.
Furthermore, because A\, is the variance minimizer, var Y3 (\.) < var Y3(1),
and

Y3(1) = vg + f(X'(1)) — f(X*(1)).

Because Y3(1) — vg as t — oo, it follows (assuming uniform integrability) that
var Y3(N,, 1) — 0 as f > o. We conclude that o2 = ¢#(¢) = 0(t) as t — o, 50
that a3 (c) is, for large ¢, a more efficient estimator than is o (c).

Example 2 (continued): Again, E73(1,7) ~ ¢3¢ for some ¢; > 0. As in the anal-
ysis of Example 1, we take advantage of the fact that var Y5(\,) < var Y5(1),
where

Yi(1) = vg + f [A(X'(s) — (X7 (s)] ds.
0
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Suppose, as is often reasonable, that
S(X'(s)) = f(X*(s)) = O(s™P) for some p > 1.

Then, [{[A(X(s)) — f(X*(s)] ds = 0(¢"?) as t - c. Hence, we can typically
expect that var Y3(1) = o(t) as ¢t — oo, from which it is evident that ¢$(¢) =
0(t?) as t — oo. This establishes that os(c) is more efficient than the naive es-
timator for large c.

We conclude this section with a brief discussion of how to generate (X', X*)
satisfying Assumption AS5. We will restrict our attention to general state-space
chains { X, :n = 0} satisfying stochastic recursions of the form

Xn+1 = h(Xny V;H—l)a

where 1:S X §’— S and {V,:n = 1} is-a sequence of i.i.d. S’-valued ran-
dom elements (independent of X,). For each x € §, define X,,(x) for n = 0 via
Xo(x) = x and

Xn+1(x) = h(Xn(X)’ I/;’I‘f'l)

for n = 0. A large class of such stochastic recursions have the property of the
following:

A7. Foreachx,y € S,p(X,(x), X, (¥)) = 0as. as n— oo,

See, for example, Glynn [10]; the class of recurrent autoregressive sequences
(either scalar or vector-valued) also have this property.

To construct (X', X*), suppose that X} and X are generated indepen-
dently, and set

Kypr = h(X5, Vi),
X:+l = h(X:s Viv1)s

for n = 0; in other words, one drives both X’ and X * using the same sequence
of ¥’s. (This is an application of common random numbers.) Due to Assump-
tion A7, it then follows that p(X,, X)) > 0 a.s. as # — oo.

7. COMPUTATIONAL EXPERIENCE

For obvious reasons, it is desirable to perform our numerical experimentation
on a model for which both the transient and steady-state distributions are an-
alytically calculable. Consequently, we have chosen to focus our efforts on the
M/M/ continuous-time birth-death process X = (X (¢) : ¢ = 0) having birth
rates A, = A and death rates pu, = nu for n = 0. It is well known that if X(0) =
0 then X(¢) is Poisson distributed with parameter (A (1 — exp(—pu?))/p). In ad-
dition, we have chosen to use the performance measure f(x) = x, so that

1 — en
Ef(x(y = X =e)
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Tasie 1. N = 0.5, u = 1.0; Computer Budget ¢ = 100,000

No. of
Replications

No. of
Replications

95% CI

o (c)

95% CI

a(c)

True Value

Time ¢
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e oy o oy o

201,604 [0.193, 0.198

0.196
0.318

[0.315, 0.320
[0.432, 0.435

170,547
147,660
138,422
- 137,867

0.434

[0.497, 0.497

0.497

[0.500, 0.500

0.500

[0.195, 0.199

200,000
100,000

0.197
0.316

0.197
0.316

0.5

[0.313, 0.320
[0.424, 0.436

1.0
2.0

50,000
20,000
10,000

0.430

0.432

0.488

0.497

[0.472, 0.500

0.486

0.500

10.0

TaprLe 2. A = 2.0, p = 1.0; Computer Budget ¢ = 100,000

No. of
Replications

No. of
Replications

95% CI

ay(c)

95% CI

a(c)

True Value

Time ¢

[0.775, 0.792]
[1.254, 1.272]

120,082
85,468
67,266
60,463
60,283

0.783

[0.785, 0.793]
[1.254, 1.268]

200,000
100,000

0.789

0.787

1.263
1.735

1.261

1.264
1.729
1.987
2.000

1.0
2.0
5.0

10.0

[1.728, 1.742]

[1.718, 1.742]
[1.964, 2.003]
[1.982, 2.037]

50,000
20,000
10,000

1.730
1.984
2.009

[1.986, 1.989]

1.987
2.000

[2.000, 2.000]
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100,000

0.5, u = 1.0; Computer Budget ¢

TaBLE 3. A

No. of
Replications

No. of

Replications

No. of
Replications

Time

95% CI

a(c¢)

95% CI

a{(c)

True Value  «f(c) 95% CI

t

63,650
17,970

[0.176, 0.185]

0.180

170,547
138,422
137,867
137,847

[0.181, 0.186]
[0.400, 0.403]

0.184
0.402
0.450

100,000

0.184 [0.182, 0.186]
0.395 [0.391, 0.400]
0.445 [0.439, 0.450]
0.472 [0.467, 0.478]

0.184
0.401

1
5
10
20

0.400 [0.396, 0.404]
0.449 [0.447, 0.452]

0.477

20,000
10,000

R

9,457

[0.450, 0.451]

0.450

W.

4,867

[0.475, 0.478]

[0.475, 0.476]

0.475

5,000

0.475

Glynn and E. W. Wong

2.0, u = 1.0; Computer Budget ¢ = 100,000

TaBrLe 4. A

No. of
Replications

No. of

Replications

No. of
Replications

Time

95% CI

a(c)

95% CI

ag(c)

True Value  «(c¢) 95% CI

t

7,328
1,863
1,863

[1.794, 1.817]

1.805

60,283
60,283
60,283
60,283

[1.800, 1.805]

1.803
1.961

10,000
2,000

1.799 [1.788, 1.810]
1.958 [1.946, 1.971]
1.961 [1.968, 1.993]

1.991

1.800
1.960
1.980
1.990

10
50
100

1.964 [1.959, 1.969]

1.980
1.989

[1.960, 1.961]

[1.976, 1.983]

1.980 [1.980, 1.980]

1,000

491

[1.987, 1.991]

1.990 [1.990, 1.990]

500

-[1.980, 2.003]

200

o
|
|
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To offer a fair comparison of coupling-based estimators relative to the na-
ive (conventional) estimator, we need to ensure that both estimators are con-
structed from computer budgets that are (at least) roughly equal. Because of the
machine-dependent subtleties that arise in explicitly timing these routines, we
prefer to make the simplifying assumption that the computational effort can be
taken equal to the total time simulated. For example, to estimate o = Ef(X(¢))
via the naive algorithm involves using ¢ units of computer budget per replica-
tion, whereas the coupling-based estimator «; (¢) (based on independent cou-
pling) requires 2(7; A t) units of computer budget for the /th replication (where
T; is the coupling time associated with replication 7).

Tables 1 and 2 are concerned with comparing the naive estimator to the
coupling-based estimator (under the independent coupling) for the performance
measure o = EX(1).

Note that the performance of the naive estimator, as measured by the con-
fidence interval half-width, tends to degrade as t — o (due to the correspond-
ing decrease in the sample size as ¢ gets large). On the other hand, the sample
size associated with the coupling-based estimator «;(c) declines as ¢ — oo,
whereas the variance of «;(c¢) has a tendency to decrease. Thus, no monotonic
trend in half-width is evident for «;(c) (although one is guaranteed that the
half-width gets smaller for ¢ sufficiently large).

We turn now to the shift-coupling estimator a,(c). Let X and f be as ear-
lier, and consider the cumulative cost o = Ef; f(X(s)) ds. Tables 3 and 4 dis-
play the results obtained for estimating « via the naive estimator «(c), the
coupling-based estimator «;(c), and the shift-coupling estimator a,(c). The
coupling-based estimator «; (c) takes advantage of the independent coupling,
whereas the shift-coupling estimator o, (¢) simulates X’ via X'(s) = X*(T* + s)
for s = 0 (as suggested in Section 5).

Qualitatively, the results mimic those obtained for the performance mea-
sure o = EX(¢). In particular, both the coupling-based estimator «;(c¢) and
the shift-coupling estimator «,(c) have efficiencies that appear to improve as
the time horizon ¢ increases, just as our theory predicts. Furthermore, the ef-
ficiency of «;(c¢) increases relative to «;(c), in accordance with the theory of
Section 5. (It is worth noting that in Table 4 all the replications coupled before
t = 10; this explains why the number of replications computed for ¢ = 100,000
is identical for the time horizons listed.)
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The total hazard Monte Carlo estimator has been successfully applied to esti-
mate the unreliability of multicomponent systems. Nevertheless, there are some
cases where it is less efficient than the crude estimator. We propose in this
paper a simple modification that improves the performance of the total haz-
ard estimator.

1. INTRODUCTION

Consider a coherent binary stochastic system S with m components such that
each of them is either up or down (see, e.g., Barlow and Proschan [2]). The
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