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ABSTRACT 

In this paper, we develop regenerative representations for the covariance function of 

both a non-delayed regenerative process and a stationary regenerative process. These 

results are used to obtain conditions under which the lag-t covariance vanishes as t -

00, together with associated rates of convergence. The spectral density of a stationary 

regenerative process is then calculated explicitly in terms of quantities expressed over 

regenerative cycles. The paper concludes with an application of the theory developed here 

to the steady-state simulation problem. 
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1. Introduction 

Let X = (X(t) : t ~ 0) be a real-valued regenerative stochastic process. Our goal in this 

paper is to study the covariance function c(s, t) defined by 

c(s, t) = cov(X(s),X(s + t)) 

for s, t ~ O. As will be discussed in Section 6, our motivation for studying this problem arose 

from our interest in the steady-state simulation problem. The covariance function of the 

stationary version of the regenerative process X plays an important role in development of 

confidence interval algorithms for estimating the steady-state mean of X. 

In Section 2, we review the basic theory of regenerative processes that will be used 

throughout the paper and develop an appropriate notation and framework for our study. 

Section 3 obtains a regenerative representation for the covariance function and considers 

limit theory for c(s,t), both as s ...... 00 and as t ...... 00 (separately). In Section 4, analogous 

results are obtained for the covariance function of the stationary version of the regenerative 

process. In addition, we show that the covariance function typically goes to zero at infinity 

exponentially fast, whenever certain moment conditions are in force and T1 is suitably 

aperiodic. 

Section 5 describes the spectral density of a stationary regenerative process; this repre­

sentation forms a bridge between the regenerative process literature and that of stationary 

processes. As indicated earlier, Section 6 describes an application of our results to the 

steady-state simulation problem. Finally, Section 7 collects the proofs of the main results 

developed in this paper. 

2. A Brief Review of Regenerative Process Theory 

We start with a brief description of the probability space that we shall be studying 

throughout the remainder of this paper. Let D[O, 00) be the Skorohod space of rigb t­

continuous real-valued functions x : [0,00) ...... IR, having left limits everywhere. Our basic 

sample space 0 will take the form 0 = D[O, 00) x IR'f, where 1R+ = [0,00). To equip n with 

au-field :F, we use the u-field associated with the product topology on D[O, 00) x IRe;: . \\·e 

denote a generic element w of 0 as w = (x, so, S1, .. . ), where x E D[O, 00) and Si E IR+. Given the 

sample space 0, we may define the process X = (X(t) : t ~ 0) via the co-ordinate projections 

X(t ,w) = x(t); the sequence of r.v.'s T = (Tn: n ~ 0) is obtained by setting Tn(W) = Sn · 
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Set T(-I) = 0 and T(n) = TO + ... + Tn for n ~ 0; the sequence (T(n) : n ~ 0) will play 

the role of regeneration times for X. To define the cycles that are basic to the analysis of 

regenerative processes, we take a "cemetary point" ~ f/. IR+ and set 

Xn(t) = {~(T(n - 1) + t) ; 0::; t < Tn 

; t ~ Tn. 

Note that Xn E D~[O, 00), the space of right-continuous functions x~ with left limits, taking 

values for IR+ U {~}. Observe that Tn can be represented as Tn = hl(Xn), where hl(X~) = 
inf{t ~ 0 : x~(t) = ~}. 

Given a probability measure P on (n,.1'), we say that X is re~enerative under P (with 

respect to the sequence (T(n) : n ~ 0)) if: 

(2.1) i) {Xn : n ~ O} is a sequence of independent random elements. 

ii) {Xn : n ~ I} is a sequence of identically distributed random elements with ETI > O. 

Conditions i) and ii) together imply that T(n) - 00 P a.s. The process X is said to be 

non-delayed under P if T(O) = 0 P a.s.; otherwise, X is said to be delayed under P. Finally, 

we say that X is positive recurrent under P if ETI < 00 (EO corresponds to expectation 

under p); otherwise, we say that X is null recurrent under P. 

Before continuing, we wish to point out that the above specification of a probability 

space can be made without any essential loss of generality. Suppose that on the probability 

triple (n',p,p'), we wish to study the real-valued process X' having D[O,oo) paths and 

associated regeneration times (T'(n) : n ~ 0). Set T~ = T'(n) - T'(n - 1) and note that (X', (T~ : 

n ~ 0)) induces a probability measure P on D[O,oo) x IR+. The analysis of the structure 

of X' may then be done on the probability space (n,.1', P), where n has the required form 

n = D[O,oo) x IR+. To obtain results for X', we use the fact that the co-ordinate process X 

on (n,.1', P) is distributionally equivalent to X'. 

Let N(t,w) = max{n ~ -1 : T(n,w) ::; t}. For t ~ 0, we can then define a shift on the sample 

space n via 

(}t W = (x(t + .), SN(t)+1 - t, SN(t)+2, SN(t)+3," .). 

Let W be a real-valued r. v. defined on n. For n ~ 0, put A = 1/ ETI and 

I
T (n) 

Yn(W) = W 0 (}tdt. 
T(n-I) 

Note that Yn(W) can be represented in the fonn Yn(W) = h2(Xn,Xn+I , ... ) for some function 

h2 : D~ [0,00)00 - IR. Thus, (Tn, Yn(W)) = (hl(Xn), h2(Xn, X n +I , ... )). Definition (2.1) then 
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implies that the sequence {(Tn, Yn(W)) : n ~ 1} is a strictly stationary ergodic sequence 

of random vectors under P. A routine argument, based on applying Birkhoff's ergodic 

theorem separately to the Tn'S and Yn(W)'s, yields the following law of large numbers. 

(2.2) Proposition. Suppose that X is regenerative under P. If EY1(IWI) < 00, then 

11t - W 0 (}.ds - AEY1(W) P a.s. 
t 0 

as t - 00. 

Proposition 2.3 provides conditions under which expectations can be passed througr. 

the above law of large numbers. 

(2.3) Proposition. Suppose that X is regenerative under P. If EYo(IWI) + Y1(IWI) < 00 

then 

11t - EW 0 (},ds - AEY1(W) 
t 0 

as t - 00. 

A proof of Proposition 2.3 can be found in Section 7. 

Suppose that X is a positive recurrent regenerative process under P. Define the prob 

ability measure P* on the measurable space (0, F) via the formula 

I
T(l) 

P*(A) = AE [(0. E A)ds. 
T(O) 

The probability P* plays an important role in the analysis of the regenerative process X 

Observe that by specializing Proposition 2.3 to indicator r. v. 's, we find that 

11t - P{O, E ·}ds - P*( .) 
t 0 

as t - 00. Thus, the probability measure P* characterizes the ergodic behavior of tho 

process under P. 

Under p., the process X is regenerative. However, X has the additional nice propert: 

that X is a strictly stationary process under P*; the next proposition summarizes th 

situation. 

(2.4) Proposition. Let X be a positive recurrent regenerative process under P. Then, 

i) P*{X 0 (}t E .} = P*{X E ·} for t ~ 0, 

ii) X is a positive recurrent delayed regenerative process (with respect to (T(n) : n ~ 0: 

under P*, 
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iii) P*{Xn E -} = P{Xn E -} for n ~ 1. 

For the proof, see Section 7. 

We conclude this section with a brief description of the central limit theorem that goes 

with the law of large numbers described above. If E*IX(O)I < 00 (E*O is the expectation 

operator corresponding to the probability p*), we define the sequence of r.v.'s 

I
T(n) 

Yn = X(s)ds 
T(n-l) 

Zn = Yn - E*X(O) -Tn-

(2.5) Proposition. Let X be a positive recurrent regenerative process under P, for which 

E*IX(O)I < 00. If Ezl < 00, then 

t 1
/
2 (~ 1t X(s)dx - E* X(O)) ~ o-N(O, 1) P - weakly 

t 1
/
2 (~ 1t X(s)ds - E* X(O)) ~ o-N(O, 1) P* - weakly 

as t - 00, where 0-
2 = >..Ezl = >"E* zl. 

The proof of this proposition follows in much the same way as does Theorem 1 of 

Section 16 of CHUNG (1967). 

3. The Covariance Function of a Non-Delayed Regenerative Process 

Our first objective is to determine conditions under which the covariance function is 

finite-valued. Let 

Vn = sup{X2(t) : T(n - 1) ~ t < T(n)} 

for n 2: o. 

(3.1) Proposition. Let X be a non-delayed positive recurrent regenerative process under 

P. 

i) If E* X(0)2 < 00, then EIX(s)X(t)1 + EIX(s)l -EIX(t)1 < 00 for a.e. 8, t, so that the covariance 

function c(s,t) is finite-valued for a.e. s,t 2: O. 

ii) If EV1 < 00, then EIX(s)X(t)1 + EIX(s)l - EIX(t)1 < 00 for all s, t ~ 0, so that the covariance 

function c(s,t) is finite-valued everywhere. 

This proof, as well as those of all the other results of Sections 3 through 6, is deferred 

to Section 7_ 

5 



Before proceeding, we wish to point out that the hypothesis of part i) of Proposition 

3.1 implies that of part ii), when X is a discrete-time regenerative process. We say that X 

is a discrete-time regenerative process under P if: 

(3.2) i) X(t) = X(ltJ) P a.s. for t 2: 0, 

ii) T(n) E E+ P a.s. for n 2: o. 
Recall that E* X(0)2 < 00 is equivalent to asserting that E f;(W X2(t)dt < 00. But, for a 

discrete-time process, 
VI = max{X2(k) : T(O) ~ k < T(l)} 

T(l)-l [T(l) 

~ E X2(k) = J7 X2(t)dt, 
l:=T(O) T(O) 

so that i) does indeed imply ii). Of course, for a general regenerative process, hypotheses 

i) and ii) are typically noncomparable. 

This trick can also be used when X has piece-wise constant sample paths P a.s. Letting 

the sequence (/en: n 2: 0) represent the transition epochs of the process X, note that 

VI = max{X2(/en) : T(O) ~ /en < T(l)} 

< 
n :T(O)~I< .. <T(l) 

so that the hypothesis EV1 < 00 may be phrased in terms of an additive functional. 

We turn now to obtaining an expression for EX(s)X(s + t) in terms of the regenerative 

cycle structure of the process. Let 

F(t) = P{ Tl ~ t} 
00 

U(t) = E F(n)(t) 
n=O 

b(t) = E{X(t); Tl > t} 

bt(s) = E{X(s)X(s + t); Tl > s + t} 

H,(u) = {~{X(S); s < TI ~ u}, 
u~s 

u > s. 

(3.3) Theorem. Let X be a non-delayed regenerative process under P. If EIX(s)X(s+t)\ < 

00 (s, t 2: 0), then 

EX(s)X(s + t) = [ (H,-u * U * b)(s + t - u)U(du) + (U * bt)(s). 
J[O"j 

Each of the two terms appearing in the right-hand side of the above expreSSIOn fOI 

EX(s)X(s + t) has a simple probabilistic interpretation. The first term is the contribu· 

tion to EX(s)X(s+t) from outcomes in which there is a regeneration in the interval (s , s+t ] 
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in this case, the regeneration "splits" the history, so that Xes + t) is conditionally inde­

pendent of Xes) (conditional on Td. The second term reflects those outcomes in which 

no regeneration occurs in the interval (s, s + t], so that no "splitting" occurs. The next 

proposition makes rigorous the above discussion. 

(3.4) Proposition. Let X be a non-delayed regenerative process under P. If 

EIX(s)X(s + t)1 < 00 (s, t ~ 0), then 

EX(s)X(s + t) = j EX(s + t - u)E{X(s);T(N(s) + 1) E du} 
(.,.+t) 

+ E{X(s)X(s + t);T(N(s) + 1) > s + t}. 

By using the fact that EX(t) = (U * b)(t) whenever EIX(t)1 < 00, it follows that Theorem 

3.3 permits the covariance function c(s, t) to be expressed in terms of regenerative-type 

quantities. 

c(s , t) = f (H,_u * U * b)(s + t - u)U(du) 
l[o" ) 

+ (U * bt)(s) - (U * b)(s) . (U * b)(s + t). 

Note that EV1
1

/
2 < 00 is a sufficient condition for EIX(u)1 < 00 for all u ~ o. (The proof of 

Proposition 3.Iii) can be easily modified to fit the present circumstances.) 

We turn now to the "mixing" structure of the regenerative process, as represented by 

the covariance function. The next theorem presents conditions under which c(s, t) ---+ 0 as 

t ---+ 00. 

(3.5) Theorem. Let X be a non-delayed positive recurrent regenerative process under 

P, for which E(VI + Vll/2Td < 00. Then, c(s, t) --+ 0 as t --+ 00 if either of the two following 

additional conditions holds: 

i) F is spread-out, 

ii) X is a discrete-time regenerative process under P and F has unit span. 

One ingredient in the proof of Theorem 3.5 is that the conditions stated there imply 

that EX(u) --+ E* X(O) as u --+ 00. Letting Xc(u) = X(u) - E* X(O), we see that this, in turn, 

implies that c(s, t) - EXc(s)Xc(s + t) --+ 0 as s --+ 00. Setting W = Xc(O)Xc(t) and applying 

Proposition 2.3, we find that if E*(IX(O)I + IX(O)I ' IX(t)!) < 00, 

(3 .6) liT - EXc(s)Xc(s + t)ds --+ c*(t) 
T a 

as T ---+ 00, where c*(t) = E* X(O)X(t) - E* X(O)E* X(t) = cov*(X(O) ,X(t)) (cov*O is the covariance 

operator corresponding to E*( ·)). Our next theorem presents an un averaged version of 

(3.6); it shows that c(s, t) can often be approximated by c*(t) when s is large. 
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(3.7) Theorem. Let X be a non-delayed positive recurrent regenerative process under P 

for. which E(V1 + V1 T1 + V//2Td < 00. Then, c(s, t) - c*(t) as s - 00 if either of the two following 

additional conditions holds: 

i) F is spread-out, 

ii) X is a discrete-time regenerative process under P and F has unit span. 

In the next section, we continue the study of the covariance function c*(t). 

4. The Covariance Function of a Stationary Regenerative Process 

Recall that under P*, X is a strictly stationary process. In this section, we study the 

covariance function c*O of this stationary process. We start by establishing conditions 

under which c*O is finite-valued. 

(4.1) Proposition. Let X be a positive recurrent regenerative process under P. Then, 

the following three statements are equivalent. 

i) c*(t) is finite-valued for t ~ 0, 

ii) E* X(0)2 < 00, 

iii) EY1(X(0)2) < 00. 

The next result expresses the covariance function c*(t) in terms of probabilistic quan­

tities expressed over regenerative cycles. 

(4.2) Theorem. Let X be a positive recurrent regenerative process under P. If E* X(0)2 < 

00 , then 

(4 .3) c*(t) = E*{Xc(O)Xc(t); TO> t} + [ E* Xc(T(O) + t - s)E*{Xc(O) ; TO E ds}. 
l[o ,f] 

Furthermore, E* Xc(T(O) + t - s) = EXc(T(O) + t - s) , 

( 4.4) { 1
(T(1 )-f )VT(0) } 

E*{Xc(O)Xc(t) ;To>t}=>'E X(s)X(s+t)ds , 
T(O) 

and the finite signed measure E*{Xc(O) ;TO E ds} can be expressed as 

(4.5) E*{XC(O);TO E ds} = >'E{Xc(T(l) - s) ; T1 > s}ds· /(s ~ 0) . 

Observe that (4.3) breaks up the covariance into two pieces. The first is a contribution 

from those paths in which there is no regeneration in [0, t]. The second term involves a 

factorization , which reflects the independence over regenerative cycles. 
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The next result analyzes the "mixing" structure of a stationary regenerative process 

by identifying conditions under which c*(t) --+ 0 as t --+ 00. 

(4.6) Theorem. Let X be a positive recurrent regenerative process under P, for which 

E(Y1(X(O)2) + V1
1/2T1 + V//2) < 00. Then, c*(t) --+ 0 as t --+ 00 if either of the two following 

additional conditions holds: 

i) F is spread-out, 

ii) X is a discrete-time regenerative process under P and F has unit span. 

In fact, under appropriate moment hypotheses, we can obtain rates of convergence for 

how fast c*(t) goes to zero. 

(4.7) Theorem. Let X be a regenerative process under P for which there exists c, a > 0 

such that EV/+£ < 00 and Eexp(aTd < 00. Then, there exists (3 > 0 such that c*(t) = G(e-PI ) 

as t --+ 00, provided that either of the two following additional conditions holds: 

i) F is spread-out, 

ii) X is a discrete-time regenerative process under P and F has unit span. 

An important ingredient of both Theorem 4.6 and Theorem 4.7 is the assumption of 

non-periodic behavior in the distribution of 1'1. For example, suppose that under P, X is a 

finite-state irreducible Markov chain having transition matrix R = (Rzy : x, Y E E). Suppose 

that R has period d > 1 and let E = 1'(O)u ... U1'(d-l) be the cyclic decomposition of the state 

space. We also adopt the convention that 1'(i) = 1'(i mod d) for i 2:: d and set Xe = X - E* X(O) 

for x E E. Finally, let 7r = (7rz : x E E) be the (unique) stationary distribution of R. Then, it 

follows from elementary Markov chain theory that for 0 ~ r < d, 

z ,y 

d-1 

--+ L L 7rz X e L d7ry Ye 
i=O zEP(i) YEP(i+r) 

as n --+ 00, where the limit is typically non-zero and depends on r. The fact that c*(n) does 

not vanish as n --+ 00 is an indication of the "non-mixing" behavior of X that is typical of 

periodic regenerative processes. The key characteristic of stationary periodic regenerative 

processes is that they never forget the "initial point" in the zero'th cycle, where the term 

"initial point" is to be interpreted as the value of TO . 

It is worth noting that the covariance function does vanish asymptotically when the 

initial state is fixed. Specifically, if X is the chain described above, it is easy to verify that 
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if X(O) = x P a.s., then 

c(m,m + n) = cov(Xc(m),Xc(m + n)) - 0 

as n - 00. Basically, we can expect the covariance to vanish asymptotically so long as the 

initial distribution of X is supported on only one of the P(i)'s, since this guarantees that 

all trajectories see the same "initial point" (mod d) in the zero'th cycle. 

Our next result is a different expression of the fact that c*(t) often vanishes at In­

finity. Specifically, conditions are obtained which guarantee that c*O is an element of 

Ll[O,oo) (Ll[O,oo) is the family of Lebesgue integrable functions on [0,(0)); these conditions 

also suffice to ensure that EXc(T(O) +.) E Ll[O,oo). 

(4.8) Theorem. Let X be a regenerative process under P, for which E(Tl + Y1(IX(0)1)2 + 

Yl(X(0)2)) < 00. Then, It ic*(t)ldt < 00 and Iooo 
IEXc(T(O) + t)ldt < 00 if either of the two 

following additional conditions holds: 

i) F is spread-out, 

ii) X is a discrete-time regenerative process under P and F has unit span. 

In the next section, we express the integral Iooo c*(t)dt in terms of regenerative quantities 

expressed over cycles. 

5. The Spectral Density of a Stationary Regenerative Process 

Our interest in this section is to obtain a regenerative representation for the spectral 

density of X under P*. The spectral density /: IR - [0,(0) is defined by 

(5.1) 1100 

/(0:) = - cos(o: , t)c*(t)dt; 
7r 0 

note that under the hypotheses of Theorem 4.8, c*O E Ll[O,oo), so that (5.1) makes sense. 

The spectral density plays a central role in the analysis of stationary processes (see AN­

DERsoN (1971». Thus, the results of this section form an important bridge between 

regenerative process research and the stationary process literature. 

Recall that (4.7) expresses the covariance function as the sum of two quantities. The 

next proposition integrates cos(o:t) against the first term. 

(5.2) Proposition. Let X be a positive recurrent regenerative process under P. If 

EY1(IX(0)1)2 < 00, then 

100 

cos(o:t)E* {Xc(O)Xc(t); TO > t}dt = ~E {lTI lTI cos(o:(t - s))Xc(T(O) + s)Xc(T(O) + t)dSdt} 
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Before analyzing the second term, we need the following result concerning the cosinE: 

transform of EXe(T(O) + .). For a E JR, let 

X(a) = Eexp(iarI) 

f(a) = E lTi exp(ias)Xe(T(O) + s)ds 

f3(a) = Jl.E lTi exp(ias)Xe(T(l) - s)ds. 

Also, if F is a spread-out distribution, let V(T) = {OJ; if F has unit span, set V(F) = 
{b: k E ~}. 

(5.3) Proposition. Let X be a regenerative process under P , for which E(rf+ Yl(IX(O)l)2+ 

Yl(X(0)2)) < 00. Then, EXe(T(O) + .) E £1[0,00) and 

00 { 1 (& + r~-a) ), 1 cos(at)EXc(T(O) + t)dt = 2 1- (a) l-(-a) 

o -Jl.E U;' sXe(T(O) + s)ds} , 
(5.4) 

for a E JR, if either of the two following additional conditions holds: 

i) F is spread-out, 

a ¢ V(F) 

a E V(F) 

ii) X is a discrete-time regenerative process under P and F has unit span. 

We can now state our spectral density representation theorem. 

(5.5) Theorem. Let X be a regenerative process under P, for which E(rf + Y1(IX(0)1) 2 + 

Yl(X(0)2)) < 00. If either of the two following additional conditions holds: 

i) F is spread-out, 

ii) X is a discrete-time regenerative process under P and F has unit span. 

then c*(-) E £1[0 , 00) and 

(5 .6) 
27rf(a) = Jl.E {lTi lTi c06(a(t - s))Xe(T(O) + s)Xc(T(O) +t)dsdt} 

+ f(a)f3(a) + f(-a)f3(-a) 
l-X(a) l-X(-a) 

for a ¢ V(F) , whereas for a E V(F), 27rf(a) = Jl.EZr. 

Note that for a E V(F), 27rf(a) = Jl.EZr; this identical constant arose in Proposition 2.5. 

This identi ty will be discussed in more detail in the next section. 

6. Applications to Steady-State Simulation 

Our interest in obtaining the results of the previous sections arose from our involvement 

in the development of output analysis algorithms for steady-state simulations. 
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Given a real-valued regenerative stochastic process X, it is frequently of interest to 

calculate the steady-state parameter E* X(O). Simulation is often a powerful method for 

numerically estimating such parameters. The law of large numbers (2.2) asserts that if 

EY1(IX(0)1) < 00, then 

X(t) == ! it X(s)ds - E* X(O) P a.s. 
t 0 

as t - 00. Thus, if the process X is simulated over a long enough time interval [0 , tl, the 

estimator X(t) formed from the resulting simulation output will be close to the desired 

quantity E* X(O). 

For a numerical algorithm to be useful, it is important to have error bounds that 

indicate the amount of deviation of the estimator from the true solution E* X(O). For 

simulations, this error bound is typically captured by the notion of a confidence interval 

for E* X(O). A confidence interval for the parameter E* X(O), based on estimation via X(t), 

can be obtained from the central limit theorem given by Proposition 2.5: 

(6.1) t1/2(X(t) - EX*(O)) ::} uN(O, 1) 

P-weakly, as t - 00, where u2 = >.EZ?' Specifically, select z so that P{N(O, 1) :::; z} = 1- 6/2. If 

an estimator {s(t) : t ~ O} can be constructed so that s(t) ::} lui P-weakly as t - 00, the limit 

theorem (6.1) asserts that 

[
X( ) _ s(t)z X() S(t)z] 

t t 1/2 ' t + t 1/2 

will be an asymptotic 100(1- 6)% confidence interval of u :f; o. Thus, the central issue in the 

output analysis of steady-state simulations is the construction of an estimator s(t), based 

on the evolution of X up to time t, that converges to lui P-weakly. 

One approach to constructing such an estimator s(t) explicitly uses the regenerative 

structure of X. Let 

v(t) = { t Lf~tl\YI: - X(t)TI:? ; N(t) ~ 1 
o ; N(t) :::; 0, 

and set s(t) = v(t)1/2. If E(Y1(IX(0)1)2 + Tl) < 00, it is easily verified that 

set) - lui P a .s. 

as t - 00. Let Ai = Zl- u2Ti and cp = 2EZ1Tl/ET1. The following result, established in Glynn 

and Iglehart (1986), shows that the mean square error of s(t) decreases at the canonical 

rate, namely t- 1/ 2 in the computational horizon t. 
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(6.2) Theorem. Let X be a non-delayed regenerative process under P, for which 

E(Y1(IX(0)1)8 + Tt) < 00. Then, if (1::f:. 0, 

One difficulty with the regenerative method described above is that the identificatior 

of regeneration times can, in certain settings, be quite expensive computationally. Fortu· 

nately, a second class of algorithms for estimating (1 exists. Note that Theorem 5.5 prove: 

that under certain regularity hypotheses on the regenerative process, 27r 1(0) = (12. In otheJ 

words, (12 is (up to a multiplicative constant) just the spectral density of the stationar) 

version of the regenerative process X. Hence, Theorem 5.5 justifies the application of spec· 

tral density estimation methods to the estimation of (12 for regenerative processes. Thi: 

approach enjoys considerable popularity in the simulation community and is described ir 

more detail in Chapter 3 of Bratley, Fox, and Schrage (1987). 

The discussion of Sections 4 and 5 of this paper shows that a critical ingredient ir 

determining the existence of a spectral density is the lack of periodicity in the distributior 

of T1. If the distribution of T1 is periodic, the covariance function c·(t) typically does not 

vanish at infinity, and the function c· (-) is not absolutely integrable; thus, the spectra: 

density does not exist. An important conclusion of this paper is that standard spectraJ 

density estimation methods for calculating (12 may be inappropriate when the process i~ 

periodic. 

7. Proofs of the Main Results 

Proof of Proposition 2.3. Since 

(7.1) 

it suffices to show that the extreme right-hand side of (7.1) is uniformly integrable in t. 

The right-hand side is easily shown to converge P a.s. to >.EY1(IWI). So, we're done if we 

show that the right-hand side converges in expectation to >'Y1 (IWI). Although we can not 

apply Wald's identity directly here (note that the Yk(IWI)'s are dependent r.v.'s) , a \Vald­

type argument does go through. Note that (2.1) implies that TO, ... , Tk-1 are independent 

1~ 



N(t)+! 00 

E L Yk(IWD = L EYk(IWDI(N(t) ~ Ie - 1) 
k=O k=O 

00 

= L EYk(IWDP{ TO + .. . + Tk-l ~ t} 
k=O 

= EYo(IWD + EY1(IWDEN(t). 

Since the Tic'S are i.i.d., N(t) is a renewal process. The elementary renewal theorem then 

implies that EN(t)/t - A as t - 00, completing the proof of the proposition. II 

Proof of Proposition 2.4. If W is a bounded r.v., so is W 0 Bu and Proposition 2.3 

then implies that 

(7.2) 

lit - EW 0 B,ds - E*W, 
t a 

lit - EW 0 Bu 0 B.ds - E*W 0 (Ju . 
t a 

but, with a little thought, it is easy to see that B,+u = (Ju 0 (J, for s, u ~ o. Hence, 

lit lit - EW 0 Bu 0 B,ds = - EW 0 Bo+uds 
tot a 

11u

+
t 

= - EW 0 B.ds , 
t u 

which converges to E*W 0 (Ju = E*W for u ~ 0, proving part i) . 

For i = 0, 1, . . . , n, let Ii : D~[O, 00) - IR be a family of bounded (measurable) functions. 

By definit ion of P*, it is evident that 

Note that for T(O) ~ s < T(l), Xi 0 B. = Xi+! for i ~ 1. Hence, 

I
T(l) n {T(l) n 

AE II/i(X 0 B.)ds = AE 17 10(Xo 0 B.)ds. II/i(Xi+l) 
T(O) i=O T (O) i= 1 

I
T(l ) n 

= AE 10(Xo 0 (J,)ds. II Eli(Xi+l) 
T ( O) i=l 

n 

= E* 10(Xo) • II Ef;(X;), 
i=l 

which proves ii) and iii). II 

Proof of Proposition 3.1. For part i), we apply Proposition 2.3 with W = X(O ). 

Noting that Yo(IWI) = 0 and EYl(IWI) = A- l E* X(0)2, we find that f; EX2(s)ds < 00 for t ~ o. 
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Hence, EX2(S) < 00 for a.e. s. The result then follows by applying the Cauchy-Schwarz 

inequality at these (s, t) pairs for which EX2(s) + EX2(t) < 00. 

Part ii) is immediate, provided that we can show that k(t) = EX2(t) < 00 for t ~ o. A 

standard renewal argument shows that k satisfies the renewal equation k = kl + F * k, where 

F(-) = P{Tl ~ .} and k1(t) = E{X2(t);Tl > t}. Note that k1(t) ~ E{V1;Tl > t} and that kl is 

bounded over finite intervals. Hence, k = U * kl' where U is the renewal kernel U = 2:::=0 F(n) 

associated with F. It follows that k(t) ~ EV1 . U(t), completing the proof. " 

Proof of Theorem 3.3. We assume initially that X is a bounded process P a.s. 

(i.e. there exists K such that P{IX(t)1 ~ K} = 1 for all t ~ 0). Let a(s, t) = EX(s)X(s + t). 

Conditioning on Tll we find that a(·, t) satisfies the renewal equation 

a(s, t) = a,es) + r a(s - u, t)F(du) 
l[o,,) 

where a,es) = E{X(s)X(s + t); Tl > s}. Since aC t) and atO are clearly bounded on finite 

intervals, we find that 

(7.3) 

(see KARLIN and TAYLOR (1975), p. 184). We now need to analyze a,es). Note that 

a,es) = E{X(s)X(s + t); Tl > s + t} + 1 E{X(s)X(s + t); Tl E du} 
(".+t) 

= bt(s) + 1 EX(s + t - u)E{X(s); Tl E du} 
(",+t) 

= bt(s) + r EX(s + t - u)H,(du). 
l[o,.+t) 

EX(-) can itself be analyzed by a renewal argument, yielding the expression EX(t) = (U *b)(t). 

Hence, 

a,es) = bt(s) + (H, * U * b)(s + t) . 

Substituting this expression into (7.3) proves the theorem when X is bounded P a.s. For 

general X, we approximate X by bounded processes, and take limits; the integrability 

condition justifies the limiting operation. " 

Proof of Proposition 3.4. As in the proof of Theorem 3.3, we first assume that X 

is bounded P a.s. We start by showing that (U * bt)(s) = E{X(s)X(s + t); T(N(s) + 1) > s + t}. 

Let des) = E{X(s)X(s + t); T(N(s) + 1) > s + t}. By conditioning on Tl, we find that d satisfies 
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the renewal equation d = b, + F * d. Using the boundedness of x, we may conclude that 

d = U * b,. 

For the first term appearing on the right-hand side of Theorem 3.3, note that it equals 

(recall, from the proof of Theorem 3.3, that EX(t) = (U * b)(t)) 

f U(du) f H._u(dr)EX(s + t - u - r) 
i[Q,,] i[Q,.+I-u] 

= f U(du) 1 H._u(dr)EX(s + t - u - r) 
i[Q,,] ('-U,.+I-U] 

= f U(du) 1 H:_u(dv)EX(s + t - v), 
i[Q,,] (.,.+t] 

where H~(v) = H,.(v - u). Thus, we will obtain the required equality for the second term if 

we can show that 

f U(du) 1 H:_u(dv) = {E{X(S);T(N(S) + 1) E dv}, 
i[Q,.] (1,.+1] 0, 

v ~ s+t 
v> 8 + t. 

The two sides are clearly equal if v ~ s or v > s + t. For s < v ~ s + t, it suffices to show that 

(7.4) f U(du)(H:_u(v) - H:_ .. (s)) = E{X(s);T(N(s) + 1) ~ v}. 
i[Q,,] 

Recall that H~_ .. (s) = H._ .. (s - u) = o. Also, if we set e(s) = E{X(s); T(N(s) + 1) - s ~ r}, we find 

(by the renewal argument and boundedness of X) that e(s) = /rQ,.] U(du)H._ .. (s+r-u), proving 

(7.4) and the proposition for bounded processes. We complete the proof by removing the 

boundedness assumption as in the proof of Theorem 3.3. II 

Proof of Theorem 3.5. First, we observe that since EV1 < 00, Theorem 3.3 and 

Proposition 3.4 apply at every s, t ~ o. For part i), we now use the fact that Ib(t)1 ~ 

E{IX(t)1; Tl > t} ~ E{l + Vll/2; Tl > t}. Note that the bounding function is decreasing to zero 

and integrable, since 

Hence, by Theorem 1 of ARJAS, NUMMELIN, and TWEEDIE (1978), we may conclude 

that (U * b)(t) -+ E* X(O) as t -+ 00. Let Xe(t) = X(t) - E* X(O). The result for part i) follows if 

we can show that EX(s)Xe(s + t) -+ 0 as t -+ 00. From Proposition 3.4, we have that 

(7.5) 
EX(s)Xe(s + t) = 1 EXe(S + t - u)E{X(s);T(N(s) + 1) E du} 

(.,,+1] 

+ E{X(s)Xe(s + t; T(N(s) + 1) > s + t}. 
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For the first tenn, observe that EXc(s+t-u) is a bounded function which converges to zero 

as t - 00. On the other hand, the integrator is a finite signed measure, since 

1 IE{X(s);T(N(s) + 1) E du}1 $ EIX(s)1 < 00. 
(.,00] 

So, the bounded convergence theorem proves that the first term converges to zero. For the 

second term on the right-hand side of (7.5), we use Theorem 3.3 to represent it as 

(7 .6) f U(du)E{X(s - u)Xc(s + t - u); Tl > s + t - u}. 
1[0 ,0] 

Again, the measure U (du) over [0,8] has total mass U (s) < 00 and the integrand is bounded 

and converges to zero as t - 00. Bounded convergence shows that (7.6) therefore converges 

to zero as t - 00, proving i). 

For part ii), the proof follows the same line, except that we apply the discrete renewal 

theorem (see FELLER (1970), p. 330) rather than the continuous-time version of ARJAS, 

NUMMELIN, and TWEEDIE (1978). II 

Proof of Theorem 3.7. The proof of Theorem 3.5 shows that EX(t) - E* X(O) as 

t - 00 is guaranteed by i) and ii), as well as the moment hypothesis EV1
1

/
2Tl < 00. The 

proof is therefore complete if we show that EX(s)X(s + t) -+ E* X(O)X(t) as s -+ 00. Let 

a(s, t) = EX(s)X(s + t). Since EV1 < 00, Proposition 3.1 implies that EIX(s)X(s + t)1 < 00 for 

s, t ~ o. The proof of Theorem 3.3 shows that a(-, t) satisfies a(s, t) = (U * at)(s). We can then 

apply Theorem 1 of ARJAS, NUMMELIN, and TWEEDIE (1978) to conclude (for part 

i)) that EX(s)X(s + t) - E* X(O)X(t) as s -+ 00, provided that latOI is bounded above by an 

integrable function which tends to zero at infinity. Now, 

lat(s)1 $ E{IX(s)X(s + t)l; Tl > s + t} 

+ 1 EX(s + t - u)E{X(s); Tl E du} 
(' ,o+t] 

$ E{Vl;Tl > s} + KE{IX(s)I;Tl > s} 

$ E{Vl + KVll/2; Tl > s} 

where K = sup{IEX(t)1 : t ~ O} < 00. (Recall that IEX(t)1 is bounded on finite intervals (hy 

EV//2 . U(t», and converges to IE* X(O)I.) But 

100 

E{Vl + KV1
1

/
2;Tl > s}ds = E(VITl + V//2Td < 00; 

This concludes the proof of i). For ii), the proof is identical except that the discrete renewal 

theorem is used instead. II 
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Proof of Proposition 4.1. Recall that c*(O) = var X*(O), so i) implies ii). On the other 

hand, the Cauchy-Schwarz inequality shows that ii) implies i). The equivalence of ii) and 

iii) follows by definition of P*. II 

Proof of Theorem 4.1. The proof of (4.3) follows immediately from Proposition 

2.4 (just condition on TO = T(O»); furthermore, since P*{Xn E .} "= P{Xn E .} for n ~ 1, it is 

evident that E* Xe(T(O) + u) = EXe(T(O) + u) for u ~ o. 
Using the definition of P*, we have that 

I
T(l) 

E* {Xe(O)Xe(t); TO> t} = >'E (Xe(O)Xe(t)I(To > t» 0 8,ds. 
T(O) 

(7.7) 

But (Xe(O)Xe(t)I(To > t» 0 8, = Xe(s)Xe(s + t)I(s < T(1) - t) for T(O) < s ~ T(1). Substituting 

this relationship into the right-hand side of (7.7) yields (4.4). To prove (4.5), note that 

TO 0 8, = T(1) - s for T(O) < s ~ T(1) so that for u ~ 0, 

I
T(l) 

E*{Xe(O);TO ~ u} = >'E (Xe(O)I(To ~ u»o9,ds 
T(O) 

I
T(l) 

= >'E Xe(s)I(T(1) - s ~ u)ds 
T(O) 

I
T(l) 

= >'E Xe(r)dr . 
T(O)v(T(l)-u) 

But the substitution v = T(1) - r shows that 

I
T(l) lTiAU 

E Xe(r)dr = E Xe(T(l) - v)dv 
T(O)v(T(l)-u) 0 

= E ioU Xe(T(l) - V)I(T1 > v)dv 

= iou E{Xe(T(l) - V)I(T1 > v)dv, 

proving the theorem. II 

Proof of Theorem 4.6. Recall that EY1(X(0)2) = >.-1 E* X(0)2 so that Theorem 4.2 

may be applied. Note that the first term on the right-hand side of (4.3) can be bounded 

via the Cauchy-Schwarz inequality: 

But E*{X(0)2;TO > t} ~ 0 as t ~ 00 by the dominated convergence theorem. For the second 

term, observe that E*{Xe(O);TO E ds} is a finite signed measure. The proof will therefore be 
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complete is we can prove that EXc(T(O)+u) is a bounded fWlction which converges to zero as 

u - 00 (use the bounded convergence theorem). To accomplish this, we apply the renewal 

theorem, noting that Xc(T(O)+·) is a non-delayed regenerative process under P. Recall that 

EXc(T(O)+t):S E*IXc(O)I+U(t) .EV1
1/2 and EXc(T(O)+t) = (U*bc)(t), where bc(t) = E{Xc(t) jT1 > t}. 

Since Ibc(t)1 :S E{V1
1/2 + E*IX(O)l j T1 > t}, it follows that Ibc(t)1 is dominated by an integrable 

function which tends to zero at infinity. Hence, by the renewal theorem (Theorem 1 of 

ARJAS, NUMMELIN, and TWEEDIE (1978) for part i), the discrete renewal theorem for 

ii)), EXc(T(O)+t) -)...10 bc(s)ds = 0 as t - 00. Hence, EXc(T(O)+u) is bOWlded and converges 

to zero as u - 00. II 

Proof of Theorem 4.1. Noting that Y1(X(O)2) :S V1 Tf, it follows from Holder's in­

equality that EY1(X(O)2) < 00, so that Theorem 4.2 is in force. Analyzing the first term on 

the right-hand side of (4.3), we use (4.4) to bound it (~1/2 = ~1/2 + E*IXc(O)l): 

IE* {Xc(O)Xc(t)j TO > t}1 :S )"E{VtlT1 - tj+} 

for 0 < c < a. Thus, the theorem will be proved if we show that the second term in (4.3) is 

O(e- dt ) for some d> o. This, in turn, will follow from the bounded convergence theorem if 

we can show that ed'E*{Xc(O) jTO E ds} is a finite (signed) measure and edUEXc(T(O)+u) is a 

bounded fWlction which goes to zero at infinity. From (4.5) , it is evident that 

- 1/2 IE*{Xc(O) jTo E ds}l:s )..E{V1 jT1 > s}ds 

:S )..E1/2V1 . p 1/2{Tl > s}ds = 0 (e -;') ds. 

To prove that EXc(T(O)+u) decreases exponentially fast, recall that EXc(T(O)+u) = (U *bc)(u ) 

(see the proof of (4.6)). Since 

we can apply Theorem 4.1 of NUMMELIN and TUOMINEN (1982) to conclude that 

(U * bc)(t) = O(e-'1t) for some '7 > 0 Wlder the hypothesis of i); to make the same conclusion 

for ii), we use Theorem 6.6 of NUMMELIN (1984) II 

Proof of Theorem 4.8. We start by showing that fooo IEXc(T(O) + t)ldt < 00. Since 

E* X(O)2 = )"EY1(X(O)2), it follows that E*IX(O)I < 00. Thus, a standard argument (see Propo­

sition 3.1 i)) shows that EXc(T(O)+t) = (U*bc)(t) for a.e. t , where bc(t) = E{Xc(T(O)+t) jTl > t}. 
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Hence, observing 'that 10 bc(t)dt = 0, we get 

100 

IEXc(T(O) + t)ldt = 100 

I(U * bc)(t)ldt 

~ roo I t bc(t,)Adsldt + roo ( Ibc(t _ s)I'IU(ds) _ -Xdsldt 
10 10 10 l[o,t) 

= roo 11
00 

bc(s)dsl-Xdt + ( 100 
Ibc{t _ s)ldt 'IU(ds) - -Xdsl 10 t 1[0,00) , 

~ -X roo f' Ibc(s)ldtds + roo Ibc(t)dt. ( IU(ds) _ -Xdsl 
10 10 10 1[0,00) 

~ -XE {lTI 

sIXc(T(O) + s)ldS} + E {iTI IXc(T(O) + s)ldS} . 10,00) IU(ds) - -xdsl· 

But EU;I sIXc(T(O)+s)lds} ~ E{T1Y1(IXc(O)l)} ~ El/2T;'El/2Yl(IXc(O)l)l < 00. Also, EU;I IXc(T(O) 

+s)lds} = EY1(lXc(0)1) < 00. Finally, we apply equation (1) of STONE (1967) to obtain 

finiteness of fro,oo) IU(ds) - -xdsl < 00 in the spread-out case; for the discrete-time case, we use 

Theorem 6.4 of NUMMELIN (1984). 

We now show that Iooo Ic·(t)ldt < 00. Since E· X(0)2 < 00, Theorem 4.2 applies. Integrating 

the right-hand side of (4.3), we see that 

100 

IE· {Xc(O)Xc(t); TO> t}ldt ~ E·IXc(0)1·1
TO 

IXc(t)ldt 

I T(l) IT(l) 
= -XE IXc(s)1 IXc(t)ldtds 

T(O) , 
~ -XEY1(IXc(O)l)2 < 00. 

On the other hand, 

roo I ( E· Xc(T(O) + t - s)E· {Xc(O); TO E ds }Idt 
10 l[o,t) 

~ roo IE. Xc(T(O) + t)ldt· ( IE·{Xc(O); TO E ds}1 
10 1[0,00) 

~ 100 

IEXc(T(O) + t)ldt . -X .100 

E{IXc(T(l) - s)l; Tl > s }ds 

= 100 

IEXc(T(O) + t)ldt . -x. EY1(IXc(O)l) < 00. II 

Proof of Proposition 5.2. The following operations are justified by Fubini's theorem. 

Note that 
1

00 

C08(ot)E·{Xc(O)Xc(t);TO > t}dt 

= E· {Xc(O) l T
O C08(ot) . Xc(t)dt} 

= -XE {lTI 

Xc(T(O) + s) iTI 
cos(o(t - s»Xc(T(O) + t)dtds } . 
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But 
fo

T
1 Xc(T(O) + s) iT1 COS(O(t - s»Xc(T(O) + t)dtds 

= fo
T

1 It Xc(T(O) + s)Xc(T(O) + t) cos(o(t - s»dsdt 

= lT1 Xc(T(O)+s) l' C08(o(t-s»Xc(T(O)+t)dtds, 

using the fact that cos(·) is even. Hence, 

E {lT1 
Xc(T(O) + s) iT1 cos(o(t - s»Xc(T(O) + t)dtds } 

1 {(1 (1 } = 2E lo lo cos(o(t - s»Xc(T(O) + s)Xc(T(O) + t)dsdt , 

proving the result. \I 

Proof of Proposition 5.3. The fact that EXc(T(O) + -) E Ll[O,oo) was shown in the 

proof of Theorem 4.8. To prove (5.4), we first asswne that 0 ¢ V(F). Using absolute 

integrabilty hypotheses established in the proof of (4.8), we find that for e > 0, 

fooo exp( -et + iot)(U * bc)(t) 

= [ exp( -d + iot)U(dt) . [00 exp( -d + iot)bc(t)dt. 
l[o,oo) lo 

Also, since U = 60 + F * U (6o is a point mass at zero), we obtain 

[ exp( -d + iot)U(dt) = 1 + [ exp( -et + iot)F(dt)· [ exp( -d + iot)U(dt) . 
i[o ,oo) i[o ,oo) i[o,co) 

Hence, 

[ exp(-d + iot)U(dt) = (1- [ exp(-et+iot)F(dt»-I. 
i[o ,oo) i[o,oo) 

It follows that for e > 0, 

100 ~co e-tt+iatb (t)dt 
e-et+iat EX (T(O) + t)dt = ° ~ . 

c 1 - fr e-et+scrt F(dt) ° [0,00) 

(7.8) 

By dominated convergence and Fubini's theorem, we see that 

fooo exp( -d + iot)EXc(T(O) + t)dt --+ 100 

EXc(T(O) + t)dt 

l co 
exp(-et + iot)bc(t)dt --+ r(o) 

[ exp( -et + iot)F( dt) --+ X( 0) 
l[o ,co) 

as e --+ 0, so that if X(o) i= 1, (7.8) implies that 

(7.9) fooo exp(iot)EXc(T(O) + t)dt = 1 ~~lo) ' 
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But {a : X{a) = I} = 'D{F) (see P. 174-175 of CHUNG (1974)) . For a E 'D{F), let an - a 

through a sequence an ft'D(F) and take limits of both sides of (7.9). By using dominated 

convergence on the left-hand side (recall that EXc(T(O) + .) E L1[0, (0» and l'Hopital's rule 

on the right-hand side, we get 

(7.10) 100 r'(a) 
o exp(iat)EXc{T(O) + t)dt = - X'(a) 

for a E'D(F). The derivatives r'(a),X'(a) may be calculated by interchanging derivative and 

expectation, as can be justified by dominated convergence and the moment conditions: 

r/{a) = EU;' sXc{T{O)+s)ds},X'(a) = ET1. The proof follows from (7.9) and (7.10), by writing 

cos(at) = (exp(iat) + exp(-iat»/2. II 

Proof of Theorem 5.5. We need to evaluate the integral of the second term on the 

right-hand side of (4.3): 

>.100 exp(iat) l' EXc(T(O) + t - s)E{X{T(l) - 8); Tl > 8}dsdt 

= 100 

exp(iat)EXc(T(O) + t)dt . {J(a) 

(the necessary absolute convergence necessary to justify (7.11) was established in the proof 

of (4.8)). Of course, the first integral on the right-hand side of (7.11) was evaluated in 

(7.9) and (7.10). We then obtain (5.6) by observing that c08(at) = (exp{iat) - exp{ -iat » /2. 

To get the result for a E 'D(F), note that {J{a) = {J{O) for a E 'D{F). But {J(O) = 

>'E J;' Xc{s)ds = o. II 
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