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Let &€ = 2¢ where € is giw}en in'(i4). By the Law of Iterated Logarithm for Brownian
motion and (14) it follows that '

1 ¢ IN (ei,‘ Ul(s))ds

i e i, 0dW (s .

g PR /0 (e 0 dWs)) 7z JHU(s), BuU(s))ds
e 1/2

1 t
<lims lim ———:/(ei,adW(s))
=P e Bl (s o |50 g

=0 a.s.

The third term on the right hand side of (19) tends to 0 a.s. as t — oo by the
Strong Law of Large Numbers for Brownian motion. Using (13) it follows that

(20) » tli'rgo bi(t) =0b; as.
O

An asymptotic optimality of a certainty equivalence adaptive control based
on (B(t), 2(t)) corresponding to (7) can be verified to obtain an analogue of the
Theorem.
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Stochastic Optimization via Grid Search

Katherine Bennett Ensor and Peter W. Glynn

ABSTRACT. This paper is concerned with the use of grid search as a means of
optimizing an objective function that can be evaluated only through simula-
tion. We study the question of how rapidly the number of replications per grid
point must grow relative to the number of grid points, in order to reduce the
“noise” in the function evaluations and guarantee consistency. This question
is studied in the context of Gaussian noise, stable noise, and noise having a
finite moment generating function. We particularly focus on the limit behavior
in the “critical case”.

1. INTRODUCTION

A common problem that arises in the analysis of manufacturing systems is the
need to optimize the performance of such a system with respect to a given set of
decision parameters. For example, in a “just—in—time” manufacturing environment,
the specification of the inventory levels at which to re—order from suppliers can have
a significant impact on the efficiency of the operation. Given the complexity of such
systems, and the cost of experimentation with the physical facility itself, simulation
is a widely used computational tool for studying such manufacturing systems. In

- this paper, our focus will be on the use of simulation to optimize the complex

stochastic models that arise in connection with such problems. Specifically, we
will be concerned with the behavior of the most naive of all such optimization

approaches, namely “grid search”.

To be precise, suppose that A C IR? is the decision parameter space over which
we wish to optimize. Let o : A — IR be a real-valued function that, for each 8 € A,
measures the performance of the system. Our goal, then, is to maximize o over A.
"To numerically optimize o over A, we approximate A by some finite set of m points
Am = {01,...,0,,} C A, and then compute & over A,,. The maximum of o over
Ay, is then taken as an approximation to the maximum of o over A. Since A,, is
frequently taken to be a discrete grid (when A is a hyper-rectangle), we refer to
this approach as a “grid search” for the maximum. , ,

Since our concern is with situations in which a(8) can only be computed via
simulation, our function evaluations at the points § € A, contain random “noise”.
In order to reduce the impact of the noise, one simulates multiple independent
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replicates at each “grid point” and averages over the replicates in order to obtain
an estimator of «(f). The key question that this paper considers is the amount
of sampling per grid point that must be done in order to guarantee that the grid
search converges to the correct solution. Note that if the sampling per grid point is
too low, then anomalous maxima will appear in our approximation to o(-), because
the random noise will create “false maxima” in suboptimal regions of A.

While grid search is clearly a naive algorithm, it has the advantage that it
requires only information of a “function evaluation” type (and no gradients or
Hessians). In addition, it is easy to apply in conjunction with a typical discrete-
event simulation package, and intuitively natural.

Several papers have identified the critical rate at which the number of replica-
tions per grid point must grow relative to the number of grid points; see for example
[Dev76], [DevT78]| (for related results see [Dev77], [YF73] and [YL90]). Below
the critical rate, grid search fails to converge to a correct solution; above the critical
rate, it does. Our main contribution in this paper is to study the precise behavior
of grid search in the critical regime, and to identify the appropriate limit laws. We
also provide some new insight into the behavior of grid search when the number of
replications grows more slowly than in the critical regime (so that the algorithm is
inconsistent).

It should be noted that such stochastic optimization problems arise in many
non-manufacturing contexts. One particularly important area of application is in
parameter estimation for stochastic process, see [EG96] for details. [EG96] study
an adaptive grid search algorithm in which the grid search refines itself iteratively, so
as to concentrate most of the sampling effort in a neighborhood of the maximizer of
o; the paper also considers the interaction between the random error introduced by
simulation versus that error produced by the noise that is present in the underlying
statistical data set.

This paper is organized as follows. Section 2 discusses grid search when the
noise is Gaussian. In an effort to gain insight into the behavior of grid search
when the noise has tails (much) heavier than Gaussian, we consider stable noise in
Section 3. Finally, Section 4 is concerned with development of general asymptotics
that cover the case in which it is only assumed that the noise has a finite moment
generating function.

2. GRID SEARCH WITH GAUSSIAN NOISE

In this section, we study some of the asymptotic properties of grid search in
the setting of Gaussian noise. As we shall see later in Section 4, the behavior of
grid search in the Gaussian setting is quite representative of that obtained when
the noise is non—-Gaussian with a finite moment generating function. We choose to
study the Gaussian case separately, because the proofs are particularly transparent
and the results obtained are especially explicit, in this context.

We assume here (and throughout the remainder of the paper) that A is the unit
hypercube in IR?. We further require that the objective function « be expressable,
for each § € A, as an expected value of the form

a(f) = EX(6),
where X () is Gaussian with mean «(6) and standard deviation o(f). Assume that:
Al. «of-) and o(-) are continuous over A, with o(8) > 0 for 6 € A.
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Let (fm : m > 1) be a (deterministic) sequence that suitably fills out the unit
hypercube asymptotically, namely:

A2. For each set of the form A = x&_,[a;,b;] C A,

m ,
lim inf > I8 € 4) > 0.
=1

m—oo M

The grid search proceeds by replicating X (0;) n independent times, thereby pro-

ducing X1(0;), X2(60;),...,Xn(6;), at each grid point 8; € A, é{el, .. ,0m}, and
forms the sample means ’

We further assume that the simulations at differing grid points 61,0y, ... , are per-
formed independently of one another. In order to develop limit theory that permits
us to analyze the appropriate growth rates for m and n, we shall (for convenience)
view m as a function of n, namely m = m,,. Then, ‘

M, = max Yn(e,»)
eieAmn

is the grid search approximation to maxge a(f). Our first limit theorem establishes
the maximal rate at which the number of grid points m may grow as a function of
sample size n, while maintaining consistency.

THEOREM 2.1. Assume A1-A2. Then,
i.) If logm,/n — oo,

1 /LMn = V2 max o ()
logm,, feA
as n — 0o;

ii.) If logmy/n — c € (0, 00),
My, = max[a(6) + V2co(6)]

asn — oo;
iii.) If logmy,/n — 0,

M, = max a(6)

as n — 0o, where = denotes weak convergence.

This result estabishes that the minimal rate at which the number of simulations
per grid point must grow relative to the number of grid points is logarithmic.
Equivalently, the maximal rate at which the number of grid points may grow relative
to the number of simulations per grid point is exponential. Note, also, that by
conditioning on the sequence (6; : ¢ > 1), the case in which the sites 61,0,...,0;
are generated via 4.i.d. sampling may be reduced to that covered by the above
theorem. (A sufficient condition for A2 is that the distribution of the 0;’s have
a positive Lebesgue density on A, see for example, [Bil95].) It should be noted
that the critical nature of the logarithmic rate in the case in which the 0,’s are
determined via i.i.d. sampling can also be found in [Dev’7 8]. However, Theorem
1 above supplies more explicit information about the behavior of M,, when it is
inconsistent as an estimator of the maximum.
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A glance at the proof shows that the maximizer of X, (-) over A,,, converges
to the set of maximizers of &(-) when logm,/n — 0 as n — oo. Luc Devrove has
pointed out to us that this consistency also holds in setting ii.), provided thet ()
is independent of 6.

Proor OF THEOREM 1. For each ¢ > 0, we may use Al to partition A into
sub-hypercubes Hy, Ha, ..., H; (I = k%) of equal volume such that

la(z) —a(y) <€
(2.1)

lo(z) —o(y)| <e
for z,y € H;. Then for each n > 1,

(2.2) M, = max s X, (0:)
D
B 1
= pax max [o(6:) +0(8)N:(0, 1)/ v,

where N1(0,1),...,Np, (0,1) are .i.d. normal random variables with mean zero

and variance one, and Z denotes “equality in distribution.” Now, for each 7, it is
known that

. — H 0
(2.3) juax N;(0,1) — | 2log (; 16 € J)) =

as n — oo; see, for example, [BP75]. By A2, it is evident that

(2.4) Jlog(j‘fl(@k € Hj) — y/logm, — 0

k=1

as n — oo. Let x1,x9,...,2; be representative points chosen from each of the [
[~sub-hypercubes. Then, for each j and n sufficiently large (so that the maximum of
j the N;(0,1)’s over H; is positive), (2.1) implies that

(ala;) = ) + (olz;) — €) gusx Ni(0, 1)/
(2.5) < 0{%%[@(90‘4- o(0:;)N;(0,1)/v/n ]
< (alz;) +€) + (o(z;) +e) fnax Ni(0, 1)/v/n.
If we let n — oo (and use (2.2) through (2.5)), followed by sending € — 0, we arrive
at conclusions i)-iii). | O
3. GRID SEARCH WITH STABLE NOISE

To obtain some idea as to how the theory changes when the noise has heavier
tails than in the Gaussian setting, we consider now the case in which the noise has
a stable distribution. Specifically, we assume that a(#) can be expressed, for each
€A, as

a(6) = EX(6),
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where X (6) is a symmetric stable random variable of index v (1 < v < 2), having
characteristic function

Eexp(iuX(0)) = exp(iua(d) — o(8)"|u*)

for o(9) > 0. (We restrict ourselves to indices v € (1,2), because if 0 < v < 1,
the expectation of the random variable X (#) does not exist, and it therefore makes
no sense to base our grid search on averaging independent replicates of X (6).) We
note that

3.1) X(0) Ea6)+0(0)2,
where Z is a symmetric mean zero stable random variable having characteristic
function Eexp(iuZ) = exp(—|ul").

As in the Gaussian case, our grid search technique involves averaging i.i.d.
replicates X1(6;), X2(6;),...,Xn(0;) at each grid point 61,6, ... y 0, (with simu-
lations across grid points performed independently), and setting

M, = ,max X (65).

i€ My,

In contrast to the Gaussian case, the critical rate at which m,, may grow with n is
of order n”~!. In order to simplify our analysis, we shall assume that:

A3. (6,: n>1)is a sequence of i.i.d. random variables.
Set d = (1 —v)/(2I'(2 — v) cos(mv/2)).
THEOREM 3.1. Assume A1 and A3. Then,
i) If mp/nY"t — oo,

v—1 l/V ’
(" ) M, =T,

My
as n — oo, where for x > 0,
P(I'; < z) = exp(—dEc(8)" /z%);
i) If mp/n""! — c€(0,00), ‘

M, =Ty
as n — 0o, where for x > sup{y : P(a(f) < y) <1},

iii.) If my/n”"! — 0 and sup{y : P(a() < y) <1} = rgleaica(H),
M, = max«a(§)
oeh
as n — co.
PRrROOF. Let Z,Z,,... be i.i.d. copies of Z, and note that

(3.2) nYZ+.. +Z,) 22,

for n > 1 (see, for example, p. 13 of [ST94]). From (3.1) and (3.2), it follows that
(3.3) M2 Jmax [a(6:) +0(6:) - n'/" 7 Z].

My
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Turning first to case i.), observe that A3 and (3.3) yield

P ((EV:)WMH < x)

= exp (mn log (1 -P (Z1 > m,ll/”(x — ena(ﬂl))/a(ﬂl))))
= exp (mn log (1 _EF (m;/V(x - ena(Gl))/U(Gl))>) ,

where F(z) = P(Z; > z) and ¢, = (n*~!/mp)1/¥. According to p. 16 of [ST94],
(3.4) F(z) ~ dz™
as ¢ — 0o. Since €, | 0 as n — o0, it follows that ‘
(3.5) mnF (mi/V(x — ena(6h)) /0(91))
—d(c(61)/z)" as.

as n — oo. By Al, |a(-)| and |o(-)| are bounded away from zero and infinity, S0
(3.4), (3.5), and the Dominated Convergence Theorem imply

ma EF (ml/" (@ = en(61))/0(61) ) — dBo(61)" /a*

as n — oo, from which i.) follows immediately.
For ii.), use (3.3) to conclude that

(3.6) P(M, < z)
= exp (malog (1 - EF ((@ - a(6)n'~"/o(8)))))
For z > sup{y : P(a(#) < y) < 1}, (3.4) implies that
mnF ((:c - a(()l))nl_l/”/a(&))
— cdo(61)"/(z — a(61))” a.s.

as n — 0o. The fact that (z — «(61)) is a random variable having support bounded
away from zero, in conjunction with Al and (3.4), permits us to apply the Domi-
nated Convergence Theorem to conclude that

my, EF ((x — afy))nt= 1w /0(91)) ~ edEo(01)"/(w — a(6:))* as.

as n — oo, proving ii.).

For iii.), an argument essentially identical to that for ii.) shows that for z >
sup{y : P(a(61) < y) <1}, P(M, < z) — 1 as n — oco. On the other hand, for &
such that P(a(6:) > z) > 0,

BF ((z — a(00)n' =" /o(01))
>E {F ((m - a(91))n1_1/"/0(91)) La(6y) > :c}
> F(0)P(a(6y) > z) > 0,
so (3.6) implies that P(M, < z) — 0 as n — oo, proving the theorem. O

g
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This theorem complements the results of [Dev78] by providing explicit limit ‘
laws (in the stable noise context) for the case in which liminf,—o m,/n*=" > 0.
It shows that consistency requires that the number of replications per grid point

~ be large relative to m*/(*=1 or equivalently, the number of grid points be small

relative to n¥ 1.

4. GRID SEARCH WITH WELL-BEHAVED NOISE

We have seen in Section 3 how heavy tails in the noise can adversely affect
grid search, in the sense that the number of grid points permitted, relative to the
number of simulations per grid point, must be made somewhat smaller than in the
Gaussian case in order to guarantee consistency. '

In this section, we study grid search without making the strong parametric
assumptions of Section 2 and 3. We start by showing that if log m,, grows relative
to n, the grid search algorithm is typically inconsistent.

As in Sections 2 and 3, we assume the existence of a family of real-valued

-random variables (X (6) : 6 € A) such that

a(8) = EX(8)

for § € A. For each 6 € Ay, = {61,...,0,,}, we independently run n i.i.d. repli-
cations X;(0),...,Xn(0) of the random variable X (6), and average them, thereby
producing X, (6). Our estimator for the maximum is then

M, = max —X—n(ﬁ)
0EAMm,

For 0 € A, set s(f) = sup{y : P(X(6) < y) < 1} as the right endpoint of the
support of X (#). Put s =sup{s(d) : 6 € A}.

Consider the assumptions:
A4.1 For each € > 0, there exists §y € A and § > 0 such that

i P(X - .
;19395[@ (X(0)>s—¢€)>0

A4.2 For each z > 0, there exists §y € A and § > 0 such that

inf  P(X(0)>z)>0.
o2t s T (X(6) > 2)

Then, we have the following result.
PROPOSITION 4.1. Suppose A2 holds and logm,,/n — oo as n — co. Then,
i.) If s < oo and A4.1 is in force,

M, = sups(d)
 6eA
as n — oo;
ii.) If s = 400 and A4.2 is in force,

M, = oo
as n — oo.

PROOF. For i.), it is clear that it is sufficient to establish that P(M,, > s—¢) —
1 as n — oo for each € > 0. So, fix € > 0. Then, as in the proof of Theorem 1,
partition A into ! sub-hypercubes of equal volume, with I chosen so large that one
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of the | sub~hypercubes, say Hj, lies entirely within {6 € A : ||6 — 6] < 6} (with
g, 6 as in A4.1). Clearly,

0,€H;
But
P (max Xn(0:) <s— e)
0;€H;
= exp (Z I(6r € Hj)log (1 —P(X,(0k) >s— e))) .
k=1 ,
Clearly, ‘
P(Xu(lk)>s—€) > P(X1(k)>s—¢€...,Xu(0k) >s—¢)
> inf  P(X(0) >s—¢)".
> (il PX(O)>5-0)
So,

P (max Xn(6;) <s— e)
0;€H;

BRCIOETE e))")) .

<ex 10, € H;)log(l — inf
< p(’; (6 € Hy)log(1 — ( _ af
By A2 and the fact the logm,/n — oo, it follows that

I0p, € Hj)-( inf P(X(0)>s—¢)" —
> 100 € H)-(, it PX(®)>s-0)" = o

as n — oo, thereby proving that P(maxg,cn, Xn(6;) < s—¢€) — 0 as n — oo,
establishing i.).

Noting that ii.) requires proving that for each z > 0, P(M,, < z) —» 0 as n —
o0, we observe that an identical style of proof can be followed there, substituting
A4.2 for A4.1. O

We now turn to the issue of consistency.
A5. Suppose there exists v > 0 such that

sup Eexp(v|X(6)]) < 0.
e

This assumption forces the tails of the noise distributions to go to zero at least
exponentially fast, uniformly in 8 € A. It is clearly satisfied, in the Gaussian case,
when the mean and variance are uniformly bounded over 6§ € A.

PROPOSITION 4.2. Suppose A5 holds and af(-) is continuous over A. Then, if
logmy,/n — 0 as n — oo, :
M, = max a(0)
as n — o0o.

PROOF. As in the proof of Theorem 1, we use the continuity. of & to partition
A into [ sub-hypercubes Hi, Hy, ... , H; of equal volume such that

lo(z) —a(y)| <€
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for z,y,€ H;. Let 21,z3,... ,x; be representative points chosen from each of the [
sub-hypercubes and note that for 6; € Hj,
(4.1) P (92151?1(3- Xn(0k) > a(z;) — 26)

> P (Xn(6;) > alz;) — 2€)
> P (Xn(6;) — () > —€) = 1
as n — 0o, by the Law of Large Numbers. On the other hand,

P <91:’l€aé{] Xn(0k) > a(a:j) + 26)

= exp (% I(0, € Hj)log(1 — P(X,(6k) > a(z;) + 26)))
k=1

(4.2) > exp (i I(6y € H;)log(1 — P(X,.(6x) > () + e)))

k=1

> exp (Z I(6x € H;)log(1 —supP(X,(8) > a(6) + e))) :
P geh
Set ¢(8,n) = log E exp(nX (#)). Then, for § € A,

P (Xn(6) > a(8) +¢)

< exp (—n(n(a(f) + €) — ¥(0,7)).

Now, there exists an ng > 0 such that 0 < 7 < 7, 22 exp(nz) < aexp(y|z|), so

EX?(6) exp(nX (o)) < aEexp(v|X(9)]).
It follows that for 0 < n < ng,

52
sup 6—7721/)(0,?7) < 0.
Hence,
_ o 772 82
v(@,n) = ¥(0,0)+ Tla—nl/)(eao) + EWQP(@,Q
= na() + O0(n?),

where O(n?) is uniform in § € A and £ lies between zero and 5. So, for 0 < 7 < 1o,
P(Xn(0) > a(9) +€) < exp(—n(ne + O(n*))).

By choosing 7 sufficiently small so that ne + O(n™) > 0, we observe that

supP(X,(0) > a(8) +¢) = O(p?)
geh

for p € (0,1). Since logmy/n — 0, (4.2) therefore implies that
(4.3) P(max X,(0) < a(z;) +2€) — 1
ngHJ‘

as n — o0o. Relations (4.1) and (4.3) together imply that
P(|My, — max o(z;)] <2€) — 1

as n — 0o. Sending € | 0 completes the proof. U
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We note that this proof also proves that the maximizer of X, (-) over A,
converges to the set of maximizers of a(-), under the condition stated. This result
generalizes that of [Dev78], in which the noise distribution is assumed independent

of 6.
As in our analyses of the Gaussian and stable noise cases, the most interesting

behavior occurs in the “critical case”, in which
(4.4) logmy/n —c

as n — oo, where 0 < ¢ < 1. Recall, from the proof of Proposition 2, that
¥(6,v) = log Eexp(vX(0)). Here, we assume that:

A6. i) For each 0 € A, there exists a root ¥ = y(6) > 0 such that

‘r%zb(@ﬁ) _p0,) =c.

ii.) () is twice continuously differentiable on A x [0,70], where 7o >
supgen ¥(0)-
THEOREM 4.1. Assume (4.4), A2, and A6. Then,

0
M, = max 2 (6.7(6))

as n — 0.

Proor. Let h(y) = 76%1/1(0,7) —1(8,), and note that

82
W (y) = 75—731/)(0,7)

Consequently, h/(y) > 0 for v > 0, so ¥ exists (by A6 i.)) and is unique. Fur-
thermore, v(-) is, because of A6 ii.) and the Implicit Function Theorem, twice

continuously differentiable on A. Set k() = %1/1(6,7(0))‘ For € > 0, partition I'
into ! sub-hypercubes of equal volume, with [ chosen large enough that

k(z) - k(y)| <€

for x,y € H;, 1 <14 <. Let z1,29,... ,7; be [ representative points chosen from
Hy,...,H;. Then,

P(emagl{ Xn(6;) > k(z;) + 2€)

g}jn@ezﬂﬂmYA%)>kwp+@
< my, -sup P(X,,(0) > k(9) +¢).
feA
But
P(Xn(6) > k(6) +¢)

< exp(—=n(y(0)(k(0) +€) — ¥(0,7(0)))
= exp(—n(c+ ey(6))) < exp(—n(c+ e inf 7(6)))-
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Hence,
P (max Xn(0;) > k(z;) +26)
0;€H
1
(4.5) < exp (n( BMn _ o egg/f\*y(e))) -

as n — 00. On the other hand,

P(eljleafii X0 (0;) > k() — 2€)

Jj=1

(4.6) = exp (Zn I(Gj S Hz) log(l - P(Yn(oj) > k(.’l:,,) - 26)))

< exp (an 6; € H;)log(1 — mf P(X,.(0) > k(6) — e))) .

g=1

For f)'< 7 < infge s (), let P be the probability measure under which the X;(6)’s
are ¢.t.d. with common distribution exp((y(8) —n)z—1(8,v(0)—n)))-P(X(6) € dz),
and let E(-) be the corresponding expectation operator. If S, = X;(8)+- - -+X,(6),
then ,

P(Xn(6) > k() —¢)
47) = Elexp(=((6) = n)Sn + n(6,7(8) = 1))); Xn(8) > k() — €]
Elexp(—(v(0) = n)Sn + n3p(8,7(6) = 1))); k(6) > Xn(8) > k(6) — €]
xp(=n((7(6)k(6) — nk(0) = (6,7(6) =)
Pk(0) > X, (0) > k(8) — ).

2
> €ex

Observe that
(4.8) (0,7(6) —n) = ¥(8,7(8)) — nk(6) + n°¢,

where

(&2 inf 82w(«9 )i
0<v<v0

¢ is positive by A6. So, y(0)k(0) — nk(0) — ¥(6,7(0) — n) < ¢ — n?¢. In addition,
note that the mean of the X;(6)’s under Pis 3 Wz/;(é? 7(0) —n). Choose 7 sufficiently
small so that

()2 5-0(60,4(0) 1) > KO) ~
for 6 € A. Set k = infgep (k(8) — 7(8)), and note that
P(k(6) > X, (8) > k(0) —¢)
> Pk > Xn(8) —r(6) > 0).
Note that for £ > 0,
P(|X1(0)| > t) < exp(—tz) Eexp(t|X(9)])
< exp(—tk —¥(0,7(8) —n))
(exp((0,v(0) —n + 1)) + exp(¥(6,7(8) —n —1)).
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By choosing ¢ sufficiently small, it is evident from A6 ii.) that the tail of X 0)
under P converges to zero exponentially fast, uniformly in §. Thus, the X;(6)’s
have the first three moments (under 15) uniformly bounded in 8. So, the central
limit theorem and Berry-Esseen theorem together imply that

(4.9) liminf inf P(k > X, (0) — r(6) > 0) > 0.
. ‘n—oo BEA
Relations (4.7)—(4.9) and A2 imply that
> I(0; € Hi)log(1 — inf P(X,(0) > k() —¢€)) — 0
j=1

as n.— 00, and thus (4.6) yields the conclusion
(4.10) P(gmeag_ X, (6;) < k(z;) —2€¢) — 0

as n — o0o. The theoremi then follows by letting n — oo, applying (4.9) and (4.10),
and letting € | 0. O

The proof of this theorem combines large deviation results with extreme value
theory. The proof implicitly contains large deviation estimates which are uniform
in the parameter . For a general discussion of large deviations see {Buc90] or
[DZ93]. 1t is easy to verify that the result ii.) of Theorem 1 which pertains to the
Gaussian situation is a special case of the above theorem.

Acknowledgements: The authors wish to thank Luc Devroye for generously sharing
his course notes and reference list pertaining to random search.
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Abstract

This paper deals with a class of singularly perturbed stochastic systems
composed of a fast mode, described as a deterministic or stochastic diffusion
subsystem and a slow mode described as a jump process. The control acts
on both modes. The system is controlled over an infinite time horizon with a
limit-average cost criterion. Under appropriate ergodicity conditions we de-
fine a limit-control problem which takes the form of a controlled Markov chain
and we establish the convergence of the optimal average cost of the perturbed
system toward the optimal average cost of the limit-control problem. Finally
we sketch a numerical approximation method that could provide an alterna-
tive approach to show the convergence toward the limit control problem. We
also recall the link that can be established between this numerical scheme and
the decomposition technique in linear programming.

1 Introduction

Hybrid stochastic control systems have provided an interesting paradigm for the
study of manufacturing and economic production systems (see [10], [13], [17], [18],
[19], [25] for a small sample of the abundant literature in this area). A very common
feature of these stochastic production systems is the occurence of events at very
different time scales. In [13], the hierarchical structure of the manufacturing flow
control systems is clearly exposed. In [16], the time scale decomposition methods
in manufacturing flow control models has been reviewed. The links with the theory
of singularly perturbed stochastic systems have been explored in [24] and [25] in
a context where the discrete stochastic events (e.g. the failures and repairs of the
machines) occur at different time scales. The first attempt to study, in the context
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