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Abstract

In this paper we develop Foster�type criteria guaranteeing tightness for
Markov chains which are not necessarily irreducible� The results include criteria
for both tightness of the marginal distributions and tightness of the Cesaro�
averaged transition probabilities� In addition� we obtain results guaranteeing
boundedness in expectation for real�valued functionals of the chain�
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� Introduction

Let � � f��� ��� � � �g be a time homogeneous Markov chain� and let P be its associated
transition kernel� so that

P �x�B� �� Pf�n�� � B j �n � xg� x � X� B � B�X��

We assume throughout that the state space X is a complete� separable metric space�
with Borel ���eld B�X�	

In the stochastic systems literature� stability of a Markov chain is frequently
equated with tightness of the underlying distributions� for each initial condition	 This
gives rise to the following de�nition� introduced by Khas
minskii in the sixties ��
	
A Markov process is called bounded in probability if for each initial condition of the
process� there exists a sequence of compact sets Kn � X for which

lim
n��

sup
k��

Pf�k � Kc
ng � ��

If the Markov chain � possesses the state transition kernel P � boundedness in prob�
ability is equivalent to requiring tightness of the family of probabilities fP k�x� � � �
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� Tightness �

k � �g	 The Markov chain � is called bounded in probability on average if the family
of probabilities n �

N

N��X
k��

P k�x� � � � N � �
o

���

is tight� for any initial condition x � X	
The most common approach to establishing any form of stability for a Markov

chain is to bound the mean of the return time �A � min�k � � � �k � A�� where A
is a suitably chosen subset of X	 In this paper it is shown that this approach can be
extended to the very general framework here� yielding criteria for both tightness and
�niteness of moments for the Markov chain under consideration	

The assumptions imposed in this paper are related to the Feller condition that
the Markov transition operator maps bounded continuous functions to continuous
functions	 Feller Markov chains have been treated previously in numerous papers	
The main results of ��� �
 imply that if supx�K Ex��K
 � � for a compact subset
K � X� then an invariant probability � exists� and this implies that the probabilities
in ��� will be tight for a	e	 x � X ��
	 More recently� Lassere ��
 has obtained criteria
for the existence of invariant probabilities for Feller chains based on a generalization
of Farkas
 Lemma	 Some of the most recent results in both the Feller and ��irreducible
contexts are described in the monographs ��� �
	 Most of the results in these references
concern the existence of an invariant measure for the chain� while in the present paper
we seek conditions under which the chain will remain bounded in a probabilistic sense
for each initial condition	

The remainder of the paper is organized as follows	 In Section � we present
the main results� establishing tightness of the underlying distributions under bounds
related to Foster
s criterion	 These results are generalized in Section � where criteria
are developed which guarantee boundedness in expectation for real�valued functionals
of the chain	 In Section � we conclude with a simple example� and a counterexample
to show that none of the assumptions imposed here are super�uous	

� Tightness

We begin with a condition for tightness based upon the return time to a measurable
subset A � B�X�	 For such a set A we de�ne the kernel VA on X � B�X� by

VA�x� S� � Ex

h�A��X
j��

�l��j � S�
i
� x � X� S � B�X��

Theorem ��� Suppose that there exists a sequence of compact sets Kn � X and
A � B�X� such that

lim
n��

sup
a�A

VA�a�K
c
n� � �� ���

Then�

�a� the family of probabilities



� Tightness �

n �

N

N��X
k��

P k�x� �� � N � �� x � A
o

is tight�

�b� If in addition to ��� we have

Pxf�A ��g � �� x � X� ���

then the chain is bounded in probability on average�

Proof Let T� � TA� Tn�� � inffk 	 Tn � �k � Ag� n � �	 Then for any function
f �X	 IR and for a � A�

���PN��
j�� P jf �a�

��� 

PN��

j�� P jf �a�


 Ea

hP�A��
j�� f��j�

i
�
PN��

��� Ea

hPT���
j�T�

f��j�
i


 Ea

hP�A��
j�� f��j�

i
� �N � �� supx�A Ex

hP�A��
j�� f��j�

i
�

���

where the last inequality follows from the strong Markov property applied to the
stopping times fT�g	 On setting f � �lKc

n
we obtain for any x � X�

�

N

N��X
j��

P j�x�Kc
n� 


�

N
VA�x�K

c
n� �

N � �

N
sup
a�A

VA�a�K
c
n� ���

Taking the supremum over all x � A gives

sup
a�A
N��

�

N

N��X
j��

P j�a�Kc
n� 
 sup

a�A

VA�a�K
c
n��

Since the right hand side converges to zero as n 	 �� this proves �a�	 To establish
the conclusions of �b� under ��� we break up the average of P j as follows�

�

N

N��X
j��

P j�x�Kc
n� �

�

N

N��X
j��

Ex��l��A 
 j��l��j � Kc
n�


�
�

N

N��X
j��

Ex��l��A 	 j��l��j � Kc
n�




�

N
Ex�

N��X
j��

�l��A 
 j��l��j � Kc
n�


�
�

N

N��X
j��

Pxf�A 	 jg



�

N
Ex�

�A�N��X
j��A

�l��j � Kc
n�


�
�

N

N��X
j��

Pxf�A 	 jg



� Tightness �

From the strong Markov property applied at time �A we then obtain

�

N

N��X
j��

P j�x�Kc
n� 


�

N

�
sup
a�A

Ea�
N��X
j��

�l��j � Kc
n�
 �

N��X
j��

Pxf�A 	 jg
�
�

From �a� and ��� the RHS converges to zero as N 	 �� and then n 	 �� which
establishes boundedness in probability on average	 ut

The corollary below shows that uniform integrability for the return time to a set
A is su�cient for tightness of the averaged distributions	 Some structure must be
imposed on the set A� a minimal requirement is the tightness condition �iii� below	
This condition is satsi�ed when � has the Feller property and the set A is compact	
To see this� �rst note that the Feller property is equivalent to continuity of the map
x �	 Pn�x� � � �from the initial condition x� to the space of probability measures
on B�X�� under the topology of weak convergence�	 Since tightness is equivalent to
relative compactness in the this topology� the condition �iii� follows from the fact that
the continuous image of a compact set is itself compact	

Corollary ��� Suppose that there exists a subset A � B�X� such that

�i� The uniform integrability condition holds�

lim
m��

sup
a�A

Ea���A �m��l��A 	 m�
 � ��

�ii� For each x� Pxf�A ��g � ��

�iii� For each m � �� the family of probability measures f�
m
Pm

k�� P
k�a� �� � a � Ag

is tight�

Then the chain is bounded in probability on average�

Proof Fix n 	 �	 By Condition �i�� there exists m � � such that

sup
a�A

Ea���A �m��l��A 	 m�
 � �
��n��

On the other hand� by Condition �iii�� there exists a compact set Kn such that

sup
a�A

mX
j��

P j�a�Kc
n� � �
��n��

But for a � A�

Ea

h�A��X
j��

�l��j � Kc
n�
i


 Ea

h mX
j��

�l��j � Kc
n�
i
� Ea���A �m��l��A 	 m�
 � �
n�

Since the left hand side of this bound is VA�x�K
c
n�� it follows that the conditions of

Theorem �	� are satis�ed� which completes the proof	 ut

The veri�cation of the uniform integrability condition �i� can be subtle	 Here is
one su�cient condition	



� Tightness �

Corollary ��� Suppose that there exists a measurable function V �X	 ����� satis�
fying

�i� For some b ���
PV 
 V � � � b�lA� ���

�ii�

lim
n��

sup
a�A

Ea�V ��n��l��A 	 n�
 � �� ���

�iii� For each m � �� the family of probability measures f�
m
Pm

k�� P
k�a� �� � a � Ag

is tight�

Then the chain is bounded in probability on average�

Proof If ��� holds then by Theorem ��	�	� of ��
� for all x � X�

Ex��A
 
 V �x� � b�lA�x��

By the Markov property we then have

Ex���A �m��l��A 	 m�
 � Ex�E���A �m� j Fm
�l��A 	 m�



 Ex�E�m ��A
�l��A 	 m�



 Ex�V ��m��l��A 	 m�
�

The result then follows from Corollary �	�	 ut

The �nal result of this section removes the average on Pn to give a criterion for
boundedness in probability	

Theorem ��� Suppose that there exists a subset A � B�X� such that the strengthened
uniform integrability condition holds�

�X
n��

�
sup
a�A

Paf�A 	 ng
�
���

and� for each n � �� the family of probability measures fPn�a� � � � a � Ag is tight�
Then�

�a� fPn�a� � � � a � A� n � �g is tight�

�b� If in addition Pxf�A � �g � � for every x� then the chain is bounded in proba�
bility�

Proof The last exit decomposition ��
 may be written

Pn�x�B� � Pxf�j � B� �A � ng�
Z
A

n��X
j��

Pn�j �x� dy�Pyf�j � B� �A � jg

It then follows that for any N � ��



� Bounds on moments �

Pn�x�B� 
 Pxf�A � ng�
N��X
j��

sup
y�A

Pyf�j � Bg �
�X

j�N

sup
y�A

Pyf�A � jg

The conclusion �a� follows immediately from this bound� on letting B denote the
complement of a suitably large compact subset of X	 Result �b� then follows from �a�
upon conditioning at time �A as in the proof of Theorem �	�	 We omit the details	 ut

A su�cient condition for �i� is that supA Ex��Aflog��A�g
�
 ��� Such bounds can

be obtained through Lyapunov function arguments� similar to the use of ��� �see ��
�	
To see why this is su�cient� consider the bounds

sup
a�A

Paf�A 	 ng 
 sup
a�A

Ea

h log��A���A
log�n��n

�l�� 	 n�
i



b

log�n��n

where b � supa�A Ea��Aflog��A�g
�
	 The right hand side is summable� so this estab�

lishes �i�	

� Bounds on moments

The methods above can be adapted to generate bounds on positive�valued functions of
the chain under a strengthened version of Foster
s criterion	 We suppose throughout
this section that f �X	 IR� is measurable	

Theorem ��� Suppose that there exists V � X	 ����� such that

PV �x� 
 V �x�� f�x� � b�lA�x�� x � X�

Then for all N � � and x � X�

�

N

N��X
j��

Ex�f��j�
 
 b�
�

N
V �x�

Proof This follows from iteration of the inequality PV 
 V � f � b �see also the
Comparison Theorem of ��
�	 ut

The criterion above may be translated to a condition on the kernel VA on de�ning

VA�x� f� �� Ex

hP�A��
j�� f��j�

i
	

Theorem ��� Let f � X	 IR� suppose that there exists A � B�X� such that

b �� sup
a�A

VA�a� f� ���

Then for all N � � and x � X�

�

N

N��X
j��

Ex�f��j�
 � b�
�

N
VA�x� f�



� Bounds on moments �

Proof This follows from Theorem �	� on letting V �x� � �lAc�x�VA�x�� x � X� We
have for any x�

PV � VA � f 
 V � f � b�lA�

ut

Theorem ��� For f � X	 IR� suppose that there exists A � B�X� such that

�X
j��

sup
a�A

Ea�f��j�� �A � j
 � ��

Then�

�a�

sup
a�A
n��

Ea�f��n�
 � ��

�b� For any x � X satisfying VA�x� f� ���

sup
n��

Ex�f��n�
 � ��

Proof The last exit decomposition yields� for any x�

Ex�f��n�
 � Ex�f��n�� �A � n
 �

Z
A

n��X
j��

Pn�j �x� dy�Ey�f��j�� �A � j
� ���

Then�

sup
a�A

Ea�f��n�
 
 sup
a�A

Ea�f��n�� �A � n
 �

Z
A

n��X
j��

Pn�j �a� dy� sup
a�A

Ea�f��j�� �A � j



 sup
a�A

Ea�f��n�� �A � n
 �
n��X
j��

sup
a�A

Ea�f��j�� �A � j




�X
j��

sup
a�A

Ea�f��j�� �A � j
�

which proves �a�	
To prove �b� apply the identity ��� and �niteness of fmax � supa�A

n��

Ea�f��n�
 to

obtain the bound

Ex�f��n�
 
 Ex�f��n�� �A � n
 � fmaxPxf�A � ng�

Under the assumptions of �b� the �rst term on the RHS of this bound is summable�
and this completes the proof	 ut



� Examples �

Remark� One way to develop Lyapunov criteria for Theorem � is to note that if

sup
z�A

Ez

h�A��X
j��

f��j���j�
i

� �� ���

then

sup
z�A

Ez �f��j�� �A � j
 

�

��j�
sup
z�A

Ez

h�A��X
���

f���� � ����
i
�

So� provided
P

�
��j� � �� Theorem �	� holds	 Lyapunov criteria for ��� can be
derived as in ��
	

� Examples

��� A random walk

To see how to apply Corollary �	� in operations research models� take the random
walk on IR��

�n�� � ��n � 
n��

�� n � ZZ��

with E�
���
� �� and f
k � k � �g is i	i	d		 We have that condition �i� of Corollary �	�
is satis�ed with A � ��� a�
 and V �x� � cx� for some a�� b� c 	 �	 To establish �ii��
�rst observe that by ���� the sequence �Mn�Fn � n � �� is a supermartingale� where
Mn � V ��n��l��A � n� and Fn � �f
�� � � � � 
ng	 It follows from the Supermartin�
gale Convergence Theorem that Mn 	 M� � � as n 	 �� and by positivity� the
supermartingale is uniformly integrable	 Hence� for each x�

� � lim
n��

Ex�Mn
 � lim
n��

Ex�V ��n��l��A � n�
�

The random variable V ��n��l��A � n� is� for each n� monotone in the initial condition
�� � x	 It follows that

sup
a�A

Ea�V ��n��l��A � n�
 � Ea� �V ��n��l��A � n�
	 �� n	��

The conditions of Corollary �	� are thus satis�ed� and hence the random walk is
bounded in probability on average	 Using similar arguments we may show using The�
orem �	� that the chain is in fact bounded in probability� and if the sequence f
kg
possesses a p � ��moment� then on rede�ning V �x� � cjxjp�� we may apply Theo�
rem �	� to establish the existence of a bounded pth moment for �	

This model is in fact ��irreducible� and hence these results follow from the far
stronger Harris ergodicity ��
	 It is useful however to see how the drift condition ���
leads easily to the uniform bound ��� in this example	
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Figure �� A Typical Sample Path of ��
�� � 
x� ��� �� � 
x� ��� �� � 
x� ��� �� � 
x� 
�� �� � 
x��� ��� �� � 
x��� �� ���

��� A counterexample

One might suspect that the generalization of Foster
s criterion ��� alone would be
su�cient to establish tightness of the distributions of �� so that the analysis of the
random walk above could be extended to general models	 The following example shows
that this is not true� the uniform integrability assumption is necessary in general	

Consider a Markov chain � on X � ��� �
� ZZ� whose transition probabilities are
de�ned as follows	 Let A denote the compact set A � ��� �
� �	 For initial conditions
�x� �� � A� we set

P ��x� ��� �x� ��� � �� x

P ��x� ��� �x� ��� � x

For �x� k� � X� k � �� we make the de�nition

P ��x� k�� �x� k� ��� � �� x

P ��x� k�� �x
�� ��� � x

The mean return time to A is easily computed� For any x � ��� �
�

E�x�����A
 �
�X
n��

P�x���f�A � ng

� � �
�X
n��

x��� x�n�

which shows that
E�x�����A
 � � ��� x � ��� �
�

Since ��� �� is absorbing� we of course have E�������A
 � �	 It follows that a solution to
Foster
s criterion ��� exists� take V �x� � Ex��A
� where �A �� min�k � � � �k � A�	

The sample path behavior of the chain is symmetric� The chain stays in the set
A for a geometrically distributed time interval� and then remains outside of A for an
identically distributed time interval	 It follows then that for x 
� ��



� Examples 	


lim
n��

Pn��x� ��� A� �
�

�
�

and by the deterministic� explosive nature of the chain when � � Ac� it follows that
for any compact subset K � X�

lim sup
n��

Pn��x� ��� K�

�

�
�

We see that from initial conditions starting outside of ��� ��� the distributions
fPn��x� k�� � � � n � �g or even f�
N

PN��
� Pn��x� k�� � � � N � �g are not tight�

even though the mean return time to the compact set A is uniformly bounded	 This
shows that the uniform integrability condition imposed in Corollary �	� is not super�
�uous	

Note that this is a Feller Markov chain	 Given the bound on E��A
 it must there�
fore possess at least one invariant probability ��
	 The invariant probability for this
example is the point mass at ��� ��	
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